Linear Algebra 1, Solutions to exercises 79 to 91.

Epiphany $21 / 22$.
79. (a) Verify by direct computation that the Chebyshev-I operator

$$
\mathcal{L}_{I}=\left(1-x^{2}\right) \frac{d^{2}}{d x^{2}}-x \frac{d}{d x}
$$

on the space $C[-1,1]$ is symmetric with respect to the inner product given by the formula $(f, g)=\int_{-1}^{1} f(x) g(x)\left(1-x^{2}\right)^{-1 / 2} d x$.
(b) Find the matrix and the characteristic polynomial of the Chebyshev-I operator \mathcal{L}_{I} on the space $\mathbb{R}[x]_{3}$ (use the basis $\left\{1, x, x^{2}, x^{3}\right\}$).
(c) Hence find the Chebyshev-I polynomials of degree 2 and 3.
(d) What is the set of all eigenvalues of \mathcal{L}_{I} as an operator on the space of all polynomials $\mathbb{R}[x]$?
(e) Find the Chebyshev-I polynomial of degree 5. (For simplicity use the convention in which Chebyshev-I polynomials have leading coefficient 1, even if this is not compatible with them having unit norm.)

Solution: (a) For any $f, g \in C[-1,1]$, apply integration by parts

$$
\begin{aligned}
\left(\mathcal{L}_{I}(f), g\right) & =\int_{-1}^{1}\left(\sqrt{1-x^{2}} f^{\prime}\right)^{\prime} g d x \\
& =\left.\sqrt{1-x^{2}} f^{\prime} g\right|_{-1} ^{1}-\int_{-1}^{1} \sqrt{1-x^{2}} f^{\prime} g^{\prime} d x \\
& =-\int_{-1}^{1} \sqrt{1-x^{2}} f^{\prime} g^{\prime} d x
\end{aligned}
$$

This is symmetric in f and g, so $\left(\mathcal{L}_{I}(f), g\right)=\left(\mathcal{L}_{I}(g), f\right)$, which equals $\left(f, \mathcal{L}_{I}(g)\right)$ because of the symmetry of the inner product. So \mathcal{L}_{I} is a symmetric operator.
(b) Our operator transforms 1 to $0, x$ to $-x, x^{2}$ to $-4 x^{2}+2, x^{3}$ to $-9 x^{3}+6 x$. The corresponding matrix is

$$
\left(\begin{array}{cccc}
0 & 0 & 2 & 0 \\
0 & -1 & 0 & 6 \\
0 & 0 & -4 & 0 \\
0 & 0 & 0 & -9
\end{array}\right)
$$

The characteristic polynomial is $p_{A}(\lambda)=\operatorname{det}(A-\lambda I)=\lambda(\lambda+1)(\lambda+4)(\lambda+9)$.
(c) The eigenvector corresponding to -4 is $(-1 / 2,0,1,0)^{t}$, which gives the eigenfunction $f_{2}(x)=x^{2}-1 / 2$ (or $f_{2}(x)=2 x^{2}-1$). The eigenvector corresponding to -9 is $(0,-3 / 4,0,1)^{t}$, which gives the eigenfunction $f_{3}(x)=x^{3}-3 x / 4$ (or $f_{3}(x)=4 x^{3}-3 x$).
(d) $\mathcal{L}_{I} x^{k}=-k^{2} x^{k}+$ lower-order terms. So the matrix of \mathcal{L}_{I} acting on $\mathbb{R}[x]_{N}$ with basis $\left\{1, x, x^{2}, \ldots, x^{N}\right\}$ is an upper triangular matrix with elements $0,-1, \ldots,-k^{2}, \ldots,-N^{2}$ on its principal diagonal. Now if P is any eigenfunction in $\mathbb{R}[x]$, with eigenvalue λ, then P is a polynomial of some degree N, and so $\lambda \in\left\{0,-2, \ldots,-k^{2}, \ldots,-N^{2}\right\}$. Hence the eigenvalues of \mathcal{L}_{I} on $\mathbb{R}[x]$ are $\left\{-k^{2} \mid k \in \mathbb{Z}, k \geqslant 0\right\}$.
(e) This polynomial can be written as $C_{5}(x)=x^{5}+a x^{4}+b x^{3}+c x^{2}+d x+e$ with unknown coefficients $a, b, c, d, e \in \mathbb{R}$. Then $C_{5}(x)$ is an eigenfunction for \mathcal{L}_{L} with the eigenvalue -25 . Therefore,

$$
\begin{aligned}
& \left(1-x^{2}\right)\left(20 x^{3}+12 a x^{2}+6 b x+2 c\right)-x\left(5 x^{4}+4 a x^{3}+3 b x^{2}+2 c x+d\right) \\
= & -25\left(x^{5}+a x^{4}+b x^{3}+c x^{2}+d x+e\right) .
\end{aligned}
$$

