Linear Algebra 1, Solutions to exercises 26 to 52.
Epiphany 21/22.
26. Decide which of the following bilinear functions defines an inner product:
(i) $x_{1} y_{1}-x_{1} y_{3}-x_{3} y_{1}+2 x_{3} y_{3}+4 x_{2} y_{2}+x_{4} y_{4}+x_{2} y_{4}+x_{4} y_{2}$ on \mathbb{R}^{4};
(ii) $2 x_{1} y_{1}+x_{2} y_{2}+2 x_{3} y_{2}+x_{2} y_{3}$ on \mathbb{R}^{3};
(iii) $2 x_{1} y_{1}+x_{2} y_{2}-2 x_{1} y_{3}-2 x_{3} y_{1}-x_{2} y_{3}-x_{3} y_{2}+x_{3} y_{3}$ on \mathbb{R}^{3};
(iv) $4 x_{1} y_{1}+2 x_{2} y_{2}+6 x_{2} y_{3}+6 x_{3} y_{2}+18 x_{3} y_{3}$ on \mathbb{R}^{3};
(v) $x_{1} y_{1}+x_{2} y_{2}-x_{1} y_{3}-x_{3} y_{1}+3 x_{2} y_{3}+3 x_{3} y_{2}+11 x_{3} y_{3}$ on \mathbb{R}^{3}.

Solution: (i) Yes. Clearly symmetric and bilinear and

$$
(\mathbf{x}, \mathbf{x})=\left(x_{1}-x_{3}\right)^{2}+x_{3}^{2}+3 x_{2}^{2}+\left(x_{2}+x_{4}\right)^{2} \geq 0
$$

with equality iff $x_{1}=x_{2}=x_{3}=x_{4}=0$.
(ii) No, not symmetric.
(iii) No, not positive. ($(\mathbf{x}, \mathbf{x})<0$ for $\mathbf{x}=(3,1,3)$, for example).
(iv) No, not strictly positive. $(\mathbf{x}, \mathbf{x})=4 x_{1}^{2}+2\left(x_{2}+3 x_{3}\right)^{2}$ so there are non-zero vectors with zero norm, for example $\mathbf{x}=(0,3,-1)$.
(v) Yes. Clearly symmetric and bilinear and

$$
(\mathbf{x}, \mathbf{x})=\left(x_{1}-x_{3}\right)^{2}+\left(x_{2}+3 x_{3}\right)^{2}+x_{3}^{2} \geq 0
$$

with equality iff $x_{1}=x_{2}=x_{3}=0$.
You can also check positivity by checking whether the corresponding symmetric matrix is positive definite.
27. Show that the bilinear form on \mathbb{R}^{3} defined by

$$
(\mathbf{x}, \mathbf{y})=6 x_{1} y_{1}-x_{1} y_{2}-x_{2} y_{1}+x_{2} y_{2}-x_{1} y_{3}-x_{3} y_{1}+x_{3} y_{3}
$$

is an inner product on \mathbb{R}^{3}, and find the lengths of the vectors

$$
\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right), \quad\left(\begin{array}{c}
3 \\
-6 \\
3+3 \sqrt{3}
\end{array}\right)
$$

and the angle between them with respect to this inner product.
Solution: Clearly (\mathbf{x}, y) is symmetric and bilinear, so we have only to check positivity. But

$$
(\mathbf{x}, \mathbf{x})=6 x_{1}^{2}-2 x 1 x 2+x_{2}^{2}+x_{3}^{2}-2 x_{1} x_{3}=4 x_{1}^{2}+\left(x_{1}-x_{2}\right)^{2}+\left(x_{1}-x_{3}\right)^{2} \geq 0
$$

with equality iff $x_{1}=x_{2}=x_{3}=0$.
Next note that

$$
\left\|\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)\right\|^{2}=4, \quad\left\|\left(\begin{array}{c}
3 \\
-6 \\
3+3 \sqrt{3}
\end{array}\right)\right\|^{2}=144, \quad\left(\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right),\left(\begin{array}{c}
3 \\
-6 \\
3+3 \sqrt{3}
\end{array}\right)\right)=12 .
$$

Thus

$$
\left\|\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)\right\|=2, \quad\left\|\left(\begin{array}{c}
3 \\
-6 \\
3+3 \sqrt{3}
\end{array}\right)\right\|=12
$$

and the angle θ between these vectors is given by

$$
\cos \theta=\frac{1}{2}
$$

so that $\theta=\pi / 3$.
28. Find the angle between the vectors in \mathbb{R}^{4} equipped with the standard inner product:
(i) $\left(\begin{array}{c}1 \\ 2 \\ 1 \\ -1\end{array}\right),\left(\begin{array}{c}2 \\ 1 \\ -1 \\ 1\end{array}\right)$;
(ii) $\left(\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right),\left(\begin{array}{c}8 \\ -4 \\ -4 \\ 3\end{array}\right)$;
(iii) $\left(\begin{array}{c}6 \\ 2 \\ -2 \\ 2\end{array}\right),\left(\begin{array}{c}1 \\ -1 \\ -1 \\ 3\end{array}\right)$.

Solution: (i) $\operatorname{Arcos}(2 / 7)$; (ii) $\pi / 2$; (iii) $\pi / 3$.
29. * Consider the vector space M_{n} of the $n \times n$ matrices with real coefficients, and the $\operatorname{application}():, M_{n} \times M_{n} \mapsto \mathbb{R}$ given by

$$
(A, B)=\operatorname{Tr}\left(A^{t} B\right)
$$

where A^{t} denotes the transpose of A and Tr denotes the trace. Show that (,) defines an inner product on M_{n}.

Solution: From linearity of the trace and the transposition of a matrix combined with the distributivity of matrix product it follows immediately that (A, B) is bilinear. Furthermore we have

$$
(A, B)=\operatorname{Tr}\left(A^{t} B\right)=\operatorname{Tr}\left(\left(B^{t} A\right)^{t}\right)=\operatorname{Tr}\left(B^{t} A\right)=(B, A)
$$

since $\operatorname{Tr} A^{t}=\operatorname{Tr} A$, so (,) is also symmetric. We are left to prove that it is also positive definite. To this end we consider

$$
(A, A)=\operatorname{Tr}\left(A^{t} A\right)=\sum_{i=1}^{n} \sum_{j=1}^{n} A_{j i}^{t} A_{i j}=\sum_{i=1}^{n} \sum_{j=1}^{n}\left(A_{i j}\right)^{2} \geq 0
$$

since it is a sum of squares. Furthermore $(A, A)=0$ if and only if $\left(A_{i j}\right)^{2}$ is equal to zero for all $i, j=1, \ldots, n$, i.e. if and only if $A=\mathbf{0}$ is the zero matrix thus proving that $($,$) defines an$ inner product on the vector space of $n \times n$ dimensional matrices with real coefficients.
30. Suppose that \mathbb{C}^{3} is equipped with the standard inner product. Show that the vectors

$$
\frac{1}{2}\left(\begin{array}{c}
i \\
i \\
1+i
\end{array}\right), \quad \frac{1}{6}\left(\begin{array}{c}
3+3 i \\
1+i \\
-4
\end{array}\right)
$$

are mutually orthogonal unit vectors, and find an orthonormal basis for \mathbb{C}^{3} which contains them.

