Linear Algebra 1, Solutions to exercises 79 to 91. Epiphany 21/22.

79. (a) Verify by direct computation that the Chebyshev-I operator

$$\mathcal{L}_I = (1 - x^2) \frac{d^2}{dx^2} - x \frac{d}{dx}$$

on the space C[-1, 1] is symmetric with respect to the inner product given by the formula $(f, g) = \int_{-1}^{1} f(x)g(x)(1-x^2)^{-1/2}dx$.

- (b) Find the matrix and the characteristic polynomial of the Chebyshev-I operator \mathcal{L}_I on the space $\mathbb{R}[x]_3$ (use the basis $\{1, x, x^2, x^3\}$).
- (c) Hence find the Chebyshev-I polynomials of degree 2 and 3.
- (d) What is the set of all eigenvalues of \mathcal{L}_I as an operator on the space of all polynomials $\mathbb{R}[x]$?
- (e) Find the Chebyshev-I polynomial of degree 5. (For simplicity use the convention in which Chebyshev-I polynomials have leading coefficient 1, even if this is not compatible with them having unit norm.)

Solution: (a) For any $f, g \in C[-1, 1]$, apply integration by parts

$$(\mathcal{L}_{I}(f),g) = \int_{-1}^{1} \left(\sqrt{1-x^{2}}f'\right)' g dx$$

$$= \sqrt{1-x^{2}}f'g|_{-1}^{1} - \int_{-1}^{1} \sqrt{1-x^{2}}f'g' dx$$

$$= -\int_{-1}^{1} \sqrt{1-x^{2}}f'g' dx.$$

This is symmetric in f and g, so $(\mathcal{L}_I(f), g) = (\mathcal{L}_I(g), f)$, which equals $(f, \mathcal{L}_I(g))$ because of the symmetry of the inner product. So \mathcal{L}_I is a symmetric operator.

(b) Our operator transforms 1 to 0, x to -x, x^2 to $-4x^2 + 2$, x^3 to $-9x^3 + 6x$. The corresponding matrix is

$$\begin{pmatrix} 0 & 0 & 2 & 0 \\ 0 & -1 & 0 & 6 \\ 0 & 0 & -4 & 0 \\ 0 & 0 & 0 & -9 \end{pmatrix}$$

The characteristic polynomial is $p_A(\lambda) = \det(A - \lambda I) = \lambda(\lambda + 1)(\lambda + 4)(\lambda + 9)$.

- (c) The eigenvector corresponding to -4 is $(-1/2, 0, 1, 0)^t$, which gives the eigenfunction $f_2(x) = x^2 1/2$ (or $f_2(x) = 2x^2 1$). The eigenvector corresponding to -9 is $(0, -3/4, 0, 1)^t$, which gives the eigenfunction $f_3(x) = x^3 3x/4$ (or $f_3(x) = 4x^3 3x$).
- (d) $\mathcal{L}_I x^k = -k^2 x^k + \text{lower-order terms.}$ So the matrix of \mathcal{L}_I acting on $\mathbb{R}[x]_N$ with basis $\{1, x, x^2, \ldots, x^N\}$ is an upper triangular matrix with elements $0, -1, \ldots, -k^2, \ldots, -N^2$ on its principal diagonal. Now if P is any eigenfunction in $\mathbb{R}[x]$, with eigenvalue λ , then P is a polynomial of some degree N, and so $\lambda \in \{0, -2, \ldots, -k^2, \ldots, -N^2\}$. Hence the eigenvalues of \mathcal{L}_I on $\mathbb{R}[x]$ are $\{-k^2 \mid k \in \mathbb{Z}, k \ge 0\}$.
- (e) This polynomial can be written as $C_5(x) = x^5 + ax^4 + bx^3 + cx^2 + dx + e$ with unknown coefficients $a, b, c, d, e \in \mathbb{R}$. Then $C_5(x)$ is an eigenfunction for \mathcal{L}_L with the eigenvalue -25. Therefore,

$$(1 - x^2)(20x^3 + 12ax^2 + 6bx + 2c) - x(5x^4 + 4ax^3 + 3bx^2 + 2cx + d)$$

= $-25(x^5 + ax^4 + bx^3 + cx^2 + dx + e).$

Comparing coefficients for x^4, x^3, x^2, x and 1 we obtain

$$\begin{array}{rcl}
x^4 : & -12a - 4a = -25a; \\
x^3 : & 20 - 6b - 3b = -25b; \\
x^2 : & 12c - 2c - 2c = -25c; \\
x : & 6b - d = -25d; \\
1 : & 2c = -25e.
\end{array}$$

Therefore, a = c = e = 0, b = -5/4 and d = 5/16, i.e. $L_5(x) = x^5 - \frac{5}{4}x^3 + \frac{5}{16}x$.

