
Linear Algebra 1, Solutions to exercises 53 to 78.
Epiphany 21/22.

53. If the vector space C[−1, 1] of continuous real valued functions on the interval [−1, 1]

is equipped with the inner product defined by (f, g) =
∫ 1

−1 f(t)g(t) dt, find the linear
polynomial g(t) nearest to f(t) = et.

Solution: Note that the functions 1, t ∈ C[−1, 1] are orthogonal and they form a basis for the
subspace S of linear polynomials in C[−1, 1]. Thus the linear polynomial closest to et is given
by

(1, et)

‖1‖2
1 +

(t, et)

‖t‖2
t.

But

(1, et) =

∫ 1

−1
etdt = e− e−1 = 2 sinh 1

(t, et) =

∫ 1

−1
tetdt = [tet]1−1 −

∫ 1

−1
etdt = e+ e−1 − (e− e−1) = 2e−1,

and ‖1‖2 = 2, ‖t‖2 = 2
3 . Thus the linear polynomial which is closest to et is g(t) = sinh 1+3e−1 t.

54. Find an orthogonal matrix P such that P tAP is diagonal, when

(i) A =

(
11 8
8 −1

)
, (ii) A =

 1 0 −4
0 5 4
−4 4 3

 , (iii) A =

5 7 7
7 5 −7
7 −7 5

 .

Solution: (i) The characteristic polynomial of the matrix A is

pA(t) = det(A− tI) = t2 − 10t− 75 = (t− 15)(t+ 5),

so the eigenvalues are −5 and 15. We now calculate the corresponding eigenvectors:

λ = −5: (A+ 5I)u1 = 0 has normalized solution u2 = 5−1/2(1,−2)t.

λ = 15: (A− 15I)u2 = 0 has normalized solution u2 = 5−1/2(2, 1)t.

Thus P−1AP = diag(−5, 15) if

P =
1√
5

(
1 2
−2 1

)
.

(ii) The characteristic polynomial of the matrix A is

det(λI −A) = det

λ− 1 0 4
0 λ− 5 −4
4 −4 λ− 3


= (λ− 1){(λ− 5)(λ− 3)− 16} − 16(λ− 5)

= (λ− 3)(λ+ 3)(λ− 9),

so the eigenvalues are 3,−3, 9. We now calculate the corresponding eigenvectors:



λ = 3:
2x1 +4x3 = 0,

−2x2 −4x3 = 0,
4x1 −4x2 = 0.

Thus

u1 =
1

3

 2
2
−1


is a unit eigenvector.

λ = −3:
−4x1 +4x3 = 0,

−8x2 −4x3 = 0,
4x1 −4x2 −6x3 = 0.

Thus

u2 =
1

3

 2
−1
2


is a unit eigenvector.

λ = 9:
8x1 +4x3 = 0,

4x2 −4x3 = 0,
4x1 −4x2 +6x3 = 0.

Thus

u3 =
1

3

−1
2
2


is a unit eigenvector.

Thus if

P =
1

3

 2 2 −1
2 −1 2
−1 2 2


then

P−1AP =

3 0 0
0 −3 0
0 0 9

 .

(iii) The characteristic polynomial of the matrix A is

det(λI −A) = det

λ− 5 −7 −7
−7 λ− 5 7
−7 7 λ− 5


= det

λ− 12 0 λ− 12
0 λ− 12 −(λ− 12)
−7 7 λ− 5


= (λ− 12)2(λ+ 9).

Thus the eigenvalues are λ = 12, 12,−9.

Corresponding eigenvectors:



λ = 12:
7x1 − 7x2 − 7x3 = 0.

Clearly  0
1
−1


is an eigenvector, so if xy

z


is another eigenvector, mutually orthogonal to the first, then

7x −7y −7z = 0,
y −z = 0

from which we obtain 2
1
1


as a solution. Thus we have mutually orthogonal unit eigenvectors:

u1 =
1√
2

 0
1
−1

 , u2 =
1√
6

2
1
1

 .

λ = −9:
−14x1 −7x2 −7x3 = 0,
−7x1 −14x2 +7x3 = 0,
−7x1 +7x2 −14x3 = 0.

Unit eigenvector:

u3 =
1√
3

−1
1
1

 .

Thus if

P =

 0 2√
6
− 1√

3
1√
2

1√
6

1√
3

− 1√
2

1√
6

1√
3


then

P−1AP =

12 0 0
0 12 0
0 0 −9

 .

55. (i) Let A be a real symmetric matrix. Show that there exists a real symmetric matrix
B such that B2 = A if and only if the eigenvalues of A are all non-negative.

(ii) Find a real symmetric matrix C such that

C5 =

0 1 1
1 0 1
1 1 0

 .



Solution: (i) If B is a real symmetric matrix then there exists an orthogonal matrix P such that

P−1BP = D where D = diag(λ1, . . . , λn).

Thus, if B2 = A then

P−1AP = P−1B2P = D2 = diag(λ21, . . . , λ
2
n).

But then λ21, . . . , λ
2
n are the eigenvalues of A and they are all non-negative.

