
Linear Algebra 1, Solutions to exercises 26 to 52.
Epiphany 21/22.

26. Decide which of the following bilinear functions defines an inner product:

(i) x1y1 − x1y3 − x3y1 + 2x3y3 + 4x2y2 + x4y4 + x2y4 + x4y2 on R4;

(ii) 2x1y1 + x2y2 + 2x3y2 + x2y3 on R3;

(iii) 2x1y1 + x2y2 − 2x1y3 − 2x3y1 − x2y3 − x3y2 + x3y3 on R3;

(iv) 4x1y1 + 2x2y2 + 6x2y3 + 6x3y2 + 18x3y3 on R3;

(v) x1y1 + x2y2 − x1y3 − x3y1 + 3x2y3 + 3x3y2 + 11x3y3 on R3.

Solution: (i) Yes. Clearly symmetric and bilinear and

(x,x) = (x1 − x3)2 + x23 + 3x22 + (x2 + x4)
2 ≥ 0

with equality iff x1 = x2 = x3 = x4 = 0.

(ii) No, not symmetric.

(iii) No, not positive. ( (x,x) < 0 for x = (3, 1, 3), for example).

(iv) No, not strictly positive. (x,x) = 4x21 + 2(x2 + 3x3)
2 so there are non-zero vectors with

zero norm, for example x = (0, 3,−1).

(v) Yes. Clearly symmetric and bilinear and

(x,x) = (x1 − x3)2 + (x2 + 3x3)
2 + x23 ≥ 0

with equality iff x1 = x2 = x3 = 0.

You can also check positivity by checking whether the corresponding symmetric matrix is
positive definite.

27. Show that the bilinear form on R3 defined by

(x,y) = 6x1y1 − x1y2 − x2y1 + x2y2 − x1y3 − x3y1 + x3y3

is an inner product on R3, and find the lengths of the vectors1
1
1

 ,

 3
−6

3 + 3
√

3


and the angle between them with respect to this inner product.

Solution: Clearly (x,y) is symmetric and bilinear, so we have only to check positivity. But

(x,x) = 6x21 − 2x1x2 + x22 + x23 − 2x1x3 = 4x21 + (x1 − x2)2 + (x1 − x3)2 ≥ 0

with equality iff x1 = x2 = x3 = 0.

Next note that∥∥∥∥∥∥
1

1
1

∥∥∥∥∥∥
2

= 4,

∥∥∥∥∥∥
 3

−6

3 + 3
√

3

∥∥∥∥∥∥
2

= 144,

1
1
1

 ,

 3
−6

3 + 3
√

3

 = 12.



Thus ∥∥∥∥∥∥
1

1
1

∥∥∥∥∥∥ = 2,

∥∥∥∥∥∥
 3

−6

3 + 3
√

3

∥∥∥∥∥∥ = 12

and the angle θ between these vectors is given by

cos θ =
1

2

so that θ = π/3.

28. Find the angle between the vectors in R4 equipped with the standard inner product:

(i)


1
2
1
−1

 ,


2
1
−1
1

 ; (ii)


1
2
3
4

 ,


8
−4
−4
3

 ; (iii)


6
2
−2
2

 ,


1
−1
−1
3

 .

Solution: (i) Arcos (2/7); (ii) π/2; (iii) π/3.

29. * Consider the vector space Mn of the n × n matrices with real coefficients, and the
application ( , ) : Mn ×Mn 7→ R given by

(A,B) = Tr(AtB) ,

where At denotes the transpose of A and Tr denotes the trace. Show that ( , ) defines an
inner product on Mn.

Solution: From linearity of the trace and the transposition of a matrix combined with the dis-
tributivity of matrix product it follows immediately that (A,B) is bilinear. Furthermore we
have

(A,B) = Tr(AtB) = Tr((BtA)t) = Tr(BtA) = (B,A)

since TrAt = TrA, so ( , ) is also symmetric. We are left to prove that it is also positive
definite. To this end we consider

(A,A) = Tr(AtA) =
n∑
i=1

n∑
j=1

AtjiAij =
n∑
i=1

n∑
j=1

(Aij)
2 ≥ 0

since it is a sum of squares. Furthermore (A,A) = 0 if and only if (Aij)
2 is equal to zero for

all i, j = 1, ..., n , i.e. if and only if A = 0 is the zero matrix thus proving that ( , ) defines an
inner product on the vector space of n× n dimensional matrices with real coefficients.