80. (a) Verify by direct computation that the Chebyshev-II operator

$$\mathcal{L}_{II} = (1 - x^2)\frac{d^2}{dx^2} - 3x\frac{d}{dx}$$

on the space C[-1, 1] is symmetric with respect to the inner product given by the formula $(f, g) = \int_{-1}^{1} f(x)g(x)(1-x^2)^{1/2}dx$.

- (b) Find the matrix and the characteristic polynomial of the Chebyshev-II operator \mathcal{L}_{II} on the space $\mathbb{R}[x]_4$ (use the basis $\{1, x, x^2, x^3, x^4\}$).
- (c) What is the set of all eigenvalues of \mathcal{L}_{II} as an operator on the space of all polynomials $\mathbb{R}[x]$?
- (d) Find the Chebyshev-II polynomial of degree 5. (For simplicity use the convention in which Chebyshev-II polynomials have leading coefficient 1, even if this is not compatible with them having unit norm.)

Solution: (a) For any $f,g \in C[-1,1]$, apply integration by parts

$$\begin{aligned} (\mathcal{L}_{II}(f),g) &= \int_{-1}^{1} \left((1-x^2)^{3/2} f' \right)' g dx \\ &= (1-x^2)^{3/2} f' g|_{-1}^{1} - \int_{-1}^{1} (1-x^2)^{3/2} f' g' dx \\ &= -\int_{-1}^{1} (1-x^2)^{3/2} f' g' dx. \end{aligned}$$

Similarly,

$$(f, \mathcal{L}_{II}(g)) = \int_{-1}^{1} f\left((1-x^2)^{3/2}g'\right)' dx$$

= $f(1-x^2)^{3/2}g'|_{-1}^{1} - \int_{-1}^{1} f'(1-x^2)^{3/2}g' dx$
= $-\int_{-1}^{1} (1-x^2)^{3/2} f'g' dx.$

So, \mathcal{L}_{II} satisfies the definition of symmetric operator.

(b) In the basis $\{1,x,x^2,x^3,x^4\}$ the matrix of our operator is

$$\begin{pmatrix} 0 & 0 & 2 & 0 & 0 \\ 0 & -3 & 0 & 6 & 0 \\ 0 & 0 & -8 & 0 & 12 \\ 0 & 0 & 0 & -15 & 0 \\ 0 & 0 & 0 & 0 & -24 \end{pmatrix}$$

The characteristic polynomial is $p_A(\lambda) = \det(A - \lambda I) = -\lambda(\lambda + 3)(\lambda + 8)(\lambda + 15)(\lambda + 24)$.

- (c) $\mathcal{L}_{II}x^k = -k(k+2)x^k$ +lower-order terms. So the matrix of \mathcal{L}_{II} acting on $\mathbb{R}[x]_N$ with basis $\{1, x, x^2, \ldots, x^N\}$ is an upper triangular matrix with elements $0, -3, \ldots, -k(k+2), \ldots, -N(N+2)$ on its principal diagonal. Now if P is any eigenfunction in $\mathbb{R}[x]$, with eigenvalue λ , then P is a polynomial of some degree N, and so $\lambda \in \{0, -2, \ldots, -k(k+2), \ldots, -N(N+2)\}$. Hence the eigenvalues of \mathcal{L}_{II} on $\mathbb{R}[x]$ are $\{-k(k+2) \mid k \in \mathbb{Z}, k \ge 0\}$.
- (d) This polynomial can be written as $C_5^*(x) = x^5 + ax^4 + bx^3 + cx^2 + dx + e$ with some unknown coefficients $a, b, c, d, e \in \mathbb{R}$. Then $C_5^*(x)$ is an eigenfunction for \mathcal{L}_{II} with the eigenvalue -35. Therefore

$$(1 - x^2)(20x^3 + 12ax^2 + 6bx + 2c) - 3x(5x^4 + 4ax^3 + 3bx^2 + 2cx + d)$$

= $-35(x^5 + ax^4 + bx^3 + cx^2 + dx + e).$

Comparing coefficients for x^4, x^3, x^2, x and 1 we obtain

 $\begin{array}{ll} x^4: & -12a-12a=-35a; \\ x^3: & 20-6b-9b=-35b; \\ x^2: & 12c-2c-6c=-35c; \\ x: & 6b-3d=-35d; \\ 1: & 2c=-35e. \end{array}$

Therefore, a = c = e = 0, b = -1 and d = 3/16, i.e. $L_5(x) = x^5 - x^3 + \frac{3}{16}x$.