Conversely, suppose that A is a real symmetric matrix all of whose eigenvalues µ1, . . . , µn are
non-negative. Thus we may write µ1 = λ21, . . . , µn = λ2n for some real numbers λ1, . . . , λn.
Since A is a real symmetric matrix there exists an orthogonal matrix P such that

P−1AP = diag(µ1, . . . , µn) = D2 where D = diag(λ1, . . . , λn).

But then writing B = PDP−1 we have B2 = PD2P−1 = A.

(ii) The characteristic polynomial of

A =

0 1 1
1 0 1
1 1 0


is given by

det

 λ −1 −1
−1 λ −1
−1 −1 λ

 = (λ− 2)(λ+ 1)2.

Thus the eigenvalues are λ = 2,−1,−1.

Corresponding eigenvectors:

λ = 2:
2x1 −x2 −x3 = 0,
−x1 +2x2 −x3 = 0,
−x1 −x2 +2x3 = 0.

Unit eigenvector:

u1 =
1√
3

1
1
1

 .

λ = −1:
x1 + x2 + x3 = 0.

Mutually orthogonal unit eigenvectors:

u2 =
1√
2

 1
−1
0

 , u3 =
1√
6

 1
1
−2

 .

Thus if

P =


1√
3

1√
2

1√
6

1√
3
− 1√

2
1√
6

1√
3

0 − 2√
6


then

P−1AP =

2 0 0
0 −1 0
0 0 −1

 .



Now define

C = P

 5
√

2 0 0
0 −1 0
0 0 −1

P−1,

so that C5 = A. Then

C =


1√
3

1√
2

1√
6

1√
3
− 1√

2
1√
6

1√
3

0 − 2√
6


 5
√

2 0 0
0 −1 0
0 0 −1




1√
3

1√
3

1√
3

1√
2
− 1√

2
0

1√
6

1√
6
− 2√

6


=

1

3

 5
√

2− 2 5
√

2 + 1 5
√

2 + 1
5
√

2 + 1 5
√

2− 2 5
√

2 + 1
5
√

2 + 1 5
√

2 + 1 5
√

2− 2

 .

Some additional starred exercises

56. * Let V be an n-dimensional vector space over the reals and W a subspace of V with
dimension m ≤ n. Consider the set of linear transformations

U = {T : V 7→ V s.t.T is linear and ∀w ∈ W ∃α ∈ R : T (w) = αw} .

Show that U is a vector subspace of Mn(R) and compute its dimension.

Solution: To show that U is a subspace of Mn(R) we need to show that if T, S ∈ U then T+S ∈ U
and that if T ∈ U then λT ∈ U for all λ ∈ R.

If T, S ∈ U then we have that for all w ∈W there exist α, β ∈ R such that T (w) = αw and
S(w) = βw. This implies that (T + S)(w) = T (w) + S(w) = (α+ β)w so T + S ∈ U .

Similarly if T ∈ U and λ ∈ R we have that for all w ∈ W there exists α ∈ R such that
T (w) = αw so that (λT )(w) = λT (w) = λαw so λT ∈ U . Hence U is a vector subspace of
the space of linear transformations from V to V , i.e. the vector space of n× n real matrices.

To compute its dimension we first fix a basis of the subspace W given by {w1, ...,wm} and
complete to a basis of V with the remaining n−m linearly independent vectors {v1, ...,vn−m}.
If T ∈ U we must have that T (wi) = αiwi with i = 1, ...,m for some real numbers αi.

Now, choose w = w1 + . . .+ wm. Then for any fixed T there exists some α such that

T (w) = αw = αw1 + . . .+ αwm .

On the other hand, by linearity,

T (w) = T (w1) + . . .+ T (wm) = α1w1 + . . .+ αmwm .

Comparing both expression implies, since the wi are linearly independent, that all α need to
be equal.

Since T is linear once we have specified the value of α we know the action of T on any vector
w ∈ W . Then need to consider the action of T on the remaining n−m vectors: T (vi) = ui
where i = 1, ..., n−m and ui ∈ V , so for each of the (n−m) remaining vectors vi we need to
specify the n coordinates of the vector ui, hence we need to specify (n−m)n remaining entries
for T . In total to specify T we must give 1+(n−m)n numbers, so that dimU = 1+(n−m)n.
Using the basis {w1, ...,wm,v1, ...,vn−m} the matrix form of T is

T =



α 0 ... 0 u1,m+1 ... u1,n

0 α 0
... u2,m+1 ... u2,n

... 0
. . . 0

...
...

0 ... 0 α

0 ... 0 0
...

...
...

. . .
... un−1,m+1 ... un−1,n

0 ... 0 un,m+1 ... un,n





57. * Let V be a real vector space with dimension n and T : V 7→ V a linear transformation.

i) If T 2 = 0 show that dim KerT ≥ dimV/2.

ii) Show that T 2 = 0 and dim KerT = n/2 and dimV = n is even if and only if
KerT = ImT .

