Linear Algebra 1, Solutions to exercises 26 to 52.
Epiphany 21/22.

26. Decide which of the following bilinear functions defines an inner product:

(1) z1y1 — T1ys — T3y1 + 2x3Y3 + 422y + Tays + Toys + T4y2 ON R*;
(11 2x1y1 + T2Y2 + 2]733/2 + TaY3 on R3;

(iv) 4xyy; + 229Ys + 612y3 + 623y + 18w3y3 on R3;

)
)

(iil) 2z1y1 + Tayo — 2x1Y3 — 203y1 — Tays — T3Y2 + T3ys on R?;
)

(V) @191 + Toy2 — T1y3 — T3y1 + 3x2ys + 3x3ys + 11azys on R3.

Solution: (i) Yes. Clearly symmetric and bilinear and

(x,x) = (21 — 23)* + 25 + 323 + (22 + 24)> > 0
with equality iff z1 = z9 = 23 = 24 = 0.
(ii) No, not symmetric.
(iii) No, not positive. ( (x,x) < 0 for x = (3,1, 3), for example).

(iv) No, not strictly positive. (x,x) = 4% + 2(z2 + 3x3)? so there are non-zero vectors with
zero norm, for example x = (0,3, —1).

(v) Yes. Clearly symmetric and bilinear and

(x,%x) = (21 — 23)> + (22 + 323)* + 22 >0

with equality iff x1 = xo = 23 = 0.

You can also check positivity by checking whether the corresponding symmetric matrix is
positive definite.
27. Show that the bilinear form on R? defined by
(X,y) = 621y1 — T1Y2 — Tay1 + TaYo — T1Y3 — T3Y1 + T3Y3

is an inner product on R*, and find the lengths of the vectors

1 3
1], —6
1 3+3v3

and the angle between them with respect to this inner product.

Solution: Clearly (x,y) is symmetric and bilinear, so we have only to check positivity. But
(x,x) = 627 — 20122 + 23 + 22 — 2023 = 423 + (1 — 22)® + (21 —23)2 >0

with equality iff z1 = 29 = 23 = 0.
Next note that

1 2 1 3
1 — 144, 1],

2 3
1 3+3V3 1 3+3V3



1 3
1| =2 —6 =12
1 3+3V3

and the angle 6 between these vectors is given by
1
cosf = =
2
so that 6 = /3.

28. Find the angle between the vectors in R* equipped with the standard inner product:

1 2 1 8 6 1
. 2 1 2 —4 2 -1
R EETN N ST RN CORN 'Y K (R R (S R
-1 1 4 3 2 3

Solution: (i) Arcos (2/7); (ii) 7/2; (iii) =/3.

29. * Consider the vector space M, of the n x n matrices with real coefficients, and the
application ( , ) : M, x M, — R given by

(A, B) = Te(A'B),

where A' denotes the transpose of A and Tr denotes the trace. Show that ( , ) defines an
inner product on M,

Solution: From linearity of the trace and the transposition of a matrix combined with the dis-
tributivity of matrix product it follows immediately that (A, B) is bilinear. Furthermore we

have
(A,B) = Tr(A'B) = Tr((B'A)) = Tr(B'A) = (B, A)

since TrA' = TrA4, so (, ) is also symmetric. We are left to prove that it is also positive
definite. To this end we consider

(A, A) = Te(A'A) =D 3" A54; =33 (45 >0
=1 j=1 =1 j=1

since it is a sum of squares. Furthermore (A, A) = 0 if and only if (A4;;)? is equal to zero for
alli,j=1,...,n,ie. if and only if A = 0 is the zero matrix thus proving that ( , ) defines an
inner product on the vector space of n x n dimensional matrices with real coefficients.

30. Suppose that C3? is equipped with the standard inner product. Show that the vectors
i 1 3+ 3
1 . LN
? R +1
1414 —4

are mutually orthogonal unit vectors, and find an orthonormal basis for C* which contains
them.