- 81. Let $F[2\pi]$ be the vector space of all real 2π -periodic infinitely differentiable functions in one variable t with the inner product $(f,g) = \int_{-\pi}^{\pi} f(t)g(t)dt$.
 - (a) Prove that the operator $L = d^2/dt^2$ on $F[2\pi]$ is symmetric.
 - (b) Find all eigenvalues and eigenfunctions of the above operator L on $F[2\pi]$.

Solution: (a) For $f, g \in F[2\pi]$ we have

$$(Lf,g) = \int_{-\pi}^{\pi} f''(t) g(t) dt = \left[f'(t) g(t) \right]_{-\pi}^{\pi} - \int_{-\pi}^{\pi} f'(t) g'(t) dt.$$

The first term is zero owing to the periodicity, and the second term is symmetric in f and g. So (Lf,g) = (Lg,f) = (f,Lg), where the second equality follows from the symmetry of the inner product. Thus the operator L is symmetric.

- (b) The eigenvalue equation $Lf = \lambda f$ is a differential equation with the general solution $f(t) = A \exp(\sqrt{\lambda}t) + B \exp(-\sqrt{\lambda}t)$. (or f(t) = At + B if $\lambda = 0$). This is periodic iff $\lambda = -n^2$ with n = 0, 1, 2, ... For each n > 0 we have two independent eigenfunctions, namely $\cos(nt)$ and $\sin(nt)$. For $\lambda = 0$ there is one eigenfunction, namely f = constant.
- 82. Let $F[2\pi]$ be the vector space from the above problem ?? and consider the operator $L_1 = d/dt$ on $F[2\pi]$.
 - (a) Prove that L_1 is skew-symmetric, i.e. for any $f, g \in F[2\pi]$, we have $(L_1f, g) = -(f, L_1g)$.
 - (b) Deduce that the only eigenfunctions for L_1 in $F[2\pi]$ are constant functions (with the zero eigenvalue).
 - (c) Let $F_{\mathbb{C}}[2\pi]$ be the complexification of the above $F[2\pi]$. Prove that the only eigenvalues for L_1 on $F_{\mathbb{C}}[2\pi]$ are complex numbers $\{ni \mid n \in \mathbb{Z}\}$ and for each such number $\lambda_n = ni$, there is only one (up to a non-zero scalar factor) eigenfunction e^{int} in $F_{\mathbb{C}}[2\pi]$.

(d) Prove that the functions $1, e^{it}, e^{-it}, e^{2it}, e^{-2it}, \dots, e^{nit}, e^{-int}, \dots$ are orthogonal in $F_{\mathbb{C}}[2\pi]$. What are the norms of those functions?

Solution: (a) For $f, g \in F[2\pi]$ we have

$$(L_1f,g) = \int_{-\pi}^{\pi} f'(t) g(t) dt = [f(t) g(t)]_{-\pi}^{\pi} - \int_{-\pi}^{\pi} f(t) g'(t) dt = -(f, L_1g).$$