Solution: i) If v ∈ ImT it means that there exists w ∈ V such that T (w) = v but since T 2 = 0
we must have that T (v) = T (T (w)) = T 2(w) = 0 so v ∈ KerT , hence ImT ⊆ KerT which
in particular means dim ImT ≤ dim KerT . However we know from the rank-nullity theorem

dimV = dim ImT + dim KerT ≤ 2dim KerT

so that we must have dim KerT ≥ dimV/2 as requested.

ii) Suppose that T 2 = 0 and dim KerT = n/2 and dimV = n. From what we have proved at
point i) we must have from the rank nullity theorem that dim ImT = dimV −dim KerT = n/2
so that dim KerT = dim ImT = n/2. However we know from point i) that ImT ⊆ KerT but
if the kernel and the image must have equal dimension we can only have ImT = KerT .

Viceversa if ImT = KerT we have obviously that dim KerT = dim ImT and from the rank-
nullity theorem n = dimV = 2 dim KerT so that n must be even and dim KerT = n/2.
Furthermore we have that for every vector w ∈ V that either T (w) = 0, i.e. w ∈ KerT ,
so that obviously T 2(w) = T (0) = 0 or alternatively T (w) = v 6= 0 which means that
v ∈ ImT , however since by hypothesis ImT = KerT we have also v ∈ KerT so that
0 = T (v) = T (T (w)) = T 2(w) hence T 2 = 0.

58. * [Nilpotency] A square matrix N is said to be nilpotent if Nk = 0 for some positive
integer k ∈ N. The smallest such k such that Nk−1 6= 0 but Nk = 0 is called the degree of
nilpotency of N . Show that if N is nilpotent with degree k, then the matrix A = I + N
is invertible and its inverse is given by

A−1 = I −N +N2 −N3 + ...+ (−1)k−1Nk−1 .

Solution: We just need to compute

(I +N)(I −N +N2 −N3 + ...+ (−1)k−1Nk−1)

= (I −N +N2 −N3 + ...+ (−1)k−1Nk−1) +N(I −N +N2 −N3 + ...+ (−1)k−1Nk−1)

= I −N +N2 −N3 + ...+ (−1)k−1Nk−1 +N −N2 + ...+ (−1)k−2Nk−1 + (−1)k−1Nk

= I + (−1)k−1Nk = I ,

where in the final step we use the fact that N is nilpotent, i.e. Nk = 0.

59. * Show that if N is a nilpotent matrix and λ is an eigenvalue of N with eigenvector v 6= 0
then necessarily λ = 0. In particular deduce that the characteristic polynomial of every
n × n nilpotent matrix N is pN(t) = (−t)n. [i.e. a nilpotent matrix has only vanishing
eigenvalues]

Solution: Since N is nilpotent we must have that

Nkv = 0 ,

however we also have

Nkv = Nk−1(Nv) = λNk−1v = ... = λkv ,



so necessarily λ = 0.

For the second part we know that pN (t) is a degree n polynomial whose roots are the eigen-
values of N and we have just proved that the only eigenvalue of N is 0 so we can write the
characteristic polynomial of N as pN (t) =

∏n
i=1(λi − t) = (−t)n since all the eigenvalues λi

are vanishing.

60. * Show that if N is nilpotent than det (I +N) = 1. Viceversa if N is a matrix such that
det (I + xN) = 1 for every x then show that N is nilpotent. [Hint: use the previous
exercise].

Solution: We know that pN (t) = (−t)n whereN is a n×n nilpotent matrix and pN (t) = det(N−tI)
so we simply have that pN (−1) = det(N + I) = 1n = 1.

For the second part if N is an n× n matrix we must have that

1 = det(I + xN) = xndet(N − (−x−1)I) = xnpN (−x−1) ,

so that pN (−x−1) = x−n or equivalently pN (t) = (−t)n and from Cayley-Hamilton we have
Nn = 0, so N is nilpotent. Note that n is not necessarily the nilpotency index of N .

61. * [Quadratic forms] Let V = R2 with a bilinear form Q(v,w) which we assume symmetric,
i.e. Q(v,w) = Q(w,v), but not necessarily positive definite. The function φQ : V 7→ R
defined by φQ(v) = Q(v,v) is called the (associated) quadratic form, note: it is called
quadratic because φQ(λv) = λ2φQ(v). Show that in terms of the coordinates v = (x, y)t,
the set of points satisfying φQ(v) = Q(v,v) = 1 is either describing an ellipse, an hyper-
bola, two parallel lines or the empty set.

Solution: Using the matrix version we have that

Q(v,v) = vtAv = (x, y)

(
a b
b c

)(
x
y

)
= ax2 + 2bxy + cy2 ,

where we used the fact the the bilinear form Q is symmetric, translating into the fact that its
matrix representation is a symmetric matrix.

We know that since A is a symmetric matrix we can diagonalize it with an orthogonal matrix
R, such that R−1 = Rt, so RtAR = diag(a1, a2) with a1, a2 the eigenvalues of A. Let us
define (

x
y

)
= R

(
X
Y

)
,

so we have

Q(v,v) = (x, y)

(
a b
b c

)(
x
y

)
= (X,Y )Rt

(
a b
b c

)
R

(
X
Y

)
= (X,Y )

(
a1 0
0 a2

)(
X
Y

)
= a1X

2 + a2Y
2

To understand the set of solutions to the equation a1X
2 + a2Y

2 = 1 we need to distinguish
few cases.