30. Suppose that C3 is equipped with the standard inner product. Show that the vectors

1

2

 i
i

1 + i

 ,
1

6

3 + 3i
1 + i
−4


are mutually orthogonal unit vectors, and find an orthonormal basis for C3 which contains
them.



Solution: First note that if

u1 =
1

2

 i
i

1 + i

 , u2 =
1

6

3 + 3i
1 + i
−4


then ∥∥∥∥∥∥1

2

 i
i

1 + i

∥∥∥∥∥∥
2

=
1

4
{1 + 1 + 2} = 1,

∥∥∥∥∥∥1

6

3 + 3i
1 + i
−4

∥∥∥∥∥∥
2

=
1

36
{18 + 2 + 16} = 1.

so both vectors are unit vectors. Moreover,〈
1

2

 i
i

1 + i

 ,
1

6

3 + 3i
1 + i
−4

〉 =
1

12
{i(3− 3i) + i(1− i) + (1 + i)(−4)} = 0.

Thus the given vectors are also mutually orthogonal. To find a third vector

v =

ab
c


which is orthogonal to these, we have to solve the equations

0 = 〈v,u1〉 =
1

2
(a(−i) + b(−i) + c(1− i)) = 0,

0 = 〈v,u2〉 =
1

6
(a(3− 3i) + b(1− i) + c(−4)) = 0.

The solutions are given by b = −5/3a, c = (1− i)/3a, so that in particular

v =

 3
−5

1− i


is a solution. (In fact every other solution is a multiple of this). But ‖v‖2 = 36 so, setting

u3 =
1

6

 3
−5

1− i


we have that {u1,u2,u3} is an orthonormal basis.

31. Decide which of the following defines a Hermitian inner product on C2:

(i) 3z1w̄1 + 4z2w̄2;

(ii) z1w̄2 + z2w̄1;

(iii) z1w̄1 + (1 + i)z2w̄2;

(iv) z1w̄1 + z2w̄2 + z1w2.

Solution: Write

z =

(
z1
z2

)
, w =

(
w1

w2

)
.

(i) Yes. If 〈z,w〉 = 3z1w̄1 + 4z2w̄2 then clearly 〈w, z〉 = 〈z,w〉. Also 〈z,w〉 is C-linear in z.
Finally 〈z, z〉 = 3|z1|2 + 4|z2|2 ≥ 0 with equality iff z1 = z2 = 0.



(ii) No. Does satisfy 〈w, z〉 = 〈z,w〉 but it is not positive definite.

In fact 〈z, z〉 = z1z̄2 + z2z̄1 = 2Re (z1z̄2) so for example 〈
(

1
−1

)
,

(
1
−1

)
〉 = −2 < 0.

(iii) No. Does not satisfy 〈w, z〉 = 〈z,w〉.
(iv) No. Does not satisfy 〈w, z〉 = 〈z,w〉.

32. Show that z1w̄1 + 2z2w̄2 + 1+i√
2
z1w̄2 + 1−i√

2
z2w̄1 defines an inner product on C2. Using this

inner product, find the norm of the vector

u =

(
−1√

2i

)
,

and determine all unit vectors which are orthogonal to it.

Solution: Write

z =

(
z1
z2

)
, w =

(
w1

w2

)
.

Define

〈z, w〉 = z1w̄1 + 2z2w̄2 +
1 + i√

2
z1w̄2 +

1− i√
2
z2w̄1;

then

〈z, w〉 = w1z̄1 + 2w2z̄2 +
1− i√

2
w2z̄1 +

1 + i√
2
w1z̄2 = 〈w, z〉,

and 〈z, w〉 is linear in z. Also

〈z, z〉 = |z1|2 + 2|z2|2 +
1√
2

(z1z̄2 + z2z̄1) +
i√
2

(z1z̄2 − z2z̄1) = |z1 +
1− i√

2
z2|2 + |z2|2.

Thus 〈z, z〉 ≥ 0 with equality if and only if z1 + 1−i√
2
z2 = 0, z2 = 0, i.e. if and only if

z1 = 0, z2 = 0, i.e. if and only if z = 0.

Using this inner product we have∥∥∥∥(−1√
2i

)∥∥∥∥2 = | − 1 +
1− i√

2

√
2i|2 + |

√
2i|2 = 3.