Solution: First note that if

7 1 3+ 3
u] = — ) , 112:6 1+
141 —4
then
i \ | 3430\ |
1 i 1 s 1
— 7 =—{l1+14+2}=1, —| 1474 = —{18+2+16} = 1.
2 ) 4 6 36
1412 —4

so both vectors are unit vectors. Moreover,

1 1 1 3+ 3 1
<2 ) '3 l—zi >: ﬁ{i(3—3i)+i(1—i)+(1+i)(—4)}:O.
141 —

Thus the given vectors are also mutually orthogonal. To find a third vector

a
v=|b
c

which is orthogonal to these, we have to solve the equations

0= (v,uy) == (a(—%) + b(—i) +c¢(1 —14)) =0,

1
2
0= (v,u) = é (a(3 — 30) + b(1 — i) + ¢(—4)) = 0.

The solutions are given by b = —5/3a, ¢ = (1 — i)/3a, so that in particular

is a solution. (In fact every other solution is a multiple of this). But ||v||?> = 36 so, setting

1
us = —
1—1

we have that {u;, ug, us} is an orthonormal basis.

31. Decide which of the following defines a Hermitian inner product on C:

(1) 3z1wy + 4zowo;

(i)

(iii) z1wq + (1 + 9)201;
)

(iv) 2101 + 299 + z1w5.
Solution: Write
() =)
z = , W= .
Z9 w9
(i) Yes. If (z,w) = 3z1w; + 429w3 then clearly (w,z) = (z,w). Also (z, w) is C-linear in z.
Finally (z,z) = 3|21|? + 4|22|? > 0 with equality iff z; = 2o = 0.



(i) No. Does satisfy (w,z) = (z,w) but it is not positive definite.

In fact (z,2z) = 2122 + 2221 = 2Re (z122) so for example ((_11> , (_11>> =-2<0.

(iii) No. Does not satisfy (w,z) = (z, w).

~

(iv) No. Does not satisfy (w,z) = (z,w

~

32. Show that zyw; + 220w9 + %lez + %Zgu_}l defines an inner product on C2. Using this
inner product, find the norm of the vector

()

and determine all unit vectors which are orthogonal to it.

=) =)

Solution: Write

Define ) .
( > 142 _+1+z _+1—z _
Z, W) = 210 29W9 + ——=21Wo + ——= 2011 ;
1W1 2W3 o) 1W2 /B 2W1
then
< ] S _+1—i _+1+i _ < >
Z, W) = W1z w29 —FW221 —F W12 = (W, 2),
V2 V2
and (z,w) is linear in z. Also
9 9 1 _ _ 1 _ _ 1—i 2
(z,2) = |a1]” + 2|2 +ﬁ(zlz2+2221)+\ﬁ(2122—z221) = |z + \/§ZQ| + |22]”.

Thus (z,z) > 0 with equality if and only if z; + %22 = 0,20 = 0, i.e. if and only if
21 =0,29 =0, i.e. if and only if z =0.

Using this inner product we have

2 .
-1 _ 1—¢ ~.9 a2
A =1 e v s vaie s
Thus
-1
()] -
The vector z is orthogonal to
-1
()
if and only if
1414 1—1
21 (=1) + 220(—iV/2) + \j;zl(—i\@) + WZZQ(_U _o,

i.e. if and only if z; = (=3419) zo = AM(—3 4 1), with z5 = V/2)\. Thus, such z are of the form

S

for some A € C. But




so that z is in addition a unit vector if and only if

- -3+ 2 1

note that we can write A\ = ¢/?/1/6 with ¢ € [0, 27].

33. If the vector space C'[—m, 7] of continuous complex valued functions on the interval [—7, 7]

34.

is equipped with the inner product defined by

19) =5 [ 15,

where g(x) denotes the complex conjugate of g(x), show that

inx
e

with n € N, i.e. n =0, 1,2..., are mutually orthogonal unit vectors in C[—m, 7].

Solution: We first observe that if k is an integer different from 0, then

/ e dx = 0.