• a1 > 0, a2 > 0 describes an ellipse and when a1 = a2 a circle which is a special case;

• a1 > 0, a2 < 0 describes an hyperbola;

• a1 < 0, a2 > 0 describes an hyperbola;

• a1 < 0, a2 < 0 has no solution, so we get the empty set;

• a1 > 0, a2 = 0 describes two vertical parallel lines X = ± 1√
a1

;



• a1 = 0, a1 > 0 describes two horizzontal parallel lines Y = ± 1√
a2

;

• a1 < 0, a2 = 0 has no solution, so we get the empty set;

• a1 = 0, a2 < 0 has no solution, so we get the empty set.

62. * [Dual space] Let V be an n-dimensional real vector space and consider the space
V ∗ = {φ : V 7→ R , s.t. φ is linear}. Show that V ∗ is a real vector space called the
dual space of V . Show that if {v1, ...,vn} is a basis for V then the set of φ(i) ∈ V ∗,
i = 1, ..., n, defined by φ(i)(vj) = δij span a basis for V ∗ called the dual basis, where δij is
the Kronecker delta, so that V ∗ has exactly the same dimension as V .

Solution: The fact that V ∗ is a real vector space is almost immediate from its definition since for
every φ, ψ ∈ V ∗ and α, β ∈ R we have that obviously αφ+ βψ is also a linear map from V to
R simply by

(αφ+ βψ)(av + bw) = αφ(av + bw) + βψ(av + bw)

= aαφ(v) + bαφ(w) = +aβψ(v) + bβψ(w)

= a(αφ+ βψ)(v) + b(αφ+ βψ)(w)

so that a(αφ+ βψ) ∈ V ∗ and hence V ∗ is a vector space.

Let us fix a basis {v1, ...,vn} for V , then to uniquely specify an element φ ∈ V ∗ we simply
need to fix the real numbers αi = φ(vi) with i = 1, ..., n and from here using linearity of φ we
can obtain φ(v) for a general vector v =

∑n
i=1 aivi

φ(v) = φ

(
n∑
i=1

aivi

)
=

n∑
i=1

aiφ(vi) =

n∑
i=1

aiαi .

If we defined φ(i) ∈ V ∗, i = 1, ..., n, by φ(i)(vj) = δij , e.g. φ(1)(v1) = 1 and φ(1)(vi 6=1) = 0
we can span all the elements φ of V ∗ using

φ =
n∑
i=1

φ(vi)φ
(i) =

n∑
i=1

αiφ
(i) ,

since by linearity as we wrote above

φ(v) = φ

 n∑
j=1

ajvij

 =
n∑
i=1

φ(vi)φ
(i)

 n∑
j=1

ajvj

)

=
n∑
i=1

n∑
j=1

αiajφ
(i)(vj) =

n∑
i=1

n∑
j=1

αiajδij =

n∑
i=1

aiαi ,

exactly as written above. So the φ(i) span the whole V ∗.

They are also linearly independent if in fact we had numbers αi not all vanishing such that
φ =

∑n
i=1 αiφ

(i) = 0 this would mean that φ applied to any vector of V would give 0 but in
particular 0 = φ(v1) =

∑n
i=1 αiφ

(i)(v1) =
∑n

i=1 αiδi1 = α1 so α1 must vanish. Repeating the
same argument for v2, ... we find that all αi must vanish hence the φ(i) are linearly independent
and form a basisi for V ∗. Obviously they are n in number so that the dual space has the same
dimension as the original space V .

63. * Consider a real n-dimensional inner product space {V, (·, ·)}. Show that for every vector
v ∈ V we can construct the application φv : V 7→ R defined by φv(w) = (w,v). Prove
that φv ∈ V ∗. [This is telling you that V and V ∗ are isomorphic, however this is not a
natural isomorphism in the sense that it dependes on your choice of inner product.]



Solution: Let us consider φv = (·,v) we want to show that it belongs to V ∗ so we need to prove
that it is a real valued linear transformation but both this facts follow almost trivially from the
properties of the inner product. For every w1,w2 ∈ V and for every a, b ∈ R we have that

φv(aw1 + bw2) = (aw1 + bw2,v) = a(w1,v) + b(w2,v) = aφv(w1) + bφv(w2) ,

so that φv is linear and real valued since (w,v) ∈ R for every w,v ∈ V .

Note that if we choose {v1, ...,vn} to be an orthonormal basis for (·, ·) we have that {φv1 , ..., φvn}
form precisely the basis φ(i) described in the previous exercise, i.e. φvi(vj) = (vj ,vi) = δij .

64. * Consider a real n-dimensional vector space V , its dual V ∗ and the double-dual

V ∗∗ = {Φ : V ∗ 7→ R , s.t. Φ is linear} .

Show that for every vector v ∈ V , the application Φv : V ∗ 7→ R defined by Φv(φ) = φ(v),
for every φ ∈ V ∗, is an element of V ∗∗, i.e. Φv ∈ V ∗∗. [This is telling you that there is a
natural isomorphism between V and V ∗∗ given by evaluation on a specific vector.]

