
Linear Algebra 1, Solutions to exercises 79 to 91.
Epiphany 21/22.

79. (a) Verify by direct computation that the Chebyshev-I operator

LI = (1− x2) d
2

dx2
− x d

dx

on the space C[−1, 1] is symmetric with respect to the inner product given by the

formula (f, g) =
∫ 1

−1 f(x)g(x)(1− x2)−1/2dx.

(b) Find the matrix and the characteristic polynomial of the Chebyshev-I operator LI
on the space R[x]3 (use the basis {1, x, x2, x3}).

(c) Hence find the Chebyshev-I polynomials of degree 2 and 3.

(d) What is the set of all eigenvalues of LI as an operator on the space of all polynomi-
als R[x]?

(e) Find the Chebyshev-I polynomial of degree 5. (For simplicity use the convention
in which Chebyshev-I polynomials have leading coefficient 1, even if this is not
compatible with them having unit norm.)

Solution: (a) For any f, g ∈ C[−1, 1], apply integration by parts

(LI(f), g) =

∫ 1

−1

(√
1− x2f ′

)′
gdx

=
√

1− x2f ′g|1−1 −
∫ 1

−1

√
1− x2f ′g′dx

= −
∫ 1

−1

√
1− x2f ′g′dx.

This is symmetric in f and g, so (LI(f), g) = (LI(g), f), which equals (f,LI(g)) because
of the symmetry of the inner product. So LI is a symmetric operator.

(b) Our operator transforms 1 to 0, x to −x, x2 to −4x2 + 2, x3 to −9x3 + 6x. The
corresponding matrix is 

0 0 2 0
0 −1 0 6
0 0 −4 0
0 0 0 −9

 .

The characteristic polynomial is pA(λ) = det(A− λI) = λ(λ+ 1)(λ+ 4)(λ+ 9).

(c) The eigenvector corresponding to −4 is (−1/2, 0, 1, 0)t, which gives the eigenfunction
f2(x) = x2 − 1/2 (or f2(x) = 2x2 − 1). The eigenvector corresponding to −9 is
(0,−3/4, 0, 1)t, which gives the eigenfunction f3(x) = x3 − 3x/4 (or f3(x) = 4x3 − 3x).

(d) LIxk = −k2xk + lower-order terms. So the matrix of LI acting on R[x]N with basis
{1, x, x2, . . . , xN} is an upper triangular matrix with elements 0,−1, . . . ,−k2, . . . ,−N2

on its principal diagonal. Now if P is any eigenfunction in R[x], with eigenvalue λ, then
P is a polynomial of some degree N , and so λ ∈ {0,−2, . . . ,−k2, . . . ,−N2}. Hence the
eigenvalues of LI on R[x] are {−k2 | k ∈ Z, k > 0}.

(e) This polynomial can be written as C5(x) = x5 + ax4 + bx3 + cx2 + dx+ e with unknown
coefficients a, b, c, d, e ∈ R. Then C5(x) is an eigenfunction for LL with the eigenvalue
−25. Therefore,

(1− x2)(20x3 + 12ax2 + 6bx+ 2c)− x(5x4 + 4ax3 + 3bx2 + 2cx+ d)

= −25(x5 + ax4 + bx3 + cx2 + dx+ e).



Comparing coefficients for x4, x3, x2, x and 1 we obtain

x4 : −12a− 4a = −25a;

x3 : 20− 6b− 3b = −25b;

x2 : 12c− 2c− 2c = −25c;

x : 6b− d = −25d;

1 : 2c = −25e.

Therefore, a = c = e = 0, b = −5/4 and d = 5/16, i.e. L5(x) = x5 − 5
4x

3 + 5
16x.

80. (a) Verify by direct computation that the Chebyshev-II operator

LII = (1− x2) d
2

dx2
− 3x

d

dx

on the space C[−1, 1] is symmetric with respect to the inner product given by the

formula (f, g) =
∫ 1

−1 f(x)g(x)(1− x2)1/2dx.

(b) Find the matrix and the characteristic polynomial of the Chebyshev-II operator LII
on the space R[x]4 (use the basis {1, x, x2, x3, x4}).

(c) What is the set of all eigenvalues of LII as an operator on the space of all polynomials
R[x]?

(d) Find the Chebyshev-II polynomial of degree 5. (For simplicity use the convention
in which Chebyshev-II polynomials have leading coefficient 1, even if this is not
compatible with them having unit norm.)

Solution: (a) For any f, g ∈ C[−1, 1], apply integration by parts

(LII(f), g) =

∫ 1

−1

(
(1− x2)3/2f ′

)′
gdx

= (1− x2)3/2f ′g|1−1 −
∫ 1

−1
(1− x2)3/2f ′g′dx

= −
∫ 1

−1
(1− x2)3/2f ′g′dx.