Comparing coefficients for x^{4}, x^{3}, x^{2}, x and 1 we obtain

$$
\begin{aligned}
x^{4}: & -12 a-4 a=-25 a \\
x^{3}: & 20-6 b-3 b=-25 b \\
x^{2}: & 12 c-2 c-2 c=-25 c \\
x: & 6 b-d=-25 d ; \\
1: & 2 c=-25 e .
\end{aligned}
$$

Therefore, $a=c=e=0, b=-5 / 4$ and $d=5 / 16$, i.e. $L_{5}(x)=x^{5}-\frac{5}{4} x^{3}+\frac{5}{16} x$.
80. (a) Verify by direct computation that the Chebyshev-II operator

$$
\mathcal{L}_{I I}=\left(1-x^{2}\right) \frac{d^{2}}{d x^{2}}-3 x \frac{d}{d x}
$$

on the space $C[-1,1]$ is symmetric with respect to the inner product given by the formula $(f, g)=\int_{-1}^{1} f(x) g(x)\left(1-x^{2}\right)^{1 / 2} d x$.
(b) Find the matrix and the characteristic polynomial of the Chebyshev-II operator $\mathcal{L}_{I I}$ on the space $\mathbb{R}[x]_{4}$ (use the basis $\left\{1, x, x^{2}, x^{3}, x^{4}\right\}$).
(c) What is the set of all eigenvalues of $\mathcal{L}_{I I}$ as an operator on the space of all polynomials $\mathbb{R}[x]$?
(d) Find the Chebyshev-II polynomial of degree 5. (For simplicity use the convention in which Chebyshev-II polynomials have leading coefficient 1, even if this is not compatible with them having unit norm.)

Solution: (a) For any $f, g \in C[-1,1]$, apply integration by parts

$$
\begin{aligned}
\left(\mathcal{L}_{I I}(f), g\right) & =\int_{-1}^{1}\left(\left(1-x^{2}\right)^{3 / 2} f^{\prime}\right)^{\prime} g d x \\
& =\left.\left(1-x^{2}\right)^{3 / 2} f^{\prime} g\right|_{-1} ^{1}-\int_{-1}^{1}\left(1-x^{2}\right)^{3 / 2} f^{\prime} g^{\prime} d x \\
& =-\int_{-1}^{1}\left(1-x^{2}\right)^{3 / 2} f^{\prime} g^{\prime} d x
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\left(f, \mathcal{L}_{I I}(g)\right) & =\int_{-1}^{1} f\left(\left(1-x^{2}\right)^{3 / 2} g^{\prime}\right)^{\prime} d x \\
& =\left.f\left(1-x^{2}\right)^{3 / 2} g^{\prime}\right|_{-1} ^{1}-\int_{-1}^{1} f^{\prime}\left(1-x^{2}\right)^{3 / 2} g^{\prime} d x \\
& =-\int_{-1}^{1}\left(1-x^{2}\right)^{3 / 2} f^{\prime} g^{\prime} d x
\end{aligned}
$$

So, $\mathcal{L}_{I I}$ satisfies the definition of symmetric operator.
(b) In the basis $\left\{1, x, x^{2}, x^{3}, x^{4}\right\}$ the matrix of our operator is

$$
\left(\begin{array}{ccccc}
0 & 0 & 2 & 0 & 0 \\
0 & -3 & 0 & 6 & 0 \\
0 & 0 & -8 & 0 & 12 \\
0 & 0 & 0 & -15 & 0 \\
0 & 0 & 0 & 0 & -24
\end{array}\right)
$$

The characteristic polynomial is $p_{A}(\lambda)=\operatorname{det}(A-\lambda I)=-\lambda(\lambda+3)(\lambda+8)(\lambda+15)(\lambda+24)$.
(c) $\mathcal{L}_{I I} x^{k}=-k(k+2) x^{k}+$ lower-order terms. So the matrix of $\mathcal{L}_{I I}$ acting on $\mathbb{R}[x]_{N}$ with basis $\left\{1, x, x^{2}, \ldots, x^{N}\right\}$ is an upper triangular matrix with elements $0,-3, \ldots,-k(k+2), \ldots,-N(N+2)$ on its principal diagonal. Now if P is any eigenfunction in $\mathbb{R}[x]$, with eigenvalue λ, then P is a polynomial of some degree N, and so $\lambda \in\{0,-2, \ldots,-k(k+2), \ldots,-N(N+2)\}$. Hence the eigenvalues of $\mathcal{L}_{I I}$ on $\mathbb{R}[x]$ are $\{-k(k+2) \mid k \in \mathbb{Z}, k \geqslant 0\}$.
(d) This polynomial can be written as $C_{5}^{*}(x)=x^{5}+a x^{4}+b x^{3}+c x^{2}+d x+e$ with some unknown coefficients $a, b, c, d, e \in \mathbb{R}$. Then $C_{5}^{*}(x)$ is an eigenfunction for $\mathcal{L}_{I I}$ with the eigenvalue -35 . Therefore

$$
\begin{aligned}
& \left(1-x^{2}\right)\left(20 x^{3}+12 a x^{2}+6 b x+2 c\right)-3 x\left(5 x^{4}+4 a x^{3}+3 b x^{2}+2 c x+d\right) \\
= & -35\left(x^{5}+a x^{4}+b x^{3}+c x^{2}+d x+e\right) .
\end{aligned}
$$