Solution: First note that if

$$
\mathbf{u}_{1}=\frac{1}{2}\left(\begin{array}{c}
i \\
i \\
1+i
\end{array}\right), \quad \mathbf{u}_{2}=\frac{1}{6}\left(\begin{array}{c}
3+3 i \\
1+i \\
-4
\end{array}\right)
$$

then

$$
\left\|\frac{1}{2}\left(\begin{array}{c}
i \\
i \\
1+i
\end{array}\right)\right\|^{2}=\frac{1}{4}\{1+1+2\}=1, \quad\left\|\frac{1}{6}\left(\begin{array}{c}
3+3 i \\
1+i \\
-4
\end{array}\right)\right\|^{2}=\frac{1}{36}\{18+2+16\}=1 .
$$

so both vectors are unit vectors. Moreover,

$$
\left\langle\frac{1}{2}\left(\begin{array}{c}
i \\
i \\
1+i
\end{array}\right), \frac{1}{6}\left(\begin{array}{c}
3+3 i \\
1+i \\
-4
\end{array}\right)\right\rangle=\frac{1}{12}\{i(3-3 i)+i(1-i)+(1+i)(-4)\}=0 .
$$

Thus the given vectors are also mutually orthogonal. To find a third vector

$$
\mathbf{v}=\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)
$$

which is orthogonal to these, we have to solve the equations

$$
\begin{gathered}
0=\left\langle\mathbf{v}, \mathbf{u}_{1}\right\rangle=\frac{1}{2}(a(-i)+b(-i)+c(1-i))=0 \\
0=\left\langle\mathbf{v}, \mathbf{u}_{2}\right\rangle=\frac{1}{6}(a(3-3 i)+b(1-i)+c(-4))=0
\end{gathered}
$$

The solutions are given by $b=-5 / 3 a, c=(1-i) / 3 a$, so that in particular

$$
\mathbf{v}=\left(\begin{array}{c}
3 \\
-5 \\
1-i
\end{array}\right)
$$

is a solution. (In fact every other solution is a multiple of this). But $\|\mathbf{v}\|^{2}=36$ so, setting

$$
\mathbf{u}_{3}=\frac{1}{6}\left(\begin{array}{c}
3 \\
-5 \\
1-i
\end{array}\right)
$$

we have that $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ is an orthonormal basis.
31. Decide which of the following defines a Hermitian inner product on \mathbb{C}^{2} :
(i) $3 z_{1} \bar{w}_{1}+4 z_{2} \bar{w}_{2}$;
(ii) $z_{1} \bar{w}_{2}+z_{2} \bar{w}_{1}$;
(iii) $z_{1} \bar{w}_{1}+(1+i) z_{2} \bar{w}_{2}$;
(iv) $z_{1} \bar{w}_{1}+z_{2} \bar{w}_{2}+z_{1} w_{2}$.

Solution: Write

$$
\mathbf{z}=\binom{z_{1}}{z_{2}}, \quad \mathbf{w}=\binom{w_{1}}{w_{2}} .
$$

(i) Yes. If $\langle\mathbf{z}, \mathbf{w}\rangle=3 z_{1} \bar{w}_{1}+4 z_{2} \bar{w}_{2}$ then clearly $\langle\mathbf{w}, \mathbf{z}\rangle=\overline{\langle\mathbf{z}, \mathbf{w}\rangle}$. Also $\langle\mathbf{z}, \mathbf{w}\rangle$ is \mathbb{C}-linear in \mathbf{z}. Finally $\langle\mathbf{z}, \mathbf{z}\rangle=3\left|z_{1}\right|^{2}+4\left|z_{2}\right|^{2} \geq 0$ with equality iff $z_{1}=z_{2}=0$.
(ii) No. Does satisfy $\langle\mathbf{w}, \mathbf{z}\rangle=\overline{\langle\mathbf{z}, \mathbf{w}\rangle}$ but it is not positive definite.

In fact $\langle\mathbf{z}, \mathbf{z}\rangle=z_{1} \bar{z}_{2}+z_{2} \bar{z}_{1}=2 \operatorname{Re}\left(z_{1} \bar{z}_{2}\right)$ so for example $\left\langle\binom{ 1}{-1},\binom{1}{-1}\right\rangle=-2<0$.
(iii) No. Does not satisfy $\langle\mathbf{w}, \mathbf{z}\rangle=\overline{\langle\mathbf{z}, \mathbf{w}\rangle}$.
(iv) No. Does not satisfy $\langle\mathbf{w}, \mathbf{z}\rangle=\overline{\langle\mathbf{z}, \mathbf{w}\rangle}$.
32. Show that $z_{1} \bar{w}_{1}+2 z_{2} \bar{w}_{2}+\frac{1+i}{\sqrt{2}} z_{1} \bar{w}_{2}+\frac{1-i}{\sqrt{2}} z_{2} \bar{w}_{1}$ defines an inner product on \mathbb{C}^{2}. Using this inner product, find the norm of the vector

$$
\mathbf{u}=\binom{-1}{\sqrt{2} i},
$$

and determine all unit vectors which are orthogonal to it.
Solution: Write

$$
z=\binom{z_{1}}{z_{2}}, \quad w=\binom{w_{1}}{w_{2}} .
$$

Define

$$
\langle z, w\rangle=z_{1} \bar{w}_{1}+2 z_{2} \bar{w}_{2}+\frac{1+i}{\sqrt{2}} z_{1} \bar{w}_{2}+\frac{1-i}{\sqrt{2}} z_{2} \bar{w}_{1}
$$

then

$$
\overline{\langle z, w\rangle}=w_{1} \bar{z}_{1}+2 w_{2} \bar{z}_{2}+\frac{1-i}{\sqrt{2}} w_{2} \bar{z}_{1}+\frac{1+i}{\sqrt{2}} w_{1} \bar{z}_{2}=\langle w, z\rangle,
$$

and $\langle z, w\rangle$ is linear in z. Also

$$
\langle z, z\rangle=\left|z_{1}\right|^{2}+2\left|z_{2}\right|^{2}+\frac{1}{\sqrt{2}}\left(z_{1} \bar{z}_{2}+z_{2} \bar{z}_{1}\right)+\frac{i}{\sqrt{2}}\left(z_{1} \bar{z}_{2}-z_{2} \bar{z}_{1}\right)=\left|z_{1}+\frac{1-i}{\sqrt{2}} z_{2}\right|^{2}+\left|z_{2}\right|^{2} .
$$

Thus $\langle z, z\rangle \geq 0$ with equality if and only if $z_{1}+\frac{1-i}{\sqrt{2}} z_{2}=0, z_{2}=0$, i.e. if and only if $z_{1}=0, z_{2}=0$, i.e. if and only if $z=0$.
Using this inner product we have

$$
\left\|\binom{-1}{\sqrt{2} i}\right\|^{2}=\left|-1+\frac{1-i}{\sqrt{2}} \sqrt{2} i\right|^{2}+|\sqrt{2} i|^{2}=3
$$

Thus

$$
\left\|\binom{-1}{\sqrt{2} i}\right\|=\sqrt{3} .
$$

The vector z is orthogonal to

$$
\binom{-1}{\sqrt{2} i}
$$

if and only if

$$
z_{1}(-1)+2 z_{2}(-i \sqrt{2})+\frac{1+i}{\sqrt{2}} z_{1}(-i \sqrt{2})+\frac{1-i}{\sqrt{2}} z_{2}(-1)=0,
$$

i.e. if and only if $z_{1}=\frac{(-3+i)}{\sqrt{2}} z_{2}=\lambda(-3+i)$, with $z_{2}=\sqrt{2} \lambda$. Thus, such z are of the form

$$
z=\lambda\binom{-3+i}{\sqrt{2}}
$$

for some $\lambda \in \mathbb{C}$. But

$$
\left\|\binom{-3+i}{\sqrt{2}}\right\|^{2}=6
$$

so that z is in addition a unit vector if and only if

$$
z=\lambda\binom{-3+i}{\sqrt{2}}, \quad|\lambda|^{2}=\frac{1}{6}
$$

note that we can write $\lambda=e^{i \phi} / \sqrt{6}$ with $\phi \in[0,2 \pi]$.
33. If the vector space $C[-\pi, \pi]$ of continuous complex valued functions on the interval $[-\pi, \pi]$ is equipped with the inner product defined by

$$
(f, g)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) \overline{g(x)} d x
$$

where $\overline{g(x)}$ denotes the complex conjugate of $g(x)$, show that

$$
e^{i n x}
$$

with $n \in \mathbb{N}$, i.e. $n=0,1,2 \ldots$, are mutually orthogonal unit vectors in $C[-\pi, \pi]$.
Solution: We first observe that if k is an integer different from 0 , then

$$
\int_{-\pi}^{\pi} e^{i k x} d x=0
$$

Also, for n and m integers different from each others

$$
\int_{-\pi}^{\pi} e^{i(-n) x} e^{i m x} d x=\frac{\sin ((m-n) \pi)}{(m-n) \pi}
$$

which vanishes for all $m, n \in \mathbb{N}$, with $m \neq n$. So $e^{i n x}$ is orthogonal to $e^{i m x}$ for $m \neq n$.
To check their norms we simply compute