Also, for n and m integers different from each others

/ ei(fn):veimx dr = Sln((m — n)ﬂ-)

o (m—n)m
which vanishes for all m,n € N, with m # n. So ¢/ is orthogonal to ¢!™? for m # n.
To check their norms we simply compute
1 s s

— el-nzgina g i dr=1
27 J_, 2 J_, ’

so they are all mutually orthogonal unit vectors in C[—, 7]

* Consider V' = R" with the following application

Voo = gglvil,

where v = (vy, ..., v,). Prove that ||+ ||« defines a norm on V. [This is called the £,,-norm,
also called sup-norm, on V' and it is not induced by an inner product.]

Solution: To prove that || - || defines a norm we must show absolute homogeneity, triangle
inequality and separation of points. First we note that

llaVileo = max Javi| = max al|vi] = |af max |uvi|

for every a € R.
Secondly

v+ Wlloo = max [o; +wi] < max o] + ;] < max Jo + max Jwj] < [[v]|so + |[w]|oo-
1<i<n 1<i<n 1<i<n 1<j<n

Where we used the fact that |a+b| < |a|+|b| together with max;(a;+b;) < max; a; +max; b;
since a; < max; a;j for every 1 < j < n. This proves the triangle inequality.

Finally if ||v||c = O it means that maxi<;<y |v;| = 0 and since |v;| < maxi<i<p |v;| for every
1 < j < n we deduce that v; = 0 for every 1 < j < n, i.e. v =0. The viceversa is obvious.



35. * Consider V' = R" with the following application

n
Vil =) fuil,
=1

where v = (vy, ..., v,). Prove that || - ||; defines a norm on V. [This is called the ¢;-norm
on V and it is not induced by an inner product.]

Solution: To prove that ||-||; defines a norm we must show absolute homogeneity, triangle inequality
and separation of points. First we note that for every A € R we have

n

Vil =D vl = A1) foil = A vl
i=1

=1

hence homogeneity holds. Secondly we have

n n
v +wlly =" o +wil <Y il + lwi] < vl + w1
i=1 i=1

which proves triangle inequality. Finally if v = 0 obviously we have ||v||; = 0, viceversa if
v # 0 there is at least one component of v which does not vanish, say v; # 0, and we have

n
vlle =" fvil = Joj] >0
=1

hence separation of points holds and || - ||; defines a norm.

36. * Consider the vector space V = C|a, b] of continuous functions on the interval [a, b] with
—00 < a < b < 00, and consider the application

b
£ :/ dz |f()]

where f € V. Prove that || - ||; defines a norm on V. [This is called the L;-norm on V
and it is not induced by an inner product.]

Solution: To prove that ||-||; defines a norm we must show absolute homogeneity, triangle inequality
and separation of points. First we note that for every A € R we have

b b
|>\f|\1=/ deIAf(fv)IZIAI/ da [ f(x)] = AL f]]1

hence homogeneity holds. Secondly we have

b b
1f +glh —/ da | f(x) + g(z)| S/ da (|f (@) + lg@@)) < [IFll + Mgl
where we used the fact that |f(x) + g(x)| < |f(z)| + |g(z)| for every = € [a,b], thus proving
triangle inequality. Finally if f(z) = 0 obviously we have||f||1 = 0. Viceversa if f(z) # 0
there is a point zy € [a,b] such that |f(zg)] = ¢ # 0 and from continuity we know that
there exists an interval (zg — €, 29 + €) C [a,b] with € > 0 such that |f(z)| > ¢/2 for every
x € (xg — €,x0 + €) this means that

b To+e To+e ¢
Hful/ d:c!f(m)lz/ dx!f(:c)]>/ &l > ce >0,

0—€ To—€

hence separation of points holds and || - ||; defines a norm.



1 1 1
37. Apply Gram-Schmidt orthonormalisation to the basis 0]1,12].,12 of R? equipped
0 0 3
with the standard inner product. (But first guess the answer.)