Similarly,

(f,LII(g)) =

∫ 1

−1
f
(

(1− x2)3/2g′
)′
dx

= f(1− x2)3/2g′|1−1 −
∫ 1

−1
f ′(1− x2)3/2g′dx

= −
∫ 1

−1
(1− x2)3/2f ′g′dx.

So, LII satisfies the definition of symmetric operator.

(b) In the basis {1, x, x2, x3, x4} the matrix of our operator is
0 0 2 0 0
0 −3 0 6 0
0 0 −8 0 12
0 0 0 −15 0
0 0 0 0 −24

 .

The characteristic polynomial is pA(λ) = det(A−λI) = −λ(λ+3)(λ+8)(λ+15)(λ+24).



(c) LIIxk = −k(k+2)xk+lower-order terms. So the matrix of LII acting on R[x]N with basis
{1, x, x2, . . . , xN} is an upper triangular matrix with elements 0,−3, . . . ,−k(k+2), . . . ,−N(N+2)
on its principal diagonal. Now if P is any eigenfunction in R[x], with eigenvalue λ, then P
is a polynomial of some degree N , and so λ ∈ {0,−2, . . . ,−k(k + 2), . . . ,−N(N + 2)}.
Hence the eigenvalues of LII on R[x] are {−k(k + 2) | k ∈ Z, k > 0}.

(d) This polynomial can be written as C∗5 (x) = x5 + ax4 + bx3 + cx2 + dx + e with some
unknown coefficients a, b, c, d, e ∈ R. Then C∗5 (x) is an eigenfunction for LII with the
eigenvalue −35. Therefore

(1− x2)(20x3 + 12ax2 + 6bx+ 2c)− 3x(5x4 + 4ax3 + 3bx2 + 2cx+ d)

= −35(x5 + ax4 + bx3 + cx2 + dx+ e).

Comparing coefficients for x4, x3, x2, x and 1 we obtain

x4 : −12a− 12a = −35a;

x3 : 20− 6b− 9b = −35b;

x2 : 12c− 2c− 6c = −35c;

x : 6b− 3d = −35d;

1 : 2c = −35e.

Therefore, a = c = e = 0, b = −1 and d = 3/16, i.e. L5(x) = x5 − x3 + 3
16x.

81. Let F [2π] be the vector space of all real 2π-periodic infinitely differentiable functions in
one variable t with the inner product (f, g) =

∫ π
−π f(t)g(t)dt.

(a) Prove that the operator L = d2/dt2 on F [2π] is symmetric.

(b) Find all eigenvalues and eigenfunctions of the above operator L on F [2π].

Solution: (a) For f, g ∈ F [2π] we have

(Lf, g) =

∫ π

−π
f ′′(t) g(t) dt =

[
f ′(t) g(t)

]π
−π −

∫ π

−π
f ′(t) g′(t) dt.

The first term is zero owing to the periodicity, and the second term is symmetric in f and
g. So (Lf, g) = (Lg, f) = (f, Lg), where the second equality follows from the symmetry
of the inner product. Thus the operator L is symmetric.

(b) The eigenvalue equation Lf = λf is a differential equation with the general solution
f(t) = A exp(

√
λt) + B exp(−

√
λt). (or f(t) = At + B if λ = 0). This is periodic iff

λ = −n2 with n = 0, 1, 2, . . .. For each n > 0 we have two independent eigenfunctions,
namely cos(nt) and sin(nt). For λ = 0 there is one eigenfunction, namely f = constant.

82. Let F [2π] be the vector space from the above problem ?? and consider the operator
L1 = d/dt on F [2π].

(a) Prove that L1 is skew-symmetric, i.e. for any f, g ∈ F [2π], we have (L1f, g) = −(f, L1g).

(b) Deduce that the only eigenfunctions for L1 in F [2π] are constant functions (with the
zero eigenvalue).

(c) Let FC[2π] be the complexification of the above F [2π]. Prove that the only eigenval-
ues for L1 on FC[2π] are complex numbers {ni | n ∈ Z} and for each such number
λn = ni, there is only one (up to a non-zero scalar factor) eigenfunction eint in
FC[2π].



(d) Prove that the functions 1, eit, e−it, e2it, e−2it, . . . , enit, e−int, . . . are orthogonal in
FC[2π]. What are the norms of those functions?

Solution: (a) For f, g ∈ F [2π] we have

(L1f, g) =

∫ π

−π
f ′(t) g(t) dt = [f(t) g(t)]π−π −

∫ π

−π
f(t) g′(t) dt = −(f, L1g).