Solution: Note that an element Φ ∈ V ∗∗ is a linear transformation that “eats” an element φ ∈ V ∗
and returns a real number, but we know that an element φ ∈ V ∗ is a linear transformation
that “eats” an element v ∈ V and returns a real number, so basically the object Φv take any
element φ ∈ V ∗ and returns its evaluation on the vector v given by φ(v).

It is very simple to see that this all process preserves linearity, i.e. for every v ∈ V and for
every φ, ψ ∈ V ∗, for every α, β ∈ R, we have

Φv(αφ+ βψ) = (αφ+ βψ)(v) = αφ(v) + βψ(v) = αΦv(φ) + βΦv(ψ) .

So that Φv ∈ V ∗. It is also straightforward to show that if {v1, ...,vn} is a basis for V then
{Φv1 , ...,Φvn} is a basis for V ∗∗ so these two spaces are naturally isomorphic, i.e. they are
identical and we simply call the same objects with different names.

65. If A is a real n× n matrix, show that A is skew-symmetric (anti-symmetric) if and only
if xtAx = 0 for all x ∈ Rn.

Solution: Assume that A is skew-symmetric and so At = −A. Since you can think of xtAx as
just a 1× 1 matrix (i.e. a number) then it must be equal to its transpose:

xtAx =
(
xtAx

)t
= xtAtx = −xtAx,

hence we must have xtAx = 0 for all x ∈ Rn. Conversely, if xtAx = 0 for each x ∈ Rn then

0 = (xt + yt)A(x + y)

= xtAx + xtAy + ytAx + ytAy

= xtAy + ytAx.

Letting x and y run through the standard basis for Rn we see that, writing A = (aij) then
aij + aji = 0 as required.

66. LetMn be the vector space of n×nmatrices with real coefficients. Show thatMn = Skewn⊕Symn

where Skewn = {A ∈ Mn |At = −A} and Symn = {A ∈ Mn |At = A}. What are the
dimensions of Mn, Skewn and Symn as vector spaces over the field of real numbers?

Solution: Let A ∈ Mn then A = (A + At)/2 + (A − At)/2 and clearly (A + At)/2 ∈ Symn

while (A − At)/2 ∈ Skewn. If A ∈ Symn and also A ∈ Skewn then A = −A so A = 0 so
Mn = Skewn ⊕ Symn.

We have dimMn = n2 while dimSkewn = n(n−1)
2 and dimSymn = n(n+1)

2 . Note that
dimMn = dimSkewn + dimSymn as expected.



67. * Consider the vector space Mn of n × n matrices with real coefficients with the inner
product (A,B) = Tr(AtB). Find the orthogonal complement to the vector subspace Symn

with respect to this inner product.

Solution: To obtain the orthogonal complement to the vector subspace, Symn, formed by the
symmetric matrices we first notice that if B is an anti-symmetric matrix, i.e. Bt = −B, we
have that for every A ∈ Symn

(B,A) = Tr(BtA) = −Tr(BA) = −Tr(AB) = −Tr(AtB) = −(A,B) = −(B,A)

which implies that if B is an anti-symmetric matrix (B,A) = 0 for every A ∈ Symn, i.e.
Skewn ⊆ (Symn)⊥. To show that (Symn)⊥ = Skewn we can make use of the fact that

dim(Symn)⊥ = dimMn − dimSymn = n2 − n(n+ 1)

2
=
n(n− 1)

2
= dimSkewn .

68. * Let σ ∈ Sn denote a permutation of n elements, the matrix Rσ, with respect to the
standard basis {v1, ..., vn} of Rn, is associated with the linear transformation that per-
mutes the basis vector with σ, i.e. Rσvi = vσ(i). Prove that Rσ is orthogonal. [HINT:
How can you write (Rσ)−1 in terms of another permutation?]

Solution: The inverse of Rσ is simply given by Rσ−1 where σ−1 denotes the inverse permutation of
σ, i.e. σ−1(σ(i)) = i. So in particular ifRσvi = vσ(i) we have that (Rσ)−1vσ(i) = Rσ−1vσ(i) = vi
so we have that (Rσ)−1 = Rσ−1 = (Rσ)t, hence Rσ is an orthogonal matrix for every σ ∈ Sn.

69. If A is a complex n× n matrix, show that A is Hermitian if and only if x∗Ax is real for
all x ∈ Cn.

Solution: Assume that A is Hermitian and so A∗ = A. Since you can think of x∗Ax as just a
1×1 matrix (i.e. a complex number) if we take its star it is the same as taking just its complex
conjugate

(x∗Ax)∗ =
(
x∗Ax

)t
= x∗Ax,

however we also have
(x∗Ax)∗ = x∗A∗x = x∗Ax,

and we deduce that x∗Ax = x∗Ax as required. Conversely, if x∗Ax is real for each x ∈ Cn
then

(x∗ + y∗)A(x + y) = x∗Ax + x∗Ay + y∗Ax + y∗Ay

is real and hence x∗Ay + y∗Ax is also real. Letting x and y run through the standard basis
for Cn we see that, writing A = (ajk) then ajk + akj is real. Letting x run through i times a
standard basis vector for Cn and y run through the standard basis for Cn we see that iajk−iakj
is real. So we have that both ajk+akj and iajk−iakj must be real numbers, say ajk+akj = 2x
and iajk − iakj = 2y with x, y ∈ R. We can thus write ajk = x− iy and akj = x+ iy which
implies akj = ajk. This gives the result.