- (b) If $L_1 f = \lambda f$ with $f \neq 0$, then $(L_1 f, f) = -(f, L_1 f)$ gives $\lambda ||f||^2 = -\lambda ||f||^2$ and hence $\lambda = 0$. So we get $L_1 f = f' = 0$ and thus f is constant.
- (c) In the complex case, the inner product is $\langle f,g \rangle = \int_{-\pi}^{\pi} f(t) \overline{g(t)} dt$. The same calculation as in (b) now gives $\lambda ||f||^2 = -\overline{\lambda} ||f||^2$, and hence λ has the form $\lambda = in$ with n real. Thus the eigenfunction equation $L_1 f = \lambda f$ says f' = inf, which has the solution $f(t) = A \exp(int)$. But for this to be 2π -periodic, we need n to be an integer.
- (d) Use $\int_{-\pi}^{\pi} \exp(ipt) \exp(iqt) dt = 2\pi$ if q = -p, and zero if $q \neq -p$. So the given functions are mutually-orthogonal, and each has norm $\sqrt{2\pi}$.
- 83. Prove that each of the following sets forms a group under ordinary multiplication.
 - (a) $\{2^k \mid k \in \mathbb{Z}\}.$
 - (b) $\{\frac{1+2m}{1+2n} \mid m, n \in \mathbb{Z}\}.$
 - (c) $\{\cos \theta + i \sin \theta | \theta\}$ where θ runs over all rational numbers.
 - **Solution:** Associativity of the multiplication in the real or complex numbers implies associativity in each case.
 - (a) $2^{k}2^{l} = 2^{k+l}$ implies closure. The identity is $1 = 2^{0}$ and the inverse of 2^{k} is 2^{-k} .
 - (b) Closure follows from the observation that the product of two odd numbers is odd. The identity has m = n = 0. The inverse swaps the role of m and n.
 - (c) We are dealing with complex numbers of the form $e^{i\theta}$ where θ is rational. The multiplication then just adds the relevant θ values. That the sum of two rationals is rational gives closure. The identity has $\theta = 0$ and the inverse for θ requires the value $-\theta$ which is also rational.
- 84. Think of the integers \mathbb{Z} as points equally spaced along the real line. Define two kinds of transformations on \mathbb{Z} :

(1) Translations of the form T_a (where a is an integer) which have the effect of translating \mathbb{Z} a places to the right (if $a \ge 0$; or -a places to the left if a < 0) using the formula $n \mapsto n + a$.

(2) Reflections of the form R_c (where c is an integer) which have the effect of reflecting \mathbb{Z} in the point $\frac{c}{2}$ using the formula $n \mapsto c - n$.

Work out the effect of composing the following pairs of transformations: (a) T_bT_a , (b) R_dT_a , (c) T_bR_c , (d) R_dR_c . [In each case, because these are *functions* the compositions have to be evaluated from right to left; e.g., T_bT_a means first do T_a and then do T_b .]

Now let A be the set of all such T_a and R_c . Show that A is a group and that we can find examples of elements $g, h \in A$ such that $gh \neq hg, g^2 = h^2 = e$ and $\forall s > 0, (gh)^s \neq e$.

Solution: (a) The effect of T_bT_a is $n \mapsto n + a \mapsto n + a + b$, so $T_bT_a = T_{a+b}$.

- (b) The effect of R_dT_a is $n \mapsto n + a \mapsto d (n + a) = (d a) n$, so $R_dT_a = R_{d-a}$.
- (c) $n \mapsto c n \mapsto b + c n$, so $T_b R_c = R_{b+c}$.

(d) $n \mapsto c - n \mapsto d - (c - n) = (d - c) + n$, so $R_d R_c = T_{d-c}$.

The above calculations show we have closure. The group law is composition of functions so associativity holds. The identity is T_0 . The inverse of T_a is T_{-a} and that of R_c is R_c .

For the final bit, just take two different reflections. E.g., $g = R_1$ and $h = R_0$. Then $g^2 = h^2 = e$, $gh = T_1$, $hg = T_{-1}$, and $(gh)^k = T_k \neq e$.