Thus ∥∥∥∥(−1√
2i

)∥∥∥∥ =
√

3.

The vector z is orthogonal to (
−1√

2i

)
if and only if

z1(−1) + 2z2(−i
√

2) +
1 + i√

2
z1(−i

√
2) +

1− i√
2
z2(−1) = 0,

i.e. if and only if z1 = (−3+i)√
2
z2 = λ(−3 + i), with z2 =

√
2λ. Thus, such z are of the form

z = λ

(
−3 + i√

2

)
,

for some λ ∈ C. But ∥∥∥∥(−3 + i√
2

)∥∥∥∥2 = 6,



so that z is in addition a unit vector if and only if

z = λ

(
−3 + i√

2

)
, |λ|2 =

1

6
,

note that we can write λ = ei φ/
√

6 with φ ∈ [0, 2π].

33. If the vector space C[−π, π] of continuous complex valued functions on the interval [−π, π]
is equipped with the inner product defined by

(f, g) =
1

2π

∫ π

−π
f(x) g(x) dx,

where g(x) denotes the complex conjugate of g(x), show that

ei n x

with n ∈ N, i.e. n = 0, 1, 2..., are mutually orthogonal unit vectors in C[−π, π].

Solution: We first observe that if k is an integer different from 0, then∫ π

−π
eikx dx = 0.

Also, for n and m integers different from each others∫ π

−π
ei(−n)xeimx dx =

sin((m− n)π)

(m− n)π

which vanishes for all m,n ∈ N, with m 6= n. So ei n x is orthogonal to eimx for m 6= n.

To check their norms we simply compute

1

2π

∫ π

−π
ei(−n)xeinx dx =

1

2π

∫ π

−π
dx = 1 ,

so they are all mutually orthogonal unit vectors in C[−π, π]

34. * Consider V = Rn with the following application

||v||∞ = max
1≤i≤n

|vi| ,

where v = (v1, ..., vn). Prove that || · ||∞ defines a norm on V . [This is called the `∞-norm,
also called sup-norm, on V and it is not induced by an inner product.]

Solution: To prove that || · ||∞ defines a norm we must show absolute homogeneity, triangle
inequality and separation of points. First we note that

||a · v||∞ = max
1≤i≤n

|avi| = max
1≤i≤n

|a||vi| = |a| max
1≤i≤n

|vi|

for every a ∈ R.

Secondly

||v + w||∞ = max
1≤i≤n

|vi + wi| ≤ max
1≤i≤n

|vi|+ |wi| ≤ max
1≤i≤n

|vi|+ max
1≤j≤n

|wj | ≤ ||v||∞ + ||w||∞.

Where we used the fact that |a+b| ≤ |a|+ |b| together with maxi(ai+bi) ≤ maxi ai+maxj bj
since ai ≤ maxj aj for every 1 ≤ j ≤ n. This proves the triangle inequality.

Finally if ||v||∞ = 0 it means that max1≤i≤n |vi| = 0 and since |vj | ≤ max1≤i≤n |vi| for every
1 ≤ j ≤ n we deduce that vj = 0 for every 1 ≤ j ≤ n, i.e. v = 0. The viceversa is obvious.



35. * Consider V = Rn with the following application

||v||1 =
n∑
i=1

|vi| ,

where v = (v1, ..., vn). Prove that || · ||1 defines a norm on V . [This is called the `1-norm
on V and it is not induced by an inner product.]

Solution: To prove that ||·||1 defines a norm we must show absolute homogeneity, triangle inequality
and separation of points. First we note that for every λ ∈ R we have

||λv||1 =

n∑
i=1

|λ vi| = |λ|
n∑
i=1

|vi| = |λ| · ||v||1 ,

hence homogeneity holds. Secondly we have

||v + w||1 =
n∑
i=1

|vi + wi| ≤
n∑
i=1

|vi|+ |wi| ≤ ||v||1 + ||w||1 ,

which proves triangle inequality. Finally if v = 0 obviously we have ||v||1 = 0, viceversa if
v 6= 0 there is at least one component of v which does not vanish, say vj 6= 0, and we have

||v||1 =

n∑
i=1

|vi| ≥ |vj | > 0

hence separation of points holds and || · ||1 defines a norm.

36. * Consider the vector space V = C[a, b] of continuous functions on the interval [a, b] with
−∞ < a < b <∞, and consider the application

||f ||1 =

∫ b

a

dx |f(x)| ,

where f ∈ V . Prove that || · ||1 defines a norm on V . [This is called the L1-norm on V
and it is not induced by an inner product.]