70. Find a unitary matrix P such that P ∗AP is diagonal when

A =

(
2 1 + i

1− i 3

)
.

Solution:

pA(t) = det(A− tI) = (2− t)(3− t)− (1 + i)(1− i) = t2 − 5t+ 4 = (t− 1)(t− 4).

The eigenvalues of A are the roots of this polynomial, namely λ = 1, 4.



λ = 1: (
1 1 + i

1− i 2

)(
z1
z2

)
=

(
0
0

)
.

Hence an eigenvector is

v1 =

(
−1− i

1

)
.

But ‖v1‖2 = 3. So a unit eigenvector is

u1 =
1√
3

(
−1− i

1

)
.

λ = 4: (
−2 1 + i

1− i −1

)(
z1
z2

)
=

(
0
0

)
.

Hence an eigenvector is

v2 =

(
1

1− i

)
.

But ‖v2‖2 = 3, so a unit eigenvector is

u2 =
1√
3

(
1

1− i

)
.

Define P to be the matrix whose columns are u1 and u2:

P =
1√
3

(
−1− i 1

1 1− i

)
.

Then P is unitary, and P ∗AP = diag(1 4).

71. Show that the determinant of a unitary matrix is of unit modulus.

Solution: If AA∗ = I then, since

det (AA∗) = detAdetA∗ = detAdetAt = detAdetA,

we have detAdetA = 1.

72. A unitary matrix of determinant +1 is special unitary. Show that every unitary matrix
A can be written in the form A = kB where k ∈ C is of unit modulus and B is special
unitary.

Solution: Suppose A is a unitary n× n matrix. Then detA = eiθ for some θ. Then we may write
A = eiθ/nB where B = e−iθ/nA and

detB = det (e−iθ/nA) = det (e−iθ/nI) detA = e−iθeiθ = 1.

Thus A = kB where k ∈ C is of unit modulus and B is special unitary. If A = k′B′, k′ ∈ C and
B′ special unitary, is another decomposition then taking determinants we see that kn = k′n

so that k′ = ζk, for some n-th root of unity ζ, and consequently B′ = ζ−1B. Thus the
decomposition is only unique up to multiplication by n-th roots of unity in the above sense.

73. Show that every special unitary 2× 2 matrix is of the form(
a −c̄
c ā

)
,

with a, c ∈ C and aā+ cc̄ = 1.



Solution: Let A be a special unitary 2× 2-matrix. Then AA∗ = I and detA = 1. Thus, writing

A =

(
a b
c d

)
for some a, b, c, d ∈ C, we have(

ā c̄
b̄ d̄

)
= A∗ = A−1 =

1

ad− bc

(
d −b
−c a

)
=

(
d −b
−b a

)
.

Thus b = −c̄, d = ā, and

A =

(
a −c̄
c ā

)
with aā+ bb̄ = 1.

74. Show that, if n is odd, every real orthogonal n×n matrix A has det(A) as an eigenvalue.
(Note that, for any real orthogonal matrix A, det(A) = ±1).

Solution: Let A be a real n×n orthogonal matrix and let λ be an eigenvalue of A with eigenvector
x ∈ Rn. Since A is orthogonal, we have ‖x‖ = ‖Ax‖ = |λ| ‖x‖. Thus each of A’s eigenvalues
has unit modulus. Consider the characteristic polynomial of A. This is a polynomial in x with
real coefficients. Therefore its complex roots occur in conjugate pairs. Suppose that A has 2a
complex eigenvalues occurring in conjugate pairs, b eigenvalues that are +1 and c eigenvalues
that are −1. Then 2a+b+c = n, which is assumed to be odd, and det (A) = (−1)c. Suppose
that det (A) = +1 then c is even and so b is odd. Thus A has an odd number of eigenvalues
+1. Suppose that det (A) = −1 then c is odd. Thus A has an odd number of eigenvalues −1.

75. Identify the polynomial f(x) = c0 + c1x + . . . + cn−1x
n−1 + xn for which the integral∫ 1

−1 f(x)2 dx has the smallest value. (Hint: Consider f(x) as a linear combination of

Legendre polynomials P0(x), . . . , Pn(x), taking Pk to be normalized by Pk(x) = xk + . . ..

Solution: First observe that since, for all k, Pk(x) is a polynomial of degree k, we may write

f(x) = c0 + c1x+ . . .+ cn−1x
n−1 + xn = a0P0(x) + . . .+ anPn(x),

with an = 1. Since P0(x), . . . , Pn(x) are mutually orthogonal, we get∫ 1

−1
f(x)2 dx = a20‖P0(x)‖2 + . . .+ a2n‖Pn(x)‖2 ≥ a2n‖Pn(x)‖2

with equality if and only if a0 = . . . = an−1 = 0. So f(x) = Pn(x) is the desired polynomial.