1 1 1
Solution: Let vi = [0 ]| ,vo = [2],v3 = |2]. First note that ||[v{||*> = 1, so set u; = v.
0 0 3
Next set
1 1 0
ﬁg = Vo — (vz,ul)ul = 2 - 0 = 2
0 0 0
q 0
Then |[t12]|? = 4, so set uy = ?2 = | 1]. Finally define
0
1 1 0 0
ﬁg = V3 — (V3,111)111 - (V3,112)112 = 21 —10]—-211 = 0
3 0 0 3
Then [[a3||? = 9, so set uz = % = | 0 |. Thus applying Gram-Schmidt to vi,va, v3 gives
1
1 0 0
the standard orthonormal basis 0],{1}.,]0 of R? (as it had to).
0 0 1
1 0 0
38. Apply Gram-Schmidt orthonormalisation to the basis 0O],(1].,10 of R? equipped
0 0 1

with the inner product defined by (x,y) = 2z1y1 + 222y + T3y3 — Tay3 — T3Ya.

Solution: Let
0

1 0
V] = 0 5 Vo = 1 y V3 = 0
0 0 1
Since the inner product is given by
(X,¥) = 271y1 + 222Y2 + T3Y3 — T2Y3 — T3Y2,
we first note that ||v{||? = 2, so set
1

V1 1

u=—=—10
Ml = V2

Next note that (v, v2) =0 and |[v2? = 2, so set up = L

V22
e 1!
9= T = —=
vol ~ V2 \
Finally define
0 1 0 0
\73:V3—(V3,u1)u1—(V3,u2)u2: 0 —O—(—E) 1/\/5 = — 1 5

1 0 2



and note that ||v3||? = 1/2. Therefore set

~ 0

V3 1 1
us = =7 = =

sl ~ V2 \ 4

Thus applying Gram-Schmidt to vy, v, v3 gives the orthonormal basis

o) (1) s
\/EO\/?O\@Q

39. If R* is given the standard inner product, find an orthonormal basis for the subspace
determined by the equation z; +x2+x3+ 24 = 0, and extend this basis to an orthonormal
basis for all of R*.

Solution: The vectors

1 0 0
-1 1 0
0|’ -1’ 1
0 0 -1
are a basis for the subspace
X1
T2
U= ‘$1+ZL'2+3;‘3+334=0 ,
€3
4

since they are linearly independent and dim U =4 — 1 = 3. Let

1 0 0
[ 1 0
U1 = o |’ =1_41 BT 4
0 0 -1
V2
2
_ V2
u = 2 |,
! 0
0
0 ~1/2 1/2
- 1 1/2 1/2
Vo = vz2—(vz,um)ur = 1| (/) = _/1 )
0 0 0
V3v2
6
V3v2
— 6
"2 _Vave |
3
0
0 ~1/3 1/3
- 0 —1/3 1/3
V3 = vz —(v3,u1)u; — (vz,uz)uz = 1 -0- 2/é = 1§3 ;
—1 0 -1
V3
6
V3
ug = &
3/3

N



The vector

T W Wy

is orthogonal to U, so

[
o

completes the orthonormal basis of R%.

40. If R* is given the standard inner product, find an orthonormal basis for the subspace
determined by the equation z1 + x5 —x3— 24 = 0, and extend this basis to an orthonormal
basis for all of R*.

Solution: The vectors

1 0 0
-1 1 0
01’ 1|’ 1
0 0 -1
form a basis for the subspace
T
U= 2 o1+ 20 —23—24=0
z3
T4

1 0 0
-1 1 0
0 0 -1



<<

o

u; = y

0
0
0 —1/2 1/2
- 1 1/2 1/2
Va2 = v2—(Va,uun = - (/) = { :
0 0 0
V3v2
6
V32
= 6
Uz V3va |
3
0
0 1/3 -1/3
- 0 1/3 -1/3
Vs = vz—(vsu)u —(va,uz)uz = | 0 2?3 = 1/é :
—1 0 —1
_V3
6
]
ug — \/g
6
V3
2
1 1
The vector _11 is orthogonal to U, so % _11 completes the orthonormal basis of R?.

-1 -1

41. * Let (, ) : V x V +— R be an inner product on the n-dimensional vector space V' and let
U, W denote two vector subspaces of V. Prove the following

(i) W=wtt
(i) UtNnwt = U+ W)t
(iil) (UNW)t=Ur+ W+t

Solution: (i) We simply need to remember that W+ = {v € Vst. (v,w) = OVw € W}
so the orthogonal complement of the orthogonal complement of W will surely contain W,
ie. W C WL To see that W is indeed equal to W1 we just need to remember that
dimV = dimW + dimW+.