Solution: To prove that ||·||1 defines a norm we must show absolute homogeneity, triangle inequality
and separation of points. First we note that for every λ ∈ R we have

||λf ||1 =

∫ b

a
dx |λ f(x)| = |λ|

∫ b

a
dx |f(x)| = |λ| · ||f ||1 ,

hence homogeneity holds. Secondly we have

||f + g||1 =

∫ b

a
dx |f(x) + g(x)| ≤

∫ b

a
dx (|f(x)|+ |g(x)|) ≤ ||f ||1 + ||g||1 ,

where we used the fact that |f(x) + g(x)| ≤ |f(x)|+ |g(x)| for every x ∈ [a, b], thus proving
triangle inequality. Finally if f(x) = 0 obviously we have||f ||1 = 0. Viceversa if f(x) 6= 0
there is a point x0 ∈ [a, b] such that |f(x0)| = c 6= 0 and from continuity we know that
there exists an interval (x0 − ε, x0 + ε) ⊂ [a, b] with ε > 0 such that |f(x)| > c/2 for every
x ∈ (x0 − ε, x0 + ε) this means that

||f ||1
∫ b

a
dx |f(x)| ≥

∫ x0+ε

x0−ε
dx|f(x)| >

∫ x0+ε

x0−ε
dx
c

2
> c ε > 0 ,

hence separation of points holds and || · ||1 defines a norm.



37. Apply Gram-Schmidt orthonormalisation to the basis


1

0
0

 ,

1
2
0

 ,

1
2
3

 of R3 equipped

with the standard inner product. (But first guess the answer.)

Solution: Let v1 =

1
0
0

 ,v2 =

1
2
0

 ,v3 =

1
2
3

. First note that ‖v1‖2 = 1, so set u1 = v1.

Next set

ũ2 = v2 − (v2,u1)u1 =

1
2
0

−
1

0
0

 =

0
2
0

 .

Then ‖ũ2‖2 = 4, so set u2 =
ũ2

2
=

0
1
0

. Finally define

ũ3 = v3 − (v3,u1)u1 − (v3,u2)u2 =

1
2
3

−
1

0
0

− 2

0
1
0

 =

0
0
3

 .

Then ‖ũ3‖2 = 9, so set u3 =
ũ3

3
=

0
0
1

. Thus applying Gram-Schmidt to v1,v2,v3 gives

the standard orthonormal basis


1

0
0

 ,

0
1
0

 ,

0
0
1

 of R3 (as it had to).

38. Apply Gram-Schmidt orthonormalisation to the basis


1

0
0

 ,

0
1
0

 ,

0
0
1

 of R3 equipped

with the inner product defined by (x,y) = 2x1y1 + 2x2y2 + x3y3 − x2y3 − x3y2.

Solution: Let

v1 =

1
0
0

 , v2 =

0
1
0

 , v3 =

0
0
1

 .

Since the inner product is given by

(x,y) = 2x1y1 + 2x2y2 + x3y3 − x2y3 − x3y2,

we first note that ‖v1‖2 = 2, so set

u1 =
v1

‖v1‖
=

1√
2

1
0
0

 .

Next note that (v1,v2) = 0 and ‖v2‖2 = 2, so set u2 = 1√
2
v2

u2 =
v2

‖v2‖
=

1√
2

0
1
0

 .

Finally define

ṽ3 = v3 − (v3,u1)u1 − (v3,u2)u2 =

0
0
1

− 0− (− 1√
2

)

 0

1/
√

2
0

 =
1

2

0
1
2

 ,



and note that ‖ṽ3‖2 = 1/2. Therefore set

u3 =
ṽ3

‖ṽ3‖
=

1√
2

0
1
2

 .

Thus applying Gram-Schmidt to v1,v2,v3 gives the orthonormal basis 1√
2

1
0
0

 ,
1√
2

0
1
0

 ,
1√
2

0
1
2

 .

39. If R4 is given the standard inner product, find an orthonormal basis for the subspace
determined by the equation x1+x2+x3+x4 = 0, and extend this basis to an orthonormal
basis for all of R4.