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{i(-n) x} e^{i n x} d x=\frac{1}{2 \pi} \int_{-\pi}^{\pi} d x=1
$$

so they are all mutually orthogonal unit vectors in $C[-\pi, \pi]$
34. ${ }^{*}$ Consider $V=\mathbb{R}^{n}$ with the following application

$$
\|\mathbf{v}\|_{\infty}=\max _{1 \leq i \leq n}\left|v_{i}\right|
$$

where $\mathbf{v}=\left(v_{1}, \ldots, v_{n}\right)$. Prove that $\|\cdot\|_{\infty}$ defines a norm on V. [This is called the $\ell_{\infty}-$ norm, also called sup-norm, on V and it is not induced by an inner product.]

Solution: To prove that $\|\cdot\|_{\infty}$ defines a norm we must show absolute homogeneity, triangle inequality and separation of points. First we note that

$$
\|a \cdot \mathbf{v}\|_{\infty}=\max _{1 \leq i \leq n}\left|a v_{i}\right|=\max _{1 \leq i \leq n}|a|\left|v_{i}\right|=|a| \max _{1 \leq i \leq n}\left|v_{i}\right|
$$

for every $a \in \mathbb{R}$.
Secondly

$$
\|\mathbf{v}+\mathbf{w}\|_{\infty}=\max _{1 \leq i \leq n}\left|v_{i}+w_{i}\right| \leq \max _{1 \leq i \leq n}\left|v_{i}\right|+\left|w_{i}\right| \leq \max _{1 \leq i \leq n}\left|v_{i}\right|+\max _{1 \leq j \leq n}\left|w_{j}\right| \leq\|\mathbf{v}\|_{\infty}+\|\mathbf{w}\|_{\infty}
$$

Where we used the fact that $|a+b| \leq|a|+|b|$ together with $\max _{i}\left(a_{i}+b_{i}\right) \leq \max _{i} a_{i}+\max _{j} b_{j}$ since $a_{i} \leq \max _{j} a_{j}$ for every $1 \leq j \leq n$. This proves the triangle inequality.
Finally if $\|\mathbf{v}\|_{\infty}=0$ it means that $\max _{1 \leq i \leq n}\left|v_{i}\right|=0$ and since $\left|v_{j}\right| \leq \max _{1 \leq i \leq n}\left|v_{i}\right|$ for every $1 \leq j \leq n$ we deduce that $v_{j}=0$ for every $1 \leq j \leq n$, i.e. $\mathbf{v}=\mathbf{0}$. The viceversa is obvious.
35. * Consider $V=\mathbb{R}^{n}$ with the following application

$$
\|\mathbf{v}\|_{1}=\sum_{i=1}^{n}\left|v_{i}\right|
$$

where $\mathbf{v}=\left(v_{1}, \ldots, v_{n}\right)$. Prove that $\|\cdot\|_{1}$ defines a norm on V. [This is called the ℓ_{1}-norm on V and it is not induced by an inner product.]

Solution: To prove that $\|\cdot\|_{1}$ defines a norm we must show absolute homogeneity, triangle inequality and separation of points. First we note that for every $\lambda \in \mathbb{R}$ we have

$$
\|\lambda \mathbf{v}\|_{1}=\sum_{i=1}^{n}\left|\lambda v_{i}\right|=|\lambda| \sum_{i=1}^{n}\left|v_{i}\right|=|\lambda| \cdot\|\mathbf{v}\|_{1},
$$

hence homogeneity holds. Secondly we have

$$
\|\mathbf{v}+\mathbf{w}\|_{1}=\sum_{i=1}^{n}\left|v_{i}+w_{i}\right| \leq \sum_{i=1}^{n}\left|v_{i}\right|+\left|w_{i}\right| \leq\|\mathbf{v}\|_{1}+\|\mathbf{w}\|_{1},
$$

which proves triangle inequality. Finally if $\mathbf{v}=\mathbf{0}$ obviously we have $\|\mathbf{v}\|_{1}=0$, viceversa if $\mathbf{v} \neq \mathbf{0}$ there is at least one component of \mathbf{v} which does not vanish, say $v_{j} \neq 0$, and we have

$$
\|\mathbf{v}\|_{1}=\sum_{i=1}^{n}\left|v_{i}\right| \geq\left|v_{j}\right|>0
$$

hence separation of points holds and $\|\cdot\|_{1}$ defines a norm.
36. ${ }^{*}$ Consider the vector space $V=C[a, b]$ of continuous functions on the interval $[a, b]$ with $-\infty<a<b<\infty$, and consider the application

$$
\|f\|_{1}=\int_{a}^{b} d x|f(x)|,
$$

where $f \in V$. Prove that $\|\cdot\|_{1}$ defines a norm on V. [This is called the L_{1}-norm on V and it is not induced by an inner product.]

Solution: To prove that $\|\cdot\|_{1}$ defines a norm we must show absolute homogeneity, triangle inequality and separation of points. First we note that for every $\lambda \in \mathbb{R}$ we have

$$
\|\lambda f\|_{1}=\int_{a}^{b} d x|\lambda f(x)|=|\lambda| \int_{a}^{b} d x|f(x)|=|\lambda| \cdot\|f\|_{1},
$$

hence homogeneity holds. Secondly we have

$$
\|f+g\|_{1}=\int_{a}^{b} d x|f(x)+g(x)| \leq \int_{a}^{b} d x(|f(x)|+|g(x)|) \leq\|f\|_{1}+\|g\|_{1}
$$

where we used the fact that $|f(x)+g(x)| \leq|f(x)|+|g(x)|$ for every $x \in[a, b]$, thus proving triangle inequality. Finally if $f(x)=0$ obviously we have $\mid f \|_{1}=0$. Viceversa if $f(x) \neq 0$ there is a point $x_{0} \in[a, b]$ such that $\left|f\left(x_{0}\right)\right|=c \neq 0$ and from continuity we know that there exists an interval $\left(x_{0}-\epsilon, x_{0}+\epsilon\right) \subset[a, b]$ with $\epsilon>0$ such that $|f(x)|>c / 2$ for every $x \in\left(x_{0}-\epsilon, x_{0}+\epsilon\right)$ this means that

$$
\|f\|_{1} \int_{a}^{b} d x|f(x)| \geq \int_{x_{0}-\epsilon}^{x_{0}+\epsilon} d x|f(x)|>\int_{x_{0}-\epsilon}^{x_{0}+\epsilon} d x \frac{c}{2}>c \epsilon>0,
$$

hence separation of points holds and $\|\cdot\|_{1}$ defines a norm.
37. Apply Gram-Schmidt orthonormalisation to the basis $\left\{\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 2 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)\right\}$ of \mathbb{R}^{3} equipped with the standard inner product. (But first guess the answer.)