76. (a) Verify by direct computation that the Laguerre operator

Ll = x
d2

dx2
+ (1− x)

d

dx

on the space R[x] of polynomials in x is symmetric with respect to the inner product
given by the formula (f, g) =

∫ +∞
0

f(x)g(x)e−xdx.

(b) Find the matrix and the characteristic polynomial of the Laguerre operator Ll on
the space R[x]2 (use the basis {1, x, x2}).

(c) What are all the eigenvalues of the Laguerre operator on R[x]?

(d) Find all the eigenfunctions of the Laguerre operator on the space R[x]2.



(e) Find the Laguerre polynomial of degree 5. (For simplicity use the convention in
which Laguerre polynomials have leading coefficient 1, even if this is not compatible
with them having unit norm.)

Solution: (a) For any f, g ∈ R[x][0,+∞), apply integration by parts

(Ll(f), g) =

∫ +∞

0

(
e−xxf ′

)′
gdx

= e−xxf ′g|+∞0 −
∫ +∞

0
e−xxf ′g′dx

= −
∫ +∞

0
e−xxf ′g′dx.

Similarly,

(f,Ll(g)) =

∫ +∞

0
f
(
e−xxg′

)′
dx

= fe−xxg′|+∞0 −
∫ +∞

0
f ′e−xxg′dx

= −
∫ +∞

0
e−xxf ′g′dx.

So, Ll satisfies the definition of symmetric operator.

(b) The matrix is 0 1 0
0 −1 4
0 0 −2


and its characteristic polynomial is pA(λ) = det(A− λI) = −λ(λ+ 1)(λ+ 2).

(c) Llxk = −kxk + lower-order terms. So the matrix of Ll acting on R[x]N with basis
{1, x, x2, . . . , xN} is an upper triangular matrix with elements 0,−1, . . . ,−k, . . . ,−N on
its principal diagonal. Now if P is any eigenfunction in R[x], with eigenvalue λ, then
P is a polynomial of some degree N , and so λ ∈ {0,−1, . . . ,−k, . . . ,−N}. Hence the
eigenvalues of Ll on R[x] are {−k | k ∈ Z, k > 0}.

(d) Use (b) above. For the eigenvalue λ = 0, the corresponding eigenfunction is 1, for λ = −1,
it is x− 1, for λ = −2, it is x2 − 4x+ 2.

(e) This polynomial can be written as l5(x) = x5 + ax4 + bx3 + cx2 + dx + e with some
unknown coefficients a, b, c, d, e ∈ R. Then l5(x) is an eigenfunction for Ll with the
eigenvalue −5. Therefore,

x(20x3 + 12ax2 + 6bx+ 2c) + (1− x)(5x4 + 4ax3 + 3bx2 + 2cx+ d)

= −5(x5 + ax4 + bx3 + cx2 + dx+ e).

Comparing coefficients for x4, x3, x2, x and 1 we obtain

x4 : 20 + 5− 4a = −5a;

x3 : 12a+ 4a− 3b = −5b;

x2 : 6b+ 3b− 2c = −5c;

x : 2c+ 2c− d = −5d;

1 : d = −5e.

Therefore, a = −25, b = 200, c = −600, d = 600, e = −120, i.e.

l5(x) = x5 − 25x4 + 200x3 − 600x2 + 600x− 120.



77. (a) Verify by direct computation that the Hermite operator

LH =
d2

dx2
− 2x

d

dx

on the space R[x] is symmetric with respect to the inner product given by the formula
(f, g) =

∫ +∞
−∞ f(x)g(x)e−x

2
dx.

(b) Find the matrix and the characteristic polynomial of the Hermite operator LH on
the space R[x]3 (use the basis {1, x, x2, x3}). What is the set of all eigenvalues of LH
as an operator on the space R[x]3?

(c) What are all the eigenvalues of the Hermite operator on R[x]?

(d) Find all eigenfunctions of the Hermite operator on the space R[x]3.

(e) Find the Hermite polynomial of degree 5. (For simplicity use the convention in which
Hermite polynomials have leading coefficient 1, even if this is not compatible with
them having unit norm.)

Solution: (a) For any f, g ∈ R[x], apply integration by parts

(LH(f), g) =

∫ +∞

−∞

(
e−x

2
f ′
)′
gdx

= e−x
2
f ′g|+∞−∞ −

∫ +∞

−∞
e−x

2
f ′g′dx

= −
∫ +∞

−∞
e−x

2
f ′g′dx.

Similarly,

(f,LH(g)) =

∫ +∞

−∞
f
(
e−x

2
g′
)′
dx

= fe−x
2
g′|+∞−∞ −

∫ +∞

−∞
f ′e−x

2
g′dx

= −
∫ +∞

−∞
e−x

2
f ′g′dx.

So, LH satisfies the definition of a symmetric operator.

(b) Our operator transforms 1 to 0, x to −2x, x2 to 2−4x2, x3 to 6x−6x3. The corresponding
matrix is 

0 0 2 0
0 −2 0 6
0 0 −4 0
0 0 0 −6

 .