Solution: The vectors 
1
−1
0
0

 ,


0
1
−1
0

 ,


0
0
1
−1


are a basis for the subspace

U =



x1
x2
x3
x4

 |x1 + x2 + x3 + x4 = 0

 ,

since they are linearly independent and dim U = 4− 1 = 3. Let

v1 =


1
−1
0
0

 , v2 =


0
1
−1
0

 , v3 =


0
0
1
−1

 .

u1 =


√
2
2

−
√
2
2

0
0

 ,

ṽ2 = v2 − (v2,u1)u1 =


0
1
−1
0

−

−1/2
1/2
0
0

 =


1/2
1/2
−1
0

 ,

u2 =


√
3
√
2

6√
3
√
2

6

−
√
3
√
2

3
0

 ,

ṽ3 = v3 − (v3,u1)u1 − (v3,u2)u2 =


0
0
1
−1

− 0−


−1/3
−1/3
2/3
0

 =


1/3
1/3
1/3
−1

 ,

u3 =


√
3
6√
3
6√
3
6

−
√
3
2

 .



The vector 
1
1
1
1


is orthogonal to U , so

1

2


1
1
1
1


completes the orthonormal basis of R4.

40. If R4 is given the standard inner product, find an orthonormal basis for the subspace
determined by the equation x1+x2−x3−x4 = 0, and extend this basis to an orthonormal
basis for all of R4.

Solution: The vectors 
1
−1
0
0

 ,


0
1
1
0

 ,


0
0
1
−1


form a basis for the subspace

U =



x1
x2
x3
x4

 |x1 + x2 − x3 − x4 = 0

 ,

since they are linearly independent and dim U = 4− 1 = 3. Let

v1 =


1
−1
0
0

 , v2 =


0
1
1
0

 , v3 =


0
0
1
−1

 .



u1 =


√
2
2

−
√
2
2

0
0

 ,

ṽ2 = v2 − (v2,u1)u1 =


0
1
1
0

−

−1/2
1/2
0
0

 =


1/2
1/2
1
0

 ,

u2 =


√
3
√
2

6√
3
√
2

6√
3
√
2

3
0

 ,

ṽ3 = v3 − (v3,u1)u1 − (v3,u2)u2 =


0
0
1
−1

− 0−


1/3
1/3
2/3
0

 =


−1/3
−1/3
1/3
−1

 ,

u3 =


−
√
3
6

−
√
3
6√
3
6

−
√
3
2

 .

The vector


1
1
−1
−1

 is orthogonal to U , so 1
2


1
1
−1
−1

 completes the orthonormal basis of R4.

41. * Let ( , ) : V ×V 7→ R be an inner product on the n-dimensional vector space V and let
U,W denote two vector subspaces of V . Prove the following

(i) W = W⊥⊥

(ii) U⊥ ∩W⊥ = (U +W )⊥

(iii) (U ∩W )⊥ = U⊥ +W⊥

Solution: (i) We simply need to remember that W⊥ = {v ∈ V s.t. (v, w) = 0 ∀w ∈ W}
so the orthogonal complement of the orthogonal complement of W will surely contain W ,
i.e. W ⊆ W⊥⊥. To see that W is indeed equal to W⊥⊥ we just need to remember that
dimV = dimW + dimW⊥.

(ii) If w ∈ U⊥∩W⊥ it means that (w, u) = 0 for all u ∈ U and also for all u ∈W , which means
for all u ∈ U +W , hence w ∈ (U +W )⊥, so we have the inclusion U⊥ ∩W⊥ ⊆ (U +W )⊥.
To prove the equality we just observe that since trivially U ⊆ U + W and W ⊆ U + W we
have (U +W )⊥ ⊆ U⊥ and (U +W )⊥ ⊆W⊥ hence (U +W )⊥ ⊆ U⊥ ∩W⊥ thus proving the
equality.

(iii) If we apply what we have learnt at (ii) to the subspaces U⊥ and W⊥ we have that
U⊥⊥ ∩W⊥⊥ = (U⊥ +W⊥)⊥ and using (i) we obtain U ∩W = (U⊥ +W⊥)⊥ which reduces
to (iii) by taking the orthogonal complement.

42. Let V = R[t]2 be equipped with the inner product

(p, q) =

∫ 1

0

p(t)q(t) dt.



Use the Gram-Schmidt process to convert {1, t, t2} into an orthonormal basis {g1, g2, g3}
for V .