Solution: Let $\mathbf{v}_{1}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right), \mathbf{v}_{2}=\left(\begin{array}{l}1 \\ 2 \\ 0\end{array}\right), \mathbf{v}_{3}=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$. First note that $\left\|\mathbf{v}_{1}\right\|^{2}=1$, so set $\mathbf{u}_{1}=\mathbf{v}_{1}$. Next set

$$
\tilde{\mathbf{u}}_{2}=\mathbf{v}_{2}-\left(\mathbf{v}_{2}, \mathbf{u}_{1}\right) \mathbf{u}_{1}=\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right)-\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
2 \\
0
\end{array}\right) .
$$

Then $\left\|\tilde{\mathbf{u}}_{2}\right\|^{2}=4$, so set $\mathbf{u}_{2}=\frac{\tilde{\mathbf{u}}_{2}}{2}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$. Finally define

$$
\tilde{\mathbf{u}}_{3}=\mathbf{v}_{3}-\left(\mathbf{v}_{3}, \mathbf{u}_{1}\right) \mathbf{u}_{1}-\left(\mathbf{v}_{3}, \mathbf{u}_{2}\right) \mathbf{u}_{2}=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)-\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)-2\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
3
\end{array}\right) .
$$

Then $\left\|\tilde{\mathbf{u}}_{3}\right\|^{2}=9$, so set $\mathbf{u}_{3}=\frac{\tilde{\mathbf{u}}_{3}}{3}=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$. Thus applying Gram-Schmidt to $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ gives the standard orthonormal basis $\left\{\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)\right\}$ of \mathbb{R}^{3} (as it had to).
38. Apply Gram-Schmidt orthonormalisation to the basis $\left\{\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)\right\}$ of \mathbb{R}^{3} equipped with the inner product defined by $(\mathbf{x}, \mathbf{y})=2 x_{1} y_{1}+2 x_{2} y_{2}+x_{3} y_{3}-x_{2} y_{3}-x_{3} y_{2}$.

Solution: Let

$$
\mathbf{v}_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \quad \mathbf{v}_{2}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), \quad \mathbf{v}_{3}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) .
$$

Since the inner product is given by

$$
(\mathbf{x}, \mathbf{y})=2 x_{1} y_{1}+2 x_{2} y_{2}+x_{3} y_{3}-x_{2} y_{3}-x_{3} y_{2},
$$

we first note that $\left\|\mathbf{v}_{1}\right\|^{2}=2$, so set

$$
\mathbf{u}_{1}=\frac{\mathbf{v}_{1}}{\left\|\mathbf{v}_{1}\right\|}=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
$$

Next note that $\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)=0$ and $\left\|\mathbf{v}_{2}\right\|^{2}=2$, so set $\mathbf{u}_{2}=\frac{1}{\sqrt{2}} \mathbf{v}_{2}$

$$
\mathbf{u}_{2}=\frac{\mathbf{v}_{2}}{\left\|\mathbf{v}_{2}\right\|}=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) .
$$

Finally define

$$
\tilde{\mathbf{v}}_{3}=\mathbf{v}_{3}-\left(\mathbf{v}_{3}, \mathbf{u}_{1}\right) \mathbf{u}_{1}-\left(\mathbf{v}_{3}, \mathbf{u}_{2}\right) \mathbf{u}_{2}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)-0-\left(-\frac{1}{\sqrt{2}}\right)\left(\begin{array}{c}
0 \\
1 / \sqrt{2} \\
0
\end{array}\right)=\frac{1}{2}\left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right),
$$

and note that $\left\|\tilde{\mathbf{v}}_{3}\right\|^{2}=1 / 2$. Therefore set

$$
\mathbf{u}_{3}=\frac{\tilde{\mathbf{v}}_{3}}{\left\|\tilde{\mathbf{v}}_{3}\right\|}=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right)
$$

Thus applying Gram-Schmidt to $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ gives the orthonormal basis

$$
\left\{\frac{1}{\sqrt{2}}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \frac{1}{\sqrt{2}}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), \frac{1}{\sqrt{2}}\left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right)\right\}
$$

39. If \mathbb{R}^{4} is given the standard inner product, find an orthonormal basis for the subspace determined by the equation $x_{1}+x_{2}+x_{3}+x_{4}=0$, and extend this basis to an orthonormal basis for all of \mathbb{R}^{4}.

Solution: The vectors

$$
\left(\begin{array}{c}
1 \\
-1 \\
0 \\
0
\end{array}\right), \quad\left(\begin{array}{c}
0 \\
1 \\
-1 \\
0
\end{array}\right), \quad\left(\begin{array}{c}
0 \\
0 \\
1 \\
-1
\end{array}\right)
$$

are a basis for the subspace

$$
U=\left\{\left.\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right) \right\rvert\, x_{1}+x_{2}+x_{3}+x_{4}=0\right\}
$$

since they are linearly independent and $\operatorname{dim} U=4-1=3$. Let

$$
\begin{aligned}
& v_{1}=\left(\begin{array}{c}
1 \\
-1 \\
0 \\
0
\end{array}\right), \quad v_{2}=\left(\begin{array}{c}
0 \\
1 \\
-1 \\
0
\end{array}\right), \quad v_{3}=\left(\begin{array}{c}
0 \\
0 \\
1 \\
-1
\end{array}\right) \\
& \mathbf{u}_{\mathbf{1}}=\left(\begin{array}{c}
\frac{\sqrt{2}}{2} \\
-\frac{\sqrt{2}}{2} \\
0 \\
0
\end{array}\right), \\
& \tilde{\mathbf{v}}_{\mathbf{2}}=\mathbf{v}_{\mathbf{2}}-\left(\mathbf{v}_{\mathbf{2}}, \mathbf{u}_{\mathbf{1}}\right) \mathbf{u}_{\mathbf{1}}=\left(\begin{array}{c}
0 \\
1 \\
-1 \\
0
\end{array}\right)-\left(\begin{array}{c}
-1 / 2 \\
1 / 2 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{c}
1 / 2 \\
1 / 2 \\
-1 \\
0
\end{array}\right) \\
& \mathbf{u}_{\mathbf{2}}=\left(\begin{array}{c}
\frac{\sqrt{3} \sqrt{2}}{6} \\
\frac{\sqrt{3} \sqrt{2}}{6} \\
-\frac{\sqrt{3} \sqrt{2}}{3} \\
0
\end{array}\right), \\
& \tilde{\mathbf{v}}_{\mathbf{3}}=\mathbf{v}_{\mathbf{3}}-\left(\mathbf{v}_{\mathbf{3}}, \mathbf{u}_{\mathbf{1}}\right) \mathbf{u}_{\mathbf{1}}-\left(\mathbf{v}_{\mathbf{3}}, \mathbf{u}_{2}\right) \mathbf{u}_{2}=\left(\begin{array}{c}
0 \\
0 \\
1 \\
-1
\end{array}\right)-0-\left(\begin{array}{c}
-1 / 3 \\
-1 / 3 \\
2 / 3 \\
0
\end{array}\right)=\left(\begin{array}{c}
1 / 3 \\
1 / 3 \\
1 / 3 \\
-1
\end{array}\right) \\
& \mathbf{u}_{\mathbf{3}}=\left(\begin{array}{c}
\frac{\sqrt{3}}{6} \\
\frac{\sqrt{3}}{6} \\
\frac{\sqrt{3}}{6} \\
-\frac{\sqrt{3}}{2}
\end{array}\right) .
\end{aligned}
$$

The vector

$$
\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right)
$$

is orthogonal to U, so

$$
\frac{1}{2}\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right)
$$

completes the orthonormal basis of \mathbb{R}^{4}.
40. If \mathbb{R}^{4} is given the standard inner product, find an orthonormal basis for the subspace determined by the equation $x_{1}+x_{2}-x_{3}-x_{4}=0$, and extend this basis to an orthonormal basis for all of \mathbb{R}^{4}.