(ii) If w € ULNW it means that (w,u) = 0 for all w € U and also for all u € W, which means
for all u € U + W, hence w € (U + W)=, so we have the inclusion U+ N W+ C (U + W)* .
To prove the equality we just observe that since trivially U C U+ W and W C U + W we
have (U + W)+ C U+ and (U + W)+ C W+ hence (U + W)+ C UL NW thus proving the
equality.

(iii) If we apply what we have learnt at (i) to the subspaces U+ and W+ we have that
Ut nwtt = (UL 4+ W)L and using (i) we obtain UNW = (UL 4 W)+ which reduces
to (iii) by taking the orthogonal complement.

42. Let V = R[t], be equipped with the inner product

(paC_I)Z/O p(t)q(t) dt.



Use the Gram-Schmidt process to convert {1,¢,¢*} into an orthonormal basis {gi, g2, g3}
for V.

Solution: Let fi =1, fo=t, f3 = 2. Itis clear that (f1, f1) =1, s0 g1 = 1. Now (f2,91) = 1/2,
50 fo = fa—(f2,91)g1 = t—=1/2. Now (fa, fo) = 1/12, 50 go = v/3(2t—1). Also (f3,91) = 1/3
and (f3,92) = V/3/6, so

fs=fs— (f3.91)01 — (f3.92)92 = t* — (t — 1/2) — 1/3.
Finally (f3, f3) = 1/180, so g3 = v/5(6t% — 6t + 1).

43. Let V = R|[t]2 be equipped with the inner product

(f.9) = » f(t)g(t)dt,

and let U = {f € V| f(—=1) = f(1) = 0}. Find a basis for the orthogonal complement of
UinV.

Solution: Recall that V' = R[t]5 is the vector space of polynomials with real coefficients, of de-
gree at most 2, and that dimV = 3 with 1,¢,t> forming a basis. Now note that since
f(=1) = f(1) = 0ifand only if (t+1)(t—1) divides f(t), it follows that U = span{(t+1)(t—1)}.
Suppose g(t) = ag + a1t + ast®. Then g(t) € U~ if and only if (g(t), (t +1)(t — 1)) =0, and
doing the integral shows that this is equivalent to

et 0a + ap=0
15(12 al 3&0— .

So, for example taking as = —5ag and a; € R in turn, we see that U+ has basis 5t — 1, ¢.

44. Consider C* with the standard inner product. Find an orthonormal basis for the orthog-
onal complement of the subspace spanned by

2 1

1—1 0

0 ’ 1

1 3

Solution: Let

2 1
1—14 0
U = span 0 .y
1 3

Then U+ is the space of solutions of the system of linear equations

221+ (1 +14)2 + z4 = 0,
21 —i23+ 324 = 0.

Using elementary row operations to bring these equations to row reduced echelon form, we

have
2 1+¢ 0 1 1 0 -7 3 .
1 0 - 3 2 1+7 0 1

10 =i 3\ , (10 =i 3
0 1+i 2 -5 01 1+i —=3(1-4))"



Thus z3, z4 are free variables and the solutions are given by

Z1 ) -3
2| [-1+9) 5(1—14)
o =A 1 +u 0 ) A peC.
z4 0 1
Set
i -3
—(1+i S(1—i
e | O] o 30D
0 1

u = = -
TT R
Next set
Uy = vg—(vo,up)uy
-3 7
5 . )
2(1 —1) 1 ) 5 . ) —(1414)
_ | a a2 A1 —
= 0 (3= + 50 =) (=1)(1 1)) 1
1 0
—2
_ o[-
2| 4
2
Finally set
-2
w0 — Vo . 1 1—1
27 vl T V26 | 4
2

Then {uj,uz} is the required orthonormal basis.