Solution: Let f1 = 1, f2 = t, f3 = t2. It is clear that (f1, f1) = 1, so g1 = 1. Now (f2, g1) = 1/2,
so f̃2 = f2−(f2, g1)g1 = t−1/2. Now (f̃2, f̃2) = 1/12, so g2 =

√
3(2t−1). Also (f3, g1) = 1/3

and (f3, g2) =
√

3/6, so

f̃3 = f3 − (f3, g1)g1 − (f3, g2)g2 = t2 − (t− 1/2)− 1/3.

Finally (f̃3, f̃3) = 1/180, so g3 =
√

5(6t2 − 6t+ 1).

43. Let V = R[t]2 be equipped with the inner product

(f, g) =

∫ 1

−1
f(t)g(t) dt,

and let U = {f ∈ V | f(−1) = f(1) = 0}. Find a basis for the orthogonal complement of
U in V .

Solution: Recall that V = R[t]2 is the vector space of polynomials with real coefficients, of de-
gree at most 2, and that dimV = 3 with 1, t, t2 forming a basis. Now note that since
f(−1) = f(1) = 0 if and only if (t+1)(t−1) divides f(t), it follows that U = span{(t+1)(t−1)}.
Suppose g(t) = a0 + a1t+ a2t

2. Then g(t) ∈ U⊥ if and only if (g(t), (t+ 1)(t− 1)) = 0, and
doing the integral shows that this is equivalent to

−4

15
a2 + 0 a1 +

−4

3
a0 = 0.

So, for example taking a2 = −5a0 and a1 ∈ R in turn, we see that U⊥ has basis 5t2 − 1, t.

44. Consider C4 with the standard inner product. Find an orthonormal basis for the orthog-
onal complement of the subspace spanned by

2
1− i

0
1

 ,


1
0
i
3

 .

Solution: Let

U = span




2
1− i

0
1

 ,


1
0
i
3


 .

Then U⊥ is the space of solutions of the system of linear equations

2z1 + (1 + i)z2 + z4 = 0,

z1 − iz3 + 3z4 = 0.

Using elementary row operations to bring these equations to row reduced echelon form, we
have (

2 1 + i 0 1
1 0 −i 3

)
→

(
1 0 −i 3
2 1 + i 0 1

)
→(

1 0 −i 3
0 1 + i 2i −5

)
→

(
1 0 −i 3
0 1 1 + i −5

2(1− i)

)
.



Thus z3, z4 are free variables and the solutions are given by
z1
z2
z3
z4

 = λ


i

−(1 + i)
1
0

+ µ


−3

5
2(1− i)

0
1

 , λ, µ ∈ C.

Set

v1 =


i

−(1 + i)
1
0

 , v2 =


−3

5
2(1− i)

0
1

 .

Then ‖v1‖2 = 1 + 2 + 1 = 4, so set

u1 =
v1

‖v1‖
=

1

2


i

−(1 + i)
1
0

 .

Next set

ũ2 = v2 − (v2,u1)u1

=


−3

5
2(1− i)

0
1

− 1

4
((−3)(−i) +

5

2
(1− i)(−1)(1− i))


i

−(1 + i)
1
0



=
1

2


−2

1− i
−4i

2

 .

Finally set

u2 =
v2

‖v2‖
=

1√
26


−2

1− i
−4i

2

 .

Then {u1,u2} is the required orthonormal basis.

45. Use the Gram-Schmidt process to show that every invertible n × n matrix A can be
written in the form A = BC, where B is an orthogonal matrix and C is upper triangular.
Find B,C when

A =

 1 0 −1
0 2 3
−1 1 3

 .

[Hint: Think about the columns of A as vectors.]

Solution: Suppose the columns of A are v1, . . . ,vn. Since A is invertible these vectors form a basis
for Rn. Recall that applying the Gram-Schmidt process we replace v1, . . . ,vn by a set of or-
thonormal vectors u1, . . . ,un and that, for each k = 1, . . . , n, span{u1, . . . ,un} = span{v1, . . . ,vn}
so that, for suitable aij ∈ R,

vk = c1ku1 + . . .+ ckkuk.



But then A = BC, where B is the matrix whose columns are u1, . . . ,un and C is the upper
triangular matrix 

c11 c12 . . . c1n
0 c22 . . . c2n
...

...
. . .

...
0 0 . . . cnn

 .

Since u1, . . . ,un are mutually orthogonal unit vectors BtB = I and B is an orthogonal matrix.