Solution: The vectors

$$
\left(\begin{array}{c}
1 \\
-1 \\
0 \\
0
\end{array}\right), \quad\left(\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right), \quad\left(\begin{array}{c}
0 \\
0 \\
1 \\
-1
\end{array}\right)
$$

form a basis for the subspace

$$
U=\left\{\left.\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right) \right\rvert\, x_{1}+x_{2}-x_{3}-x_{4}=0\right\}
$$

since they are linearly independent and $\operatorname{dim} U=4-1=3$. Let

$$
v_{1}=\left(\begin{array}{c}
1 \\
-1 \\
0 \\
0
\end{array}\right), \quad v_{2}=\left(\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right), \quad v_{3}=\left(\begin{array}{c}
0 \\
0 \\
1 \\
-1
\end{array}\right)
$$

$$
\begin{aligned}
& \mathbf{u}_{1}=\left(\begin{array}{c}
\frac{\sqrt{2}}{2} \\
-\frac{\sqrt{2}}{2} \\
0 \\
0
\end{array}\right), \\
& \tilde{\mathbf{v}}_{\mathbf{2}}=\mathbf{v}_{\mathbf{2}}-\left(\mathbf{v}_{\mathbf{2}}, \mathbf{u}_{1}\right) \mathbf{u}_{1}=\left(\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right)-\left(\begin{array}{c}
-1 / 2 \\
1 / 2 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{c}
1 / 2 \\
1 / 2 \\
1 \\
0
\end{array}\right), \\
& \mathbf{u}_{2}=\left(\begin{array}{c}
\frac{\sqrt{3} \sqrt{2}}{6} \\
\frac{\sqrt{3} \sqrt{2}}{6} \\
\frac{\sqrt{3} \sqrt{2}}{3} \\
0
\end{array}\right), \\
& \tilde{\mathbf{v}}_{\mathbf{3}}=\mathbf{v}_{\mathbf{3}}-\left(\mathbf{v}_{\mathbf{3}}, \mathbf{u}_{\mathbf{1}}\right) \mathbf{u}_{\mathbf{1}}-\left(\mathbf{v}_{\mathbf{3}}, \mathbf{u}_{\mathbf{2}}\right) \mathbf{u}_{\mathbf{2}}=\left(\begin{array}{c}
0 \\
0 \\
1 \\
-1
\end{array}\right)-0-\left(\begin{array}{c}
1 / 3 \\
1 / 3 \\
2 / 3 \\
0
\end{array}\right)=\left(\begin{array}{c}
-1 / 3 \\
-1 / 3 \\
1 / 3 \\
-1
\end{array}\right), \\
& \mathbf{u}_{3}=\left(\begin{array}{c}
-\frac{\sqrt{3}}{6} \\
-\frac{\sqrt{3}}{6} \\
\frac{\sqrt{3}}{6} \\
-\frac{\sqrt{3}}{2}
\end{array}\right) . \\
& \text { The vector }\left(\begin{array}{c}
1 \\
1 \\
-1 \\
-1
\end{array}\right) \text { is orthogonal to } U \text {, so } \frac{1}{2}\left(\begin{array}{c}
1 \\
1 \\
-1 \\
-1
\end{array}\right) \text { completes the orthonormal basis of } \mathbb{R}^{4} \text {. }
\end{aligned}
$$

41. ${ }^{*}$ Let (,) : $V \times V \mapsto \mathbb{R}$ be an inner product on the n-dimensional vector space V and let U, W denote two vector subspaces of V. Prove the following
(i) $W=W^{\perp \perp}$
(ii) $U^{\perp} \cap W^{\perp}=(U+W)^{\perp}$
(iii) $(U \cap W)^{\perp}=U^{\perp}+W^{\perp}$

Solution: (i) We simply need to remember that $W^{\perp}=\{v \in V$ s.t. $(v, w)=0 \forall w \in W\}$ so the orthogonal complement of the orthogonal complement of W will surely contain W, i.e. $W \subseteq W^{\perp \perp}$. To see that W is indeed equal to $W^{\perp \perp}$ we just need to remember that $\operatorname{dim} V=\operatorname{dim} W+\operatorname{dim} W^{\perp}$.
(ii) If $w \in U^{\perp} \cap W^{\perp}$ it means that $(w, u)=0$ for all $u \in U$ and also for all $u \in W$, which means for all $u \in U+W$, hence $w \in(U+W)^{\perp}$, so we have the inclusion $U^{\perp} \cap W^{\perp} \subseteq(U+W)^{\perp}$. To prove the equality we just observe that since trivially $U \subseteq U+W$ and $W \subseteq U+W$ we have $(U+W)^{\perp} \subseteq U^{\perp}$ and $(U+W)^{\perp} \subseteq W^{\perp}$ hence $(U+W)^{\perp} \subseteq U^{\perp} \cap W^{\perp}$ thus proving the equality.
(iii) If we apply what we have learnt at (ii) to the subspaces U^{\perp} and W^{\perp} we have that $U^{\perp \perp} \cap W^{\perp \perp}=\left(U^{\perp}+W^{\perp}\right)^{\perp}$ and using (i) we obtain $U \cap W=\left(U^{\perp}+W^{\perp}\right)^{\perp}$ which reduces to (iii) by taking the orthogonal complement.
42. Let $V=\mathbb{R}[t]_{2}$ be equipped with the inner product

$$
(p, q)=\int_{0}^{1} p(t) q(t) d t
$$

Use the Gram-Schmidt process to convert $\left\{1, t, t^{2}\right\}$ into an orthonormal basis $\left\{g_{1}, g_{2}, g_{3}\right\}$ for V.

Solution: Let $f_{1}=1, f_{2}=t, f_{3}=t^{2}$. It is clear that $\left(f_{1}, f_{1}\right)=1$, so $g_{1}=1$. Now $\left(f_{2}, g_{1}\right)=1 / 2$, so $\tilde{f}_{2}=f_{2}-\left(f_{2}, g_{1}\right) g_{1}=t-1 / 2$. $\operatorname{Now}\left(\tilde{f}_{2}, \tilde{f}_{2}\right)=1 / 12$, so $g_{2}=\sqrt{3}(2 t-1)$. Also $\left(f_{3}, g_{1}\right)=1 / 3$ and $\left(f_{3}, g_{2}\right)=\sqrt{3} / 6$, so

$$
\tilde{f}_{3}=f_{3}-\left(f_{3}, g_{1}\right) g_{1}-\left(f_{3}, g_{2}\right) g_{2}=t^{2}-(t-1 / 2)-1 / 3
$$

Finally $\left(\tilde{f}_{3}, \tilde{f}_{3}\right)=1 / 180$, so $g_{3}=\sqrt{5}\left(6 t^{2}-6 t+1\right)$.
43. Let $V=\mathbb{R}[t]_{2}$ be equipped with the inner product

$$
(f, g)=\int_{-1}^{1} f(t) g(t) d t
$$

and let $U=\{f \in V \mid f(-1)=f(1)=0\}$. Find a basis for the orthogonal complement of U in V.