(b) If L1f = λf with f 6= 0, then (L1f, f) = −(f, L1f) gives λ‖f‖2 = −λ‖f‖2 and hence
λ = 0. So we get L1f = f ′ = 0 and thus f is constant.

(c) In the complex case, the inner product is 〈f, g〉 =
∫ π
−π f(t) g(t) dt. The same calcula-

tion as in (b) now gives λ‖f‖2 = −λ̄‖f‖2, and hence λ has the form λ = in with n
real. Thus the eigenfunction equation L1f = λf says f ′ = inf , which has the solution
f(t) = A exp(int). But for this to be 2π-periodic, we need n to be an integer.

(d) Use
∫ π
−π exp(ipt) exp(iqt) dt = 2π if q = −p, and zero if q 6= −p. So the given functions

are mutually-orthogonal, and each has norm
√

2π.

83. Prove that each of the following sets forms a group under ordinary multiplication.

(a) {2k | k ∈ Z}.
(b) {1+2m

1+2n
|m,n ∈ Z}.

(c) {cos θ + i sin θ | θ} where θ runs over all rational numbers.

Solution: Associativity of the multiplication in the real or complex numbers implies associativity
in each case.

(a) 2k2l = 2k+l implies closure. The identity is 1 = 20 and the inverse of 2k is 2−k.

(b) Closure follows from the observation that the product of two odd numbers is odd. The
identity has m = n = 0. The inverse swaps the role of m and n.

(c) We are dealing with complex numbers of the form eiθ where θ is rational. The multiplica-
tion then just adds the relevant θ values. That the sum of two rationals is rational gives
closure. The identity has θ = 0 and the inverse for θ requires the value −θ which is also
rational.

84. Think of the integers Z as points equally spaced along the real line. Define two kinds of
transformations on Z:

(1) Translations of the form Ta (where a is an integer) which have the effect of translating
Z a places to the right (if a ≥ 0; or −a places to the left if a < 0) using the formula
n 7→ n+ a.

(2) Reflections of the form Rc (where c is an integer) which have the effect of reflecting
Z in the point c

2
using the formula n 7→ c− n.

Work out the effect of composing the following pairs of transformations: (a) TbTa, (b)
RdTa, (c) TbRc, (d) RdRc. [In each case, because these are functions the compositions
have to be evaluated from right to left; e.g., TbTa means first do Ta and then do Tb.]

Now let A be the set of all such Ta and Rc. Show that A is a group and that we can find
examples of elements g, h ∈ A such that gh 6= hg, g2 = h2 = e and ∀s > 0, (gh)s 6= e.

Solution: (a) The effect of TbTa is n 7→ n+ a 7→ n+ a+ b, so TbTa = Ta+b.

(b) The effect of RdTa is n 7→ n+ a 7→ d− (n+ a) = (d− a)− n, so RdTa = Rd−a.

(c) n 7→ c− n 7→ b+ c− n, so TbRc = Rb+c.



(d) n 7→ c− n 7→ d− (c− n) = (d− c) + n, so RdRc = Td−c.

The above calculations show we have closure. The group law is composition of functions so
associativity holds. The identity is T0. The inverse of Ta is T−a and that of Rc is Rc.

For the final bit, just take two different reflections. E.g., g = R1 and h = R0. Then
g2 = h2 = e, gh = T1, hg = T−1, and (gh)k = Tk 6= e.

85. Let G be the set of all 2× 2 matrices of the form

(
1 a
0 1

)
where a ∈ R. Show that G is

an abelian group under matrix multiplication. What is it isomorphic to?

Solution: Since (10
a
1 )(10

b
1) = (10

a+b
1 ), the product of two elements is precisely of the form

(
1 ã
0 1

)
where ã = a+ b, so we have closure. Associativity comes from the fact that matrix multiplica-
tion is associative. I2 is in G simply by choosing a = 0 and is the identity. Finally, the inverse
of (10

a
1 ) is (10

−a
1 ).

Since (10
a
1 )(10

b
1) = (10

a+b
1 ) = (10

b
1)(10

a
1 ) the group is abelian and isomorphic to R as an additive

group.

86. (a) Let G be the set of all 2 × 2 matrices of the form

(
a b
0 d

)
where a, b, d ∈ R, and

ad 6= 0. Show that G is a group under matrix multiplication.

(b) With G as in part (a), define Z(G) = {g ∈ G | such that,∀h ∈ G, gh = hg}. Identify
the elements of Z(G) and show that it is also a group. [Z(G) is called the centre of
G.]

Solution: (a) Since (a0
b
d)( e0

f
h) = (ae0

af+bh
dh ) and R is closed under addition and multiplication we

have that all entries are real and aedh 6= 0 since ad, eh 6= 0, we have closure. Associativity
comes from the fact that matrix multiplication is associative (this is a case where you
should not multiply out three example matrices two ways!). I2 is in G and is the identity.