If

A =

 1 0 −1
0 2 3
−1 1 3


then v1 =

(
1, 0,−1

)
, v2 =

(
0, 2, 1

)
, v3 =

(
−1, 3, 3

)
and applying Gram-Schmidt we find

that

u1 =
1√
2

(
1, 0,−1

)
, u2 =

1

3
√

2

(
1, 4, 1

)
, u3 =

1

3

(
2,−1, 2

)
.

Also

(v2,u1) = − 1√
2
, (v3,u1) = −2

√
2, (v3,u2) =

14

3
√

2
,

ṽ2 =
3√
2
u2, ṽ2 =

1

3
u3.

Thus

v1 =
√

2u1, v2 = − 1√
2
u1 +

3√
2
u2, v3 = −2

√
2u1 +

14

3
√

2
u2 +

1

3
u3.

Hence  1 0 −1
0 2 3
−1 1 3

 =


1√
2

1
3
√
2

2
3

0 4
3
√
2
−1
3

− 1√
2

1
3
√
2

2
3



√

2 − 1√
2
−2
√

2

0 3√
2

14
3
√
2

0 0 1
3

 .

46. Let S consist of the following vectors in R4 with its standard inner product:

u1 =


1
1
1
1

 , u2 =


1
−1
1
−1

 , u3 =


−1
−1
1
1

 , u4 =


1
−1
−1
1

 .

(a) Show that these vectors are all mutually orthogonal to each others, and that they
form a basis of R4;

(b) Write w =
(
6, 5, 3, 1

)
as a linear combination of u1, u2, u3, u4.

Solution: (a) It is easy to check that (ui,uj) = 0 for all i 6= j. Therefore, S is orthogonal and
linearly independent. Since R4 has dimension 4 and there are 4 vectors, this means it is
a basis.

(b) The coordinates of W appear as the projection of w into the space spanned by the uj .
Hence

w =
(w,u1)

(u1,u1)
u1 +

(w,u2)

(u2,u2)
u2 +

(w,u3)

(u3,u3)
u3 +

(w,u4)

(u4,u4)
u4

=
15

4
u1 +

3

4
u2 −

7

4
u3 −

1

4
u4.



47. Let U be the vector subspace of R4 defined by

x1 + x2 + x3 + x4 = 0, x1 − x2 + x3 − x4 = 0.

Find orthonormal bases for U and its orthogonal complement, when R4 is equipped with
the standard inner product.

Solution:

U =



x1
x2
x3
x4

 : x1 + x2 + x3 + x4 = 0, x1 − x2 + x3 − x4 = 0


=



x1
x2
x3
x4

 : x1 + x3 = 0, x2 + x4 = 0

 .

Thus a basis for U is 


1
0
−1
0

 ,


0
1
0
−1


 .

These vectors are clearly orthogonal and have length
√

2. Thus


1√
2

0
−1√
2

0

 ,


0
1√
2

0
−1√
2




is an orthonormal basis for U . The orthogonal complement U⊥ of U is spanned by
1
0
1
0

 ,


0
1
0
1


so that an orthonormal basis for U⊥ is


1√
2

0
1√
2

0

 ,


0
1√
2

0
1√
2


 .

48. In R4 equipped with the standard inner product, find the projection of a = (1, 2, 0,−1)
on the plane V spanned by v1 = (1, 0, 0, 1) and v2 = (1, 1, 2, 0). (First construct an
orthonormal basis for V .)

Solution: We need an orthonormal basis for the plane V . So

u1 =
1√
2


1
0
0
1

 ,



ṽ2 = v2 − (v2,u1)u1 =


1
1
2
0

− 1

2


1
0
0
1

 =
1

2


1
2
4
−1

 ,

and

u2 =
1√
22


1
2
4
−1

 .

Then the V -component of a is

(a,u1)u1 + (a,u2)u2 =
3

11


1
2
4
−1

 .

49. Let U be a vector subspace of Rn, equipped with the standard inner product, and suppose
that v is an element of Rn not in U . Then we know that there is a unique point u0 in U
such that, for all u ∈ U , we have ‖v − u0‖ ≤ ‖v − u‖; and v − u0 is orthogonal to U .
Find u0 if U is the plane x1 − 2x2 + 2x3 = 0 in R3 and v =

(
1, 0, 0

)
.