Solution: Recall that $V=\mathbb{R}[t]_{2}$ is the vector space of polynomials with real coefficients, of degree at most 2 , and that $\operatorname{dim} V=3$ with $1, t, t^{2}$ forming a basis. Now note that since $f(-1)=f(1)=0$ if and only if $(t+1)(t-1)$ divides $f(t)$, it follows that $U=\operatorname{span}\{(t+1)(t-1)\}$. Suppose $g(t)=a_{0}+a_{1} t+a_{2} t^{2}$. Then $g(t) \in U^{\perp}$ if and only if $(g(t),(t+1)(t-1))=0$, and doing the integral shows that this is equivalent to

$$
\frac{-4}{15} a_{2}+0 a_{1}+\frac{-4}{3} a_{0}=0 .
$$

So, for example taking $a_{2}=-5 a_{0}$ and $a_{1} \in \mathbb{R}$ in turn, we see that U^{\perp} has basis $5 t^{2}-1, t$.
44. Consider \mathbb{C}^{4} with the standard inner product. Find an orthonormal basis for the orthogonal complement of the subspace spanned by

$$
\left(\begin{array}{c}
2 \\
1-\mathrm{i} \\
0 \\
1
\end{array}\right), \quad\left(\begin{array}{l}
1 \\
0 \\
\mathrm{i} \\
3
\end{array}\right)
$$

Solution: Let

$$
U=\operatorname{span}\left\{\left(\begin{array}{c}
2 \\
1-i \\
0 \\
1
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
i \\
3
\end{array}\right)\right\} .
$$

Then U^{\perp} is the space of solutions of the system of linear equations

$$
\begin{aligned}
2 z_{1}+(1+i) z_{2}+z_{4} & =0 \\
z_{1} & -i z_{3}+3 z_{4}
\end{aligned}=0
$$

Using elementary row operations to bring these equations to row reduced echelon form, we have

$$
\begin{aligned}
\left(\begin{array}{cccc}
2 & 1+i & 0 & 1 \\
1 & 0 & -i & 3
\end{array}\right) & \rightarrow\left(\begin{array}{cccc}
1 & 0 & -i & 3 \\
2 & 1+i & 0 & 1
\end{array}\right) \rightarrow \\
\left(\begin{array}{cccc}
1 & 0 & -i & 3 \\
0 & 1+i & 2 i & -5
\end{array}\right) & \rightarrow\left(\begin{array}{cccc}
1 & 0 & -i & 3 \\
0 & 1 & 1+i & -\frac{5}{2}(1-i)
\end{array}\right) .
\end{aligned}
$$

Thus z_{3}, z_{4} are free variables and the solutions are given by

$$
\left(\begin{array}{l}
z_{1} \\
z_{2} \\
z_{3} \\
z_{4}
\end{array}\right)=\lambda\left(\begin{array}{c}
i \\
-(1+i) \\
1 \\
0
\end{array}\right)+\mu\left(\begin{array}{c}
-3 \\
\frac{5}{2}(1-i) \\
0 \\
1
\end{array}\right), \quad \lambda, \mu \in \mathbb{C} .
$$

Set

$$
\mathbf{v}_{1}=\left(\begin{array}{c}
i \\
-(1+i) \\
1 \\
0
\end{array}\right), \quad \mathbf{v}_{2}=\left(\begin{array}{c}
-3 \\
\frac{5}{2}(1-i) \\
0 \\
1
\end{array}\right) .
$$

Then $\left\|\mathbf{v}_{1}\right\|^{2}=1+2+1=4$, so set

$$
\mathbf{u}_{1}=\frac{\mathbf{v}_{1}}{\left\|\mathbf{v}_{1}\right\|}=\frac{1}{2}\left(\begin{array}{c}
i \\
-(1+i) \\
1 \\
0
\end{array}\right) .
$$

Next set

$$
\begin{aligned}
\tilde{\mathbf{u}}_{2} & =\mathbf{v}_{2}-\left(\mathbf{v}_{2}, \mathbf{u}_{1}\right) \mathbf{u}_{1} \\
& =\left(\begin{array}{c}
-3 \\
\frac{5}{2}(1-i) \\
0 \\
1
\end{array}\right)-\frac{1}{4}\left((-3)(-i)+\frac{5}{2}(1-i)(-1)(1-i)\right)\left(\begin{array}{c}
i \\
-(1+i) \\
1 \\
0
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{c}
-2 \\
1-i \\
-4 i \\
2
\end{array}\right) .
\end{aligned}
$$

Finally set

$$
\mathbf{u}_{2}=\frac{\mathbf{v}_{2}}{\left\|\mathbf{v}_{2}\right\|}=\frac{1}{\sqrt{26}}\left(\begin{array}{c}
-2 \\
1-i \\
-4 i \\
2
\end{array}\right) .
$$

Then $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ is the required orthonormal basis.
45. Use the Gram-Schmidt process to show that every invertible $n \times n$ matrix A can be written in the form $A=B C$, where B is an orthogonal matrix and C is upper triangular. Find B, C when

$$
A=\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 2 & 3 \\
-1 & 1 & 3
\end{array}\right)
$$

[Hint: Think about the columns of A as vectors.]
Solution: Suppose the columns of A are $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$. Since A is invertible these vectors form a basis for \mathbb{R}^{n}. Recall that applying the Gram-Schmidt process we replace $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ by a set of orthonormal vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}$ and that, for each $k=1, \ldots, n, \operatorname{span}\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right\}=\operatorname{span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ so that, for suitable $a_{i j} \in \mathbb{R}$,

$$
\mathbf{v}_{k}=c_{1 k} \mathbf{u}_{1}+\ldots+c_{k k} \mathbf{u}_{k} .
$$

But then $A=B C$, where B is the matrix whose columns are $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}$ and C is the upper triangular matrix

$$
\left(\begin{array}{cccc}
c_{11} & c_{12} & \ldots & c_{1 n} \\
0 & c_{22} & \ldots & c_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & c_{n n}
\end{array}\right)
$$

Since $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}$ are mutually orthogonal unit vectors $B^{t} B=I$ and B is an orthogonal matrix. If

$$
A=\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 2 & 3 \\
-1 & 1 & 3
\end{array}\right)
$$

then $\mathbf{v}_{1}=(1,0,-1), \mathbf{v}_{2}=(0,2,1), \mathbf{v}_{3}=(-1,3,3)$ and applying Gram-Schmidt we find that

$$
\mathbf{u}_{1}=\frac{1}{\sqrt{2}}(1,0,-1), \quad \mathbf{u}_{2}=\frac{1}{3 \sqrt{2}}(1,4,1), \quad \mathbf{u}_{3}=\frac{1}{3}(2,-1,2) .
$$

Also

$$
\begin{gathered}
\left(\mathbf{v}_{2}, \mathbf{u}_{1}\right)=-\frac{1}{\sqrt{2}}, \quad\left(\mathbf{v}_{3}, \mathbf{u}_{1}\right)=-2 \sqrt{2}, \quad\left(\mathbf{v}_{3}, \mathbf{u}_{2}\right)=\frac{14}{3 \sqrt{2}} \\
\tilde{\mathbf{v}_{2}}=\frac{3}{\sqrt{2}} \mathbf{u}_{2}, \quad \tilde{\mathbf{v}_{2}}=\frac{1}{3} \mathbf{u}_{3}
\end{gathered}
$$

Thus

$$
\mathbf{v}_{1}=\sqrt{2} \mathbf{u}_{1}, \quad \mathbf{v}_{2}=-\frac{1}{\sqrt{2}} \mathbf{u}_{1}+\frac{3}{\sqrt{2}} \mathbf{u}_{2}, \quad \mathbf{v}_{3}=-2 \sqrt{2} \mathbf{u}_{1}+\frac{14}{3 \sqrt{2}} \mathbf{u}_{2}+\frac{1}{3} \mathbf{u}_{3} .
$$

Hence

$$
\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 2 & 3 \\
-1 & 1 & 3
\end{array}\right)=\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} & \frac{1}{3 \sqrt{2}} & \frac{2}{3} \\
0 & \frac{4}{3 \sqrt{2}} & \frac{-1}{3} \\
-\frac{1}{\sqrt{2}} & \frac{1}{3 \sqrt{2}} & \frac{2}{3}
\end{array}\right)\left(\begin{array}{ccc}
\sqrt{2} & -\frac{1}{\sqrt{2}} & -2 \sqrt{2} \\
0 & \frac{3}{\sqrt{2}} & \frac{14}{3 \sqrt{2}} \\
0 & 0 & \frac{1}{3}
\end{array}\right) .
$$

46. Let S consist of the following vectors in \mathbb{R}^{4} with its standard inner product:

$$
\mathbf{u}_{1}=\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right), \quad \mathbf{u}_{2}=\left(\begin{array}{c}
1 \\
-1 \\
1 \\
-1
\end{array}\right), \quad \mathbf{u}_{3}=\left(\begin{array}{c}
-1 \\
-1 \\
1 \\
1
\end{array}\right), \quad \mathbf{u}_{4}=\left(\begin{array}{c}
1 \\
-1 \\
-1 \\
1
\end{array}\right)
$$

(a) Show that these vectors are all mutually orthogonal to each others, and that they form a basis of \mathbb{R}^{4};
(b) Write $\mathbf{w}=(6,5,3,1)$ as a linear combination of $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}$.