- 85. Let G be the set of all 2×2 matrices of the form $\begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$ where $a \in \mathbb{R}$. Show that G is an abelian group under matrix multiplication. What is it isomorphic to?
 - Solution: Since $\begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & a+b \\ 0 & 1 \end{pmatrix}$, the product of two elements is precisely of the form $\begin{pmatrix} 1 & \tilde{a} \\ 0 & 1 \end{pmatrix}$ where $\tilde{a} = a + b$, so we have closure. Associativity comes from the fact that matrix multiplication is associative. I_2 is in G simply by choosing a = 0 and is the identity. Finally, the inverse of $\begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$. Since $\begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & a+b \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & a+b \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$ the group is abelian and isomorphic to \mathbb{R} as an additive group.
- 86. (a) Let G be the set of all 2×2 matrices of the form $\begin{pmatrix} a & b \\ 0 & d \end{pmatrix}$ where $a, b, d \in \mathbb{R}$, and $ad \neq 0$. Show that G is a group under matrix multiplication.
 - (b) With G as in part (a), define $Z(G) = \{g \in G \mid \text{such that}, \forall h \in G, gh = hg\}$. Identify the elements of Z(G) and show that it is also a group. [Z(G) is called the *centre* of G.]
 - Solution: (a) Since $\binom{a \ b}{0 \ d} \binom{e \ f}{0 \ h} = \binom{a e \ a f + b h}{0 \ d h}$ and \mathbb{R} is closed under addition and multiplication we have that all entries are real and $aedh \neq 0$ since $ad, eh \neq 0$, we have closure. Associativity comes from the fact that matrix multiplication is associative (this is a case where you should *not* multiply out three example matrices two ways!). I_2 is in G and is the identity. Finally, the inverse of $\binom{a \ b}{0 \ d}$ is $\binom{a^{-1} a^{-1}bd^{-1}}{d^{-1}}$ with entries once more in \mathbb{R} .
 - Finally, the inverse of $\begin{pmatrix} a & b \\ 0 & d \end{pmatrix}$ is $\begin{pmatrix} a^{-1} & -a^{-1}bd^{-1} \\ 0 & d^{-1} \end{pmatrix}$ with entries once more in \mathbb{R} . (b) Suppose $\begin{pmatrix} A & B \\ 0 & D \end{pmatrix}$ is in Z(G), so $\begin{pmatrix} Aa & Ab + Bd \\ 0 & Dd \end{pmatrix} = \begin{pmatrix} A & B \\ 0 & D \end{pmatrix} \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} = \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \begin{pmatrix} A & B \\ 0 & D \end{pmatrix} = \begin{pmatrix} aA & aB + bD \\ 0 & dD \end{pmatrix}$ whenever $ad \neq 0$, or equivalently, Ab + Bd = aB + bD whenever $ad \neq 0$. Taking a = 2, d = 1 and b = 0 shows B = 0; then taking b = 1 shows A = D. If B = 0 and A = D the equation is satisfied, so $Z(G) = \{ \begin{pmatrix} A & 0 \\ 0 & A \end{pmatrix}$ with $A \neq 0 \}$. To see Z(G) is a group we note that closure follows from $\begin{pmatrix} A & 0 \\ 0 & A \end{pmatrix} \begin{pmatrix} A' & 0 \\ 0 & A' \end{pmatrix} = \begin{pmatrix} AA' & 0 \\ 0 & AA' \end{pmatrix}$, matrix multiplication is associative, we get the identity for A = 1, and $\begin{pmatrix} A & 0 \\ 0 & A \end{pmatrix}$ has inverse $\begin{pmatrix} A^{-1} & 0 \\ 0 & A^{-1} \end{pmatrix}$.
- 87. (a) The modular group is defined by $SL(2,\mathbb{Z}) = \{A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with $a, b, c, d \in \mathbb{Z}$ and det $A = 1\}$. Show that $SL(2,\mathbb{Z})$ is indeed a group under matrix multiplication (you may assume associativity).
 - (b) Show that $T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ belongs to $SL(2, \mathbb{Z})$ and compute T^n with $n \in \mathbb{Z}$ (for negative integers T^{-n} means $(T^{-1})^n$). What is the connection with Exercise ?? ?
 - Solution: (a) Since \mathbb{Z} is a group, $SL(2,\mathbb{Z})$ is closed under matrix multiplication and inversion. The identity matrix $I_2 \in SL(2,\mathbb{Z})$ so $SL(2,\mathbb{Z})$ is a group.
 - (b) T has clearly determinant +1 and all its entries are in \mathbb{Z} so $T \in SL(2,\mathbb{Z})$. Furthermore $T^n = \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}$ for all $n \in \mathbb{Z}$. This means that $G = \{T^n \text{ with } n \in \mathbb{Z}\}$ is a subgroup of $SL(2,\mathbb{Z})$ identical to the subgroup of Exercise ?? with $a \in \mathbb{Z}$. This subgroup is isomorphic to \mathbb{Z} as an additive group.

- 88. Let G be a group such that for every element $g \in G$, $g^2 = e$. Show that G is abelian (i.e. gf = fg for any $f, g \in G$).
 - **Solution:** Let g, h be any two elements in G. Then since G is a group we have closure under group operation which implies $gh \in G$, hence $(gh)^2 = e$ and expanding the left hand side out we have ghgh = e. Multiply this on the left by g and on the right by h to find $g^2hgh^2 = geh$, and since $g^2 = h^2 = e$ this simplifies to hg = gh, so the group is Abelian.
- 89. Show that the group \mathbb{Z}_8^{\times} has order 4. Is it isomorphic either to \mathbb{Z}_4 or to the Klein group V?