45. Use the Gram-Schmidt process to show that every invertible n x n matrix A can be

written in the form A = BC', where B is an orthogonal matrix and C' is upper triangular.
Find B, C when

1 0 —1
A= 0 2 3
-1 1 3
[Hint: Think about the columns of A as vectors.|
Solution: Suppose the columns of A are vy,...,v,. Since A is invertible these vectors form a basis
for R™. Recall that applying the Gram-Schmidt process we replace vi,...,Vv, by a set of or-
thonormal vectors uy, ..., u, and that, foreach k = 1,...,n, span{uy,...,u,} = span{vy,...,v,}

so that, for suitable a;; € R,
Vi = C1xU1 + ... + CkipUg.



But then A = BC, where B is the matrix whose columns are uy,...,u, and C is the upper
triangular matrix

Ci11 €12 ... Cin
0 Cc22 ... Con
0 0 ... cun
Since uy, ..., u, are mutually orthogonal unit vectors B!B = I and B is an orthogonal matrix.
If
1 0 -1
A= 0 2 3
-1 1 3
then v = (1,0,—1), vy = (0,2, 1), vy = (—1,3, 3) and applying Gram-Schmidt we find
that
mfiwupﬂ,m:QL@An,m:quﬁ.
V2 3v2 3
Also ) 14
(V27u1) = _77 (V37u1) - _2\/57 (VS,U.Q) = 37\/57
- 3 _ 1
—uo, v u
2 NG 2 2 3
Thus
1 3 14 1
v:\/iu, v —u; + —=uo, vy = —2v2u; + ——uy + —ug.
1 1 2 NG 1 NG 2 3 1 32 2t 3
Hence . . )
1 0 -1 5 33 3 V2 —% —2V2
002 3 |=(0 o5 F|lo & I
3v/2 2 3v/2
11 3 T G B B U
V2 3v2 3 3

46. Let S consist of the following vectors in R* with its standard inner product:

1 -1 1
~1 -1 -1
) uz = 1 ) Uy = -1

—1 1 1

u; =

— = =
o
Do
|

(a) Show that these vectors are all mutually orthogonal to each others, and that they
form a basis of R?*;

(b) Write w = (6, 5,3, 1) as a linear combination of uy, us, us, uy.

Solution: (a) It is easy to check that (u;,u;) = 0 for all i # j. Therefore, S is orthogonal and
linearly independent. Since R* has dimension 4 and there are 4 vectors, this means it is

a basis.
(b) The coordinates of W appear as the projection of w into the space spanned by the u;.

Hence

W, u W, u W, u W, u

w = ( 1)u1+( 2)u2+< 3)u3+( 4)U4
(g, 1) (u2, uz) (us, us) (g, 1y)
15 3 7 1
= —up+-u— —-uz3— —uy.

4 4 4 4



47. Let U be the vector subspace of R* defined by
ZE1+1'2+ZE3+I4:0, $1—{E2+9§3—[L‘4:0.

Find orthonormal bases for U and its orthogonal complement, when R* is equipped with
the standard inner product.

Solution:

€1
€2
U = . cx1+aot+ax3+x4=0, z1—x9+x3—24=0
3

T4

x1
€2
= " tx1+ax3=0,204+2x4=0
3

L4

Thus a basis for U is

These vectors are clearly orthogonal and have length v/2. Thus

1

A
0 V2
=1 | 0
V2 -1
0 V2

is an orthonormal basis for U. The orthogonal complement U~ of U is spanned by

1 0
0 1
11710
0 1
so that an orthonormal basis for U+ is
1
v\ (]
0 V2
L1710
V2 1
0 V2

48. In R* equipped with the standard inner product, find the projection of a = (1,2,0, —1)
on the plane V spanned by v; = (1,0,0,1) and vo = (1,1,2,0). (First construct an
orthonormal basis for V.)