Solution: (a) It is easy to check that $\left(\mathbf{u}_{i}, \mathbf{u}_{j}\right)=0$ for all $i \neq j$. Therefore, S is orthogonal and linearly independent. Since \mathbb{R}^{4} has dimension 4 and there are 4 vectors, this means it is a basis.
(b) The coordinates of W appear as the projection of \mathbf{w} into the space spanned by the \mathbf{u}_{j}. Hence

$$
\begin{aligned}
\mathbf{w} & =\frac{\left(\mathbf{w}, \mathbf{u}_{1}\right)}{\left(\mathbf{u}_{1}, \mathbf{u}_{1}\right)} \mathbf{u}_{1}+\frac{\left(\mathbf{w}, \mathbf{u}_{2}\right)}{\left(\mathbf{u}_{2}, \mathbf{u}_{2}\right)} \mathbf{u}_{2}+\frac{\left(\mathbf{w}, \mathbf{u}_{3}\right)}{\left(\mathbf{u}_{3}, \mathbf{u}_{3}\right)} \mathbf{u}_{3}+\frac{\left(\mathbf{w}, \mathbf{u}_{4}\right)}{\left(\mathbf{u}_{4}, \mathbf{u}_{4}\right)} \mathbf{u}_{4} \\
& =\frac{15}{4} \mathbf{u}_{1}+\frac{3}{4} \mathbf{u}_{2}-\frac{7}{4} \mathbf{u}_{3}-\frac{1}{4} \mathbf{u}_{4}
\end{aligned}
$$

47. Let U be the vector subspace of \mathbb{R}^{4} defined by

$$
x_{1}+x_{2}+x_{3}+x_{4}=0, \quad x_{1}-x_{2}+x_{3}-x_{4}=0 .
$$

Find orthonormal bases for U and its orthogonal complement, when \mathbb{R}^{4} is equipped with the standard inner product.

Solution:

$$
\begin{aligned}
U & =\left\{\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right): x_{1}+x_{2}+x_{3}+x_{4}=0, x_{1}-x_{2}+x_{3}-x_{4}=0\right\} \\
& =\left\{\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right): x_{1}+x_{3}=0, x_{2}+x_{4}=0\right\} .
\end{aligned}
$$

Thus a basis for U is

$$
\left\{\left(\begin{array}{c}
1 \\
0 \\
-1 \\
0
\end{array}\right),\left(\begin{array}{c}
0 \\
1 \\
0 \\
-1
\end{array}\right)\right\} .
$$

These vectors are clearly orthogonal and have length $\sqrt{2}$. Thus

$$
\left\{\left(\begin{array}{c}
\frac{1}{\sqrt{2}} \\
0 \\
\frac{-1}{\sqrt{2}} \\
0
\end{array}\right),\left(\begin{array}{c}
0 \\
\frac{1}{\sqrt{2}} \\
0 \\
\frac{-1}{\sqrt{2}}
\end{array}\right)\right\}
$$

is an orthonormal basis for U. The orthogonal complement U^{\perp} of U is spanned by

$$
\left(\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right)
$$

so that an orthonormal basis for U^{\perp} is

$$
\left\{\left(\begin{array}{c}
\frac{1}{\sqrt{2}} \\
0 \\
\frac{1}{\sqrt{2}} \\
0
\end{array}\right),\left(\begin{array}{c}
0 \\
\frac{1}{\sqrt{2}} \\
0 \\
\frac{1}{\sqrt{2}}
\end{array}\right)\right\} .
$$

48. In \mathbb{R}^{4} equipped with the standard inner product, find the projection of $\mathbf{a}=(1,2,0,-1)$ on the plane V spanned by $\mathbf{v}_{1}=(1,0,0,1)$ and $\mathbf{v}_{2}=(1,1,2,0)$. (First construct an orthonormal basis for V.)

Solution: We need an orthonormal basis for the plane V. So

$$
\mathbf{u}_{1}=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right)
$$

$$
\widetilde{\mathbf{v}}_{2}=\mathbf{v}_{\mathbf{2}}-\left(\mathbf{v}_{\mathbf{2}}, \mathbf{u}_{\mathbf{1}}\right) \mathbf{u}_{\mathbf{1}}=\left(\begin{array}{l}
1 \\
1 \\
2 \\
0
\end{array}\right)-\frac{1}{2}\left(\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right)=\frac{1}{2}\left(\begin{array}{c}
1 \\
2 \\
4 \\
-1
\end{array}\right),
$$

and

$$
\mathbf{u}_{2}=\frac{1}{\sqrt{22}}\left(\begin{array}{c}
1 \\
2 \\
4 \\
-1
\end{array}\right)
$$

Then the V-component of \mathbf{a} is

$$
\left(\mathbf{a}, \mathbf{u}_{1}\right) \mathbf{u}_{1}+\left(\mathbf{a}, \mathbf{u}_{2}\right) \mathbf{u}_{2}=\frac{3}{11}\left(\begin{array}{c}
1 \\
2 \\
4 \\
-1
\end{array}\right) .
$$

49. Let U be a vector subspace of \mathbb{R}^{n}, equipped with the standard inner product, and suppose that \mathbf{v} is an element of \mathbb{R}^{n} not in U. Then we know that there is a unique point \mathbf{u}_{0} in U such that, for all $\mathbf{u} \in U$, we have $\left\|\mathbf{v}-\mathbf{u}_{0}\right\| \leq\|\mathbf{v}-\mathbf{u}\|$; and $\mathbf{v}-\mathbf{u}_{0}$ is orthogonal to U. Find \mathbf{u}_{0} if U is the plane $x_{1}-2 x_{2}+2 x_{3}=0$ in \mathbb{R}^{3} and $\mathbf{v}=(1,0,0)$.

Solution: We need an orthonormal basis $\left\{\mathbf{u}_{\mathbf{1}}, \mathbf{u}_{\mathbf{2}}\right\}$ for the plane U. Start with any two vectors in U, say $\mathbf{w}_{\mathbf{1}}=(0,1,1)$ and $\mathbf{w}_{\mathbf{2}}=(2,1,0)$. Then $\mathbf{u}_{1}=(0,1,1) / \sqrt{2}$,

$$
\widetilde{\mathbf{w}}_{2}=\mathbf{w}_{\mathbf{2}}-\left(\mathbf{w}_{\mathbf{2}}, \mathbf{u}_{\mathbf{1}}\right) \mathbf{u}_{\mathbf{1}}=\left(2, \frac{1}{2},-\frac{1}{2}\right)
$$

and $\mathbf{u}_{\mathbf{2}}=(4,1,-1) /(3 \sqrt{2})$. Now \mathbf{u}_{0} is the projection of \mathbf{v} onto U, namely

$$
\mathbf{u}_{\mathbf{0}}=\left(\mathbf{v}, \mathbf{u}_{1}\right) \mathbf{u}_{1}+\left(\mathbf{v}, \mathbf{u}_{2}\right) \mathbf{u}_{2}=\frac{2}{9}(4,1,-1) .
$$

50. Let V be the space $C[-1,1]$ equipped with the inner product $(f, g)=\int_{-1}^{1} f(t) g(t) d t$. Let S be the subspace of V spanned by $\left\{1, t, t^{2}\right\}$. Construct an orthonormal basis $\left\{g_{1}, g_{2}, g_{3}\right\}$ for S, and find the function $h \in S$ closest to t^{3}.