Solution: The group table, from multiplication modulo 8, is

×	$\overline{1}$	$\overline{3}$	$\overline{5}$	$\overline{7}$
1	1	$\overline{3}$	$\overline{5}$	$\overline{7}$
$\overline{3}$	$\overline{3}$	1	$\overline{7}$	$\overline{5}$
$\overline{5}$	$\overline{5}$	$\overline{7}$	$\overline{1}$	$\overline{3}$
$\overline{7}$	$\overline{7}$	$\overline{5}$	$\overline{3}$	$\overline{1}$

The Klein group V has table

•	e	a	b	c
e	e	a	b	c
a	a	e	c	b
b	b	c	e	a
c	c	b	a	e

and clearly $\mathbb{Z}_8^{\times} \cong V$.

90. Write down the group table of the multiplicative group \mathbb{Z}_9^{\times} . Is this group isomorphic to \mathbb{Z}_n for any n?

Solution: The group table of \mathbb{Z}_9^{\times} is

×	$\overline{1}$	$\overline{2}$	$\overline{4}$	$\overline{5}$	$\overline{7}$	$\overline{8}$
1	1	$\overline{2}$	$\overline{4}$	$\overline{5}$	$\overline{7}$	8
$\overline{2}$	$\overline{2}$	$\overline{4}$	$\overline{8}$	$\overline{1}$	$\overline{5}$	$\overline{7}$
$\overline{4}$	$\overline{4}$	$\overline{8}$	$\overline{7}$	$\overline{2}$	$\overline{1}$	$\overline{5}$
$\overline{5}$	$\overline{5}$	$\overline{1}$	$\overline{2}$	$\overline{7}$	$\overline{8}$	$\overline{4}$
$\overline{7}$	$\overline{7}$	$\overline{5}$	$\overline{1}$	$\overline{8}$	$\overline{4}$	$\overline{2}$
$\overline{8}$	$\overline{8}$	$\overline{7}$	$\overline{5}$	$\overline{4}$	$\overline{2}$	$\overline{1}$

The group table of \mathbb{Z}_6 , with its elements re-arranged, is

+	$\overline{0}$	$\overline{1}$	$\overline{2}$	$\overline{5}$	$\overline{4}$	$\overline{3}$
$\overline{0}$	$\overline{0}$	1	$\overline{2}$	$\overline{5}$	$\overline{4}$	$\overline{3}$
$\overline{1}$	$\overline{1}$	$\overline{2}$	$\overline{3}$	$\overline{0}$	$\overline{5}$	$\overline{4}$
$\overline{2}$	$\overline{2}$	$\overline{3}$	$\overline{4}$	$\overline{1}$	$\overline{0}$	$\overline{5}$
$\overline{5}$	$\overline{5}$	$\overline{0}$	$\overline{1}$	$\overline{4}$	$\overline{3}$	$\overline{2}$
$\overline{4}$	$\overline{4}$	$\overline{5}$	$\overline{0}$	$\overline{3}$	$\overline{2}$	$\overline{1}$
$\overline{3}$	$\overline{3}$	$\overline{4}$	$\overline{5}$	$\overline{2}$	$\overline{1}$	$\overline{0}$

The tables are the same, and so $\mathbb{Z}_9^{\times} \cong \mathbb{Z}_6$.

91. Write down the group table for $\mathbb{Z}_2 \times \mathbb{Z}_2$, the direct product of two copies of the cyclic group of order two, and compute its order. Is this group isomorphic to any group discussed during lectures?

Solution: Every element in $\mathbb{Z}_2 \times \mathbb{Z}_2$ can be written as (g_1, g_2) with $g_1, g_2 \in \mathbb{Z}_2$. The order of the direct product group is the product of the orders of each \mathbb{Z}_2 factors, i.e. it has order 4 and the elements are $\mathbb{Z}_2 \times \mathbb{Z}_2 = \{(0,0), (1,0), (0,1), (1,1)\}$ with group table given by

•	(0, 0)	(1, 0)	(0, 1)	(1, 1)
(0,0)	(0, 0)	(1, 0)	(0, 1)	(1,1)
(1, 0)	(1, 0)	(0,0)	(1, 1)	(0, 1)
(0, 1)	(0, 1)	(1, 1)	(0, 0)	(1, 0)
(1, 1)	(1,1)	(0, 1)	(1, 0)	(0, 0)

which is clearly isomorphic to the Klein group.