Solution: We need an orthonormal basis for the plane V. So

1
\ﬁ

u]p =

_ o O =



1 1 1
Vo =vg — (Vg,u1)ug = o R I
2 = V2 2,u)ur = |, slol =32l 4 |
0 1 -1
and
1
1 2
o = ——
T V2| 4
-1
Then the V-component of a is
1
3 2
(a,u)ug + (a,uz)uy = TA

-1

49. Let U be a vector subspace of R", equipped with the standard inner product, and suppose

50.

that v is an element of R” not in U. Then we know that there is a unique point uy in U
such that, for all u € U, we have ||[v — ug|| < ||v — ul|; and v — uy is orthogonal to U.
Find uyg if U is the plane 1 — 225 4+ 223 = 0 in R? and v = (17 0, O).

Solution: We need an orthonormal basis {uy,uz} for the plane U. Start with any two vectors in
U, say wi = (0,1,1) and wg = (2,1,0). Then uy = (0,1,1)/v/2,

- 1 1
Wy = wa — (W2, uq)ug = (2, 3 —5)

and uz = (4,1, —1)/(3v/2). Now ug is the projection of v onto U, namely
2
U = (V7 U1)II1 + (V, UQ)IIQ = §(47 17 _1)

Let V be the space C[—1, 1] equipped with the inner product (f,g) = fj1 f(t)g(t)dt. Let
S be the subspace of V spanned by {1,t,¢?}. Construct an orthonormal basis {g1, g2, g3}
for S, and find the function h € S closest to 3.

Solution: If V = C[-1,1], v = 3 and S = span{1,t,t2}, then we first apply Gram-Schmidt
orthonormalization to {1,t,#2} to obtain an orthonormal basis for S. Let us write f; = 1,
fa=1t, f3=1% Then ||fi]|> = [', dt =2, so set g1 = —=. Now note that

V2
1 1 9

(f27f1)_/ tdt=0 and Hf2|]2—/ t2dt:§,

so set
g2 = 7f2 = §t
| fall 2
Finally set )
f3=fs—(f3.91)91 — (f3,92)92.

Since

(f3, f1) = / t*dt = 3 and  (fs, f2) =/ $3dt =0,
we have

~ 2
f3:t2—§-



Then

3 -1 3 9 45’
so set .
93:£:37\/5(t2_1)
Ifsll - 2v2 3

The function in S closest to t3 is then

h=(t%g1)g1 + (13, 92)g2 + (t°, g3) 3.
But

1 1
(tg,gl) == \/é/ tgdt:()
-1

3 (! 2 /2
t5,92) = \[/ t4dt—\[
(%, g2) 2/, s\ 3

3vV5 ! 1
(t3,93) = V5 (t° — =t3)dt = 0.

22 J_4 3

Thus the function h € S closest to ¢3

is
2 /3 /3 3
h<t>5\/;\/;t5t-

51. Find the point in the 3-plane 2x; — x5 + 223 + 224 = 0 in R*, with standard Euclidean
inner product, which is nearest to the point a = (1,2, 1, 2).

Solution: The 3-plane U defined by 2x1 — x2 + 223 4+ 2x4 = 0 has normal

2

-1

2

2

and thus unit normal

2
1 -1
= 7 | 2
2

Thus U+ = span{e}. Given v € V, we may write v in the form
v=u-+u for unique u € U, i € U+,

and 1 = (v, e)e. Thus the nearest point in U to v is u = v — (v, e)e. In particular, when

1
Y 2
|1
2
we have
1 2
2 1 -1
u = | —1—3(1-2+2.(—1)+1-2+2-2) 5
2 2
1 2 1
o2l 6 -1 1|32
1 131 2 13| 1
2 2 14




52. Find the point in the 2-plane in R* defined by o1 + x5+ 23+ 24 = 0, 21 — 29 + 23 — 24 = 0,
which is nearest to the point v = (1,2, 1,2) with standard Euclidean inner product.

Solution: Let U denote the plane defined in the question. Clearly
0

0 1
0

0 -1

is a basis for U. We need an orthonormal basis for U. Clearly these two vectors are orthogonal
and they each have length /2. Hence an orthonormal basis is

1 0
N W L]
0 -1

The point nearest of U nearest to v is the orthogonal projection u of v onto U. This is given
by
u=(v,u;)u; + (v,uz) up.

It is clear that (v,u;) =0 and (v,u2) = 0 and so

o O O O