Solution: If $V=C[-1,1], \mathbf{v}=t^{3}$ and $S=\operatorname{span}\left\{1, t, t^{2}\right\}$, then we first apply Gram-Schmidt orthonormalization to $\left\{1, t, t^{2}\right\}$ to obtain an orthonormal basis for S. Let us write $f_{1}=1$, $f_{2}=t, f_{3}=t^{2}$. Then $\left\|f_{1}\right\|^{2}=\int_{-1}^{1} d t=2$, so set $g_{1}=\frac{1}{\sqrt{2}}$. Now note that

$$
\left(f_{2}, f_{1}\right)=\int_{-1}^{1} t d t=0 \quad \text { and } \quad\left\|f_{2}\right\|^{2}=\int_{-1}^{1} t^{2} d t=\frac{2}{3},
$$

so set

$$
g_{2}=\frac{f_{2}}{\left\|f_{2}\right\|}=\sqrt{\frac{3}{2}} t .
$$

Finally set

$$
\tilde{f}_{3}=f_{3}-\left(f_{3}, g_{1}\right) g_{1}-\left(f_{3}, g_{2}\right) g_{2} .
$$

Since

$$
\left(f_{3}, f_{1}\right)=\int_{-1}^{1} t^{2} d t=\frac{2}{3} \quad \text { and } \quad\left(f_{3}, f_{2}\right)=\int_{-1}^{1} t^{3} d t=0
$$

we have

$$
\tilde{f}_{3}=t^{2}-\frac{2}{3} \cdot \frac{1}{2}=t^{2}-\frac{1}{3} .
$$

Then

$$
\left\|\tilde{f}_{3}\right\|^{2}=\int_{-1}^{1}\left(t^{2}-\frac{1}{3}\right)^{2} d t=\int_{-1}^{1}\left(t^{4}-\frac{2}{3} t^{2}+\frac{1}{9}\right) d t=\frac{2}{5}-\frac{4}{9}+\frac{2}{9}=\frac{8}{45}
$$

so set

$$
g_{3}=\frac{\tilde{f}_{3}}{\left\|\tilde{f}_{3}\right\|}=\frac{3 \sqrt{5}}{2 \sqrt{2}}\left(t^{2}-\frac{1}{3}\right)
$$

The function in S closest to t^{3} is then

$$
h=\left(t^{3}, g_{1}\right) g_{1}+\left(t^{3}, g_{2}\right) g_{2}+\left(t^{3}, g_{3}\right) g_{3}
$$

But

$$
\begin{aligned}
\left(t^{3}, g_{1}\right) & =\frac{1}{\sqrt{2}} \int_{-1}^{1} t^{3} d t=0 \\
\left(t^{3}, g_{2}\right) & =\sqrt{\frac{3}{2}} \int_{-1}^{1} t^{4} d t=\frac{2}{5} \sqrt{\frac{2}{3}} \\
\left(t^{3}, g_{3}\right) & =\frac{3 \sqrt{5}}{2 \sqrt{2}} \int_{-1}^{1}\left(t^{5}-\frac{1}{3} t^{3}\right) d t=0 .
\end{aligned}
$$

Thus the function $h \in S$ closest to t^{3} is

$$
h(t)=\frac{2}{5} \sqrt{\frac{3}{2}} \sqrt{\frac{3}{2}} t=\frac{3}{5} t .
$$

51. Find the point in the 3-plane $2 x_{1}-x_{2}+2 x_{3}+2 x_{4}=0$ in \mathbb{R}^{4}, with standard Euclidean inner product, which is nearest to the point $\mathbf{a}=(1,2,1,2)$.

Solution: The 3-plane U defined by $2 x_{1}-x_{2}+2 x_{3}+2 x_{4}=0$ has normal

$$
\left(\begin{array}{c}
2 \\
-1 \\
2 \\
2
\end{array}\right)
$$

and thus unit normal

$$
\mathbf{e}=\frac{1}{\sqrt{13}}\left(\begin{array}{c}
2 \\
-1 \\
2 \\
2
\end{array}\right)
$$

Thus $U^{\perp}=\operatorname{span}\{\mathbf{e}\}$. Given $\mathbf{v} \in V$, we may write \mathbf{v} in the form

$$
\mathbf{v}=\mathbf{u}+\tilde{\mathbf{u}} \quad \text { for unique } \mathbf{u} \in U, \tilde{\mathbf{u}} \in U^{\perp}
$$

and $\tilde{\mathbf{u}}=(\mathbf{v}, \mathbf{e}) \mathbf{e}$. Thus the nearest point in U to \mathbf{v} is $\mathbf{u}=\mathbf{v}-(\mathbf{v}, \mathbf{e}) \mathbf{e}$. In particular, when

$$
\mathbf{v}=\left(\begin{array}{l}
1 \\
2 \\
1 \\
2
\end{array}\right)
$$

we have

$$
\begin{aligned}
\mathbf{u} & =\left(\begin{array}{l}
1 \\
2 \\
1 \\
2
\end{array}\right)-\frac{1}{13}(1 \cdot 2+2 \cdot(-1)+1 \cdot 2+2 \cdot 2)\left(\begin{array}{c}
2 \\
-1 \\
2 \\
2
\end{array}\right) \\
& =\left(\begin{array}{l}
1 \\
2 \\
1 \\
2
\end{array}\right)-\frac{6}{13}\left(\begin{array}{c}
2 \\
-1 \\
2 \\
2
\end{array}\right)=\frac{1}{13}\left(\begin{array}{c}
1 \\
32 \\
1 \\
14
\end{array}\right) .
\end{aligned}
$$

52. Find the point in the 2 -plane in \mathbb{R}^{4} defined by $x_{1}+x_{2}+x_{3}+x_{4}=0, x_{1}-x_{2}+x_{3}-x_{4}=0$, which is nearest to the point $\mathbf{v}=(1,2,1,2)$ with standard Euclidean inner product.

Solution: Let U denote the plane defined in the question. Clearly

$$
\left\{\left(\begin{array}{c}
1 \\
0 \\
-1 \\
0
\end{array}\right),\left(\begin{array}{c}
0 \\
1 \\
0 \\
-1
\end{array}\right)\right\}
$$

is a basis for U. We need an orthonormal basis for U. Clearly these two vectors are orthogonal and they each have length $\sqrt{2}$. Hence an orthonormal basis is

$$
\mathbf{u}_{1}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
1 \\
0 \\
-1 \\
0
\end{array}\right), \quad \mathbf{u}_{2}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
0 \\
1 \\
0 \\
-1
\end{array}\right)
$$

The point nearest of U nearest to \mathbf{v} is the orthogonal projection \mathbf{u} of \mathbf{v} onto U. This is given by

$$
\mathbf{u}=\left(\mathbf{v}, \mathbf{u}_{1}\right) \mathbf{u}_{1}+\left(\mathbf{v}, \mathbf{u}_{2}\right) \mathbf{u}_{2} .
$$

It is clear that $\left(\mathbf{v}, \mathbf{u}_{1}\right)=0$ and $\left(\mathbf{v}, \mathbf{u}_{2}\right)=0$ and so

$$
\mathbf{u}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right) .
$$