Finally, the inverse of (a0
b
d) is (a

−1

0
−a−1bd−1

d−1 ) with entries once more in R.

(b) Suppose (A0
B
D ) is in Z(G), so (Aa0

Ab+Bd
Dd ) = (A0

B
D )(a0

b
d) = (a0

b
d)(A0

B
D ) = (aA0

aB+bD
dD )

whenever ad 6= 0, or equivalently, Ab+Bd = aB + bD whenever ad 6= 0. Taking a = 2,
d = 1 and b = 0 shows B = 0; then taking b = 1 shows A = D. If B = 0 and A = D the
equation is satisfied, so Z(G) = {(A0

0
A) with A 6= 0}. To see Z(G) is a group we note

that closure follows from (A0
0
A)(A

′

0
0
A′ ) = (AA

′

0
0

AA′ ), matrix multiplication is associative,

we get the identity for A = 1, and (A0
0
A) has inverse (A

−1

0
0

A−1 ).

87. (a) The modular group is defined by SL(2,Z) = {A = (a
c
b
d
) with a, b, c, d ∈ Z and detA = 1}.

Show that SL(2,Z) is indeed a group under matrix multiplication (you may assume
associativity).

(b) Show that T = (1
0
1
1
) belongs to SL(2,Z) and compute T n with n ∈ Z (for negative

integers T−n means (T−1)n). What is the connection with Exercise ?? ?

Solution: (a) Since Z is a group, SL(2,Z) is closed under matrix multiplication and inversion.
The identity matrix I2 ∈ SL(2,Z) so SL(2,Z) is a group.

(b) T has clearly determinant +1 and all its entries are in Z so T ∈ SL(2,Z). Furthermore
Tn = (10

n
1 ) for all n ∈ Z. This means that G = {Tn withn ∈ Z} is a subgroup of SL(2,Z)

identical to the subgroup of Exercise ?? with a ∈ Z. This subgroup is isomorphic to Z as
an additive group.



88. Let G be a group such that for every element g ∈ G, g2 = e. Show that G is abelian (i.e.
gf = fg for any f, g ∈ G).

Solution: Let g, h be any two elements in G. Then since G is a group we have closure under
group operation which implies gh ∈ G, hence (gh)2 = e and expanding the left hand side out
we have ghgh = e. Multiply this on the left by g and on the right by h to find g2hgh2 = geh,
and since g2 = h2 = e this simplifies to hg = gh, so the group is Abelian.

89. Show that the group Z×8 has order 4. Is it isomorphic either to Z4 or to the Klein group V ?

Solution: The group table, from multiplication modulo 8, is

× 1 3 5 7

1 1 3 5 7
3 3 1 7 5
5 5 7 1 3
7 7 5 3 1

The Klein group V has table

· e a b c

e e a b c
a a e c b
b b c e a
c c b a e

and clearly Z×8 ∼= V .

90. Write down the group table of the multiplicative group Z×9 . Is this group isomorphic
to Zn for any n?

Solution: The group table of Z×9 is

× 1 2 4 5 7 8

1 1 2 4 5 7 8
2 2 4 8 1 5 7
4 4 8 7 2 1 5
5 5 1 2 7 8 4
7 7 5 1 8 4 2
8 8 7 5 4 2 1

The group table of Z6, with its elements re-arranged, is

+ 0 1 2 5 4 3

0 0 1 2 5 4 3
1 1 2 3 0 5 4
2 2 3 4 1 0 5
5 5 0 1 4 3 2
4 4 5 0 3 2 1
3 3 4 5 2 1 0

The tables are the same, and so Z×9 ∼= Z6.

91. Write down the group table for Z2 × Z2, the direct product of two copies of the cyclic
group of order two, and compute its order. Is this group isomorphic to any group discussed
during lectures?



Solution: Every element in Z2 × Z2 can be written as (g1, g2) with g1, g2 ∈ Z2. The order of the
direct product group is the product of the orders of each Z2 factors, i.e. it has order 4 and the
elements are Z2 × Z2 = {(0, 0), (1, 0), (0, 1), (1, 1)} with group table given by

· (0, 0) (1, 0) (0, 1) (1, 1)

(0, 0) (0, 0) (1, 0) (0, 1) (1, 1)
(1, 0) (1, 0) (0, 0) (1, 1) (0, 1)
(0, 1) (0, 1) (1, 1) (0, 0) (1, 0)
(1, 1) (1, 1) (0, 1) (1, 0) (0, 0)

which is clearly isomorphic to the Klein group.