Solution: We need an orthonormal basis {u1,u2} for the plane U . Start with any two vectors in
U , say w1 = (0, 1, 1) and w2 = (2, 1, 0). Then u1 = (0, 1, 1)/

√
2,

w̃2 = w2 − (w2,u1)u1 = (2,
1

2
,−1

2
)

and u2 = (4, 1,−1)/(3
√

2). Now u0 is the projection of v onto U , namely

u0 = (v,u1)u1 + (v,u2)u2 =
2

9
(4, 1,−1).

50. Let V be the space C[−1, 1] equipped with the inner product (f, g) =
∫ 1

−1 f(t)g(t) dt. Let

S be the subspace of V spanned by {1, t, t2}. Construct an orthonormal basis {g1, g2, g3}
for S, and find the function h ∈ S closest to t3.

Solution: If V = C[−1, 1], v = t3 and S = span{1, t, t2}, then we first apply Gram-Schmidt
orthonormalization to {1, t, t2} to obtain an orthonormal basis for S. Let us write f1 = 1,
f2 = t, f3 = t2. Then ‖f1‖2 =

∫ 1
−1 dt = 2, so set g1 = 1√

2
. Now note that

(f2, f1) =

∫ 1

−1
t dt = 0 and ‖f2‖2 =

∫ 1

−1
t2 dt =

2

3
,

so set

g2 =
f2
‖f2‖

=

√
3

2
t.

Finally set
f̃3 = f3 − (f3, g1)g1 − (f3, g2)g2.

Since

(f3, f1) =

∫ 1

−1
t2 dt =

2

3
and (f3, f2) =

∫ 1

−1
t3 dt = 0,

we have

f̃3 = t2 − 2

3
.
1

2
= t2 − 1

3
.



Then

‖f̃3‖2 =

∫ 1

−1
(t2 − 1

3
)2 dt =

∫ 1

−1
(t4 − 2

3
t2 +

1

9
) dt =

2

5
− 4

9
+

2

9
=

8

45
,

so set

g3 =
f̃3

‖f̃3‖
=

3
√

5

2
√

2
(t2 − 1

3
).

The function in S closest to t3 is then

h = (t3, g1)g1 + (t3, g2)g2 + (t3, g3)g3.

But

(t3, g1) =
1√
2

∫ 1

−1
t3 dt = 0

(t3, g2) =

√
3

2

∫ 1

−1
t4 dt =

2

5

√
2

3

(t3, g3) =
3
√

5

2
√

2

∫ 1

−1
(t5 − 1

3
t3) dt = 0.

Thus the function h ∈ S closest to t3 is

h(t) =
2

5

√
3

2

√
3

2
t =

3

5
t.

51. Find the point in the 3-plane 2x1 − x2 + 2x3 + 2x4 = 0 in R4, with standard Euclidean
inner product, which is nearest to the point a = (1, 2, 1, 2).

Solution: The 3-plane U defined by 2x1 − x2 + 2x3 + 2x4 = 0 has normal
2
−1
2
2


and thus unit normal

e =
1√
13


2
−1
2
2

 .

Thus U⊥ = span{e}. Given v ∈ V , we may write v in the form

v = u + ũ for unique u ∈ U, ũ ∈ U⊥,

and ũ = (v, e)e. Thus the nearest point in U to v is u = v − (v, e)e. In particular, when

v =


1
2
1
2


we have

u =


1
2
1
2

− 1

13
(1 · 2 + 2 · (−1) + 1 · 2 + 2 · 2)


2
−1
2
2



=


1
2
1
2

− 6

13


2
−1
2
2

 =
1

13


1
32
1
14

 .



52. Find the point in the 2-plane in R4 defined by x1 +x2 +x3 +x4 = 0, x1−x2 +x3−x4 = 0,
which is nearest to the point v = (1, 2, 1, 2) with standard Euclidean inner product.

Solution: Let U denote the plane defined in the question. Clearly


1
0
−1
0

 ,


0
1
0
−1




is a basis for U . We need an orthonormal basis for U . Clearly these two vectors are orthogonal
and they each have length

√
2. Hence an orthonormal basis is

u1 =
1√
2


1
0
−1
0

 , u2 =
1√
2


0
1
0
−1

 .

The point nearest of U nearest to v is the orthogonal projection u of v onto U . This is given
by

u = (v,u1)u1 + (v,u2)u2.

It is clear that (v,u1) = 0 and (v,u2) = 0 and so

u =


0
0
0
0

 .