It has the eigenvalues λ1 = 0, λ2 = −2, λ3 = −4, λ4 = −6. The characteristic polynomial
pA(t) = det(A− λI) = λ(λ+ 2)(λ+ 4)(λ+ 6).

(c) LHxk = −2kxk + lower-order terms. So the matrix of LH acting on R[x]N with basis
{1, x, x2, . . . , xN} is an upper triangular matrix with elements 0,−2, . . . ,−2k, . . . ,−2N
on its principal diagonal. Now if P is any eigenfunction in R[x], with eigenvalue λ, then
P is a polynomial of some degree N , and so λ ∈ {0,−2, . . . ,−2k, . . . ,−2N}. Hence the
eigenvalues of LH on R[x] are {−2k | k ∈ Z, k > 0}.

(d) Use (b) above. The corresponding eigenfunctions are 1, x, x2 − 1
2 , x

3 − 3
2x.



(e) This polynomial can be written as H5(x) = x5 + ax4 + bx3 + cx2 + dx + e with some
unknown coefficients a, b, c, d, e ∈ R. Then H5(x) is an eigenfunction for LH with the
eigenvalue −10. Therefore,

20x3+12ax2+6bx+2c−2x(5x4+4ax3+3bx2+2cx+d) = −10(x5+ax4+bx3+cx2+dx+e)

Comparing coefficients for x4, x3, x2, x and 1 we obtain

x4 : −8a = −10a;

x3 : 20− 6b = −10b;

x2 : 12a− 4c = −10c;

x : 6b− 2d = −10d;

1 : 2c = −10e.

Therefore, a = c = e = 0, b = −5 and d = 15/4, i.e. H5(x) = x5 − 5x3 + 15
4 x.

78. (a) Verify by direct computation that the Legendre operator

LL = (1− x2) d
2

dx2
− 2x

d

dx

on the space C[−1, 1] is symmetric with respect to the inner product given by the

formula (f, g) =
∫ 1

−1 f(x)g(x)dx.

(b) Find the characteristic polynomial of the Legendre operator LL on the space R[x]4.

(c) What is the set of all eigenvalues of LL as an operator on R[x]?

(d) Find the Legendre polynomial of degree 5. (For simplicity use the convention in
which Legendre polynomials have leading coefficient 1, even if this is not compatible
with them having unit norm.)

Solution: (a) For any f, g ∈ C[−1, 1], apply integration by parts

(LL(f), g) =

∫ 1

−1

(
(1− x2)f ′

)′
gdx

= (1− x2)f ′g|1−1 −
∫ 1

−1
(1− x2)f ′g′dx

= −
∫ 1

−1
(1− x2)f ′g′dx.

Similarly,

(f,LL(g)) =

∫ 1

−1
f
(
(1− x2)g′

)′
dx

= f(1− x2)g′|1−1 −
∫ 1

−1
f ′(1− x2)g′dx

= −
∫ 1

−1
(1− x2)f ′g′dx.

So, LL satisfies the definition of symmetric operator.

(b) Our operator transforms 1 to 0, x to −2x, x2 to −6x2 + 2, x3 to −12x3 + 6x, x4 to
−20x4 + 12x2. The corresponding matrix is

0 0 2 0 0
0 −2 0 6 0
0 0 −6 0 12
0 0 0 −12 0
0 0 0 0 −20





and the corresponding characteristic polynomial is
pA(λ) = det(A− λI) = −λ(λ+ 2)(λ+ 6)(λ+ 12)(λ+ 20).

(c) LLxk = −k(k+1)xk+ lower-order terms. So the matrix of LL acting on R[x]N with basis
{1, x, x2, . . . , xN} is an upper triangular matrix with elements 0,−2, . . . ,−k(k+1), . . . ,−N(N+1)
on its principal diagonal. Now if P is any eigenfunction in R[x], with eigenvalue λ, then P
is a polynomial of some degree N , and so λ ∈ {0,−2, . . . ,−k(k + 1), . . . ,−N(N + 1)}.
Hence the eigenvalues of LL on R[x] are {−k(k + 1) | k ∈ Z, k > 0}.

(d) This polynomial can be written as L5(x) = x5 + ax4 + bx3 + cx2 + dx+ e with unknown
coefficients a, b, c, d, e ∈ R. Then L5(x) is an eigenfunction for LL with the eigenvalue
−30. Therefore we have

(1− x2)(20x3 + 12ax2 + 6bx+ 2c)− 2x(5x4 + 4ax3 + 3bx2 + 2cx+ d)

= −30(x5 + ax4 + bx3 + cx2 + dx+ e).

Comparing coefficients for x4, x3, x2, x and 1 we obtain

x4 : −12a− 8a = −50a;

x3 : 20− 6b− 6b = −30b;

x2 : 12c− 2c− 4c = −30c;

x : 6b− 2d = −30d;

1 : 2c = −30e.

Therefore, a = c = e = 0, b = −10/9 and d = 5/21, i.e. L5(x) = x5 − 1
9x

3 + 5
21x.