Comparing coefficients for x^{4}, x^{3}, x^{2}, x and 1 we obtain

$$
\begin{aligned}
x^{4}: & -12 a-12 a=-35 a ; \\
x^{3}: & 20-6 b-9 b=-35 b ; \\
x^{2}: & 12 c-2 c-6 c=-35 c ; \\
x: & 6 b-3 d=-35 d ; \\
1: & 2 c=-35 e .
\end{aligned}
$$

Therefore, $a=c=e=0, b=-1$ and $d=3 / 16$, i.e. $L_{5}(x)=x^{5}-x^{3}+\frac{3}{16} x$.
81. Let $F[2 \pi]$ be the vector space of all real 2π-periodic infinitely differentiable functions in one variable t with the inner product $(f, g)=\int_{-\pi}^{\pi} f(t) g(t) d t$.
(a) Prove that the operator $L=d^{2} / d t^{2}$ on $F[2 \pi]$ is symmetric.
(b) Find all eigenvalues and eigenfunctions of the above operator L on $F[2 \pi]$.

Solution: (a) For $f, g \in F[2 \pi]$ we have

$$
(L f, g)=\int_{-\pi}^{\pi} f^{\prime \prime}(t) g(t) d t=\left[f^{\prime}(t) g(t)\right]_{-\pi}^{\pi}-\int_{-\pi}^{\pi} f^{\prime}(t) g^{\prime}(t) d t
$$

The first term is zero owing to the periodicity, and the second term is symmetric in f and g. So $(L f, g)=(L g, f)=(f, L g)$, where the second equality follows from the symmetry of the inner product. Thus the operator L is symmetric.
(b) The eigenvalue equation $L f=\lambda f$ is a differential equation with the general solution $f(t)=A \exp (\sqrt{\lambda} t)+B \exp (-\sqrt{\lambda} t)$. (or $f(t)=A t+B$ if $\lambda=0$). This is periodic iff $\lambda=-n^{2}$ with $n=0,1,2, \ldots$. For each $n>0$ we have two independent eigenfunctions, namely $\cos (n t)$ and $\sin (n t)$. For $\lambda=0$ there is one eigenfunction, namely $f=$ constant.
82. Let $F[2 \pi]$ be the vector space from the above problem ?? and consider the operator $L_{1}=d / d t$ on $F[2 \pi]$.
(a) Prove that L_{1} is skew-symmetric, i.e. for any $f, g \in F[2 \pi]$, we have $\left(L_{1} f, g\right)=-\left(f, L_{1} g\right)$.
(b) Deduce that the only eigenfunctions for L_{1} in $F[2 \pi]$ are constant functions (with the zero eigenvalue).
(c) Let $F_{\mathbb{C}}[2 \pi]$ be the complexification of the above $F[2 \pi]$. Prove that the only eigenvalues for L_{1} on $F_{\mathbb{C}}[2 \pi]$ are complex numbers $\{n i \mid n \in \mathbb{Z}\}$ and for each such number $\lambda_{n}=n i$, there is only one (up to a non-zero scalar factor) eigenfunction $e^{i n t}$ in $F_{\mathbb{C}}[2 \pi]$.
(d) Prove that the functions $1, e^{i t}, e^{-i t}, e^{2 i t}, e^{-2 i t}, \ldots, e^{n i t}, e^{-i n t}, \ldots$ are orthogonal in $F_{\mathbb{C}}[2 \pi]$. What are the norms of those functions?

Solution: (a) For $f, g \in F[2 \pi]$ we have

$$
\left(L_{1} f, g\right)=\int_{-\pi}^{\pi} f^{\prime}(t) g(t) d t=[f(t) g(t)]_{-\pi}^{\pi}-\int_{-\pi}^{\pi} f(t) g^{\prime}(t) d t=-\left(f, L_{1} g\right)
$$

(b) If $L_{1} f=\lambda f$ with $f \neq 0$, then $\left(L_{1} f, f\right)=-\left(f, L_{1} f\right)$ gives $\lambda\|f\|^{2}=-\lambda\|f\|^{2}$ and hence $\lambda=0$. So we get $L_{1} f=f^{\prime}=0$ and thus f is constant.
(c) In the complex case, the inner product is $\langle f, g\rangle=\int_{-\pi}^{\pi} f(t) \overline{g(t)} d t$. The same calculation as in (b) now gives $\lambda\|f\|^{2}=-\bar{\lambda}\|f\|^{2}$, and hence λ has the form $\lambda=$ in with n real. Thus the eigenfunction equation $L_{1} f=\lambda f$ says $f^{\prime}=\operatorname{in} f$, which has the solution $f(t)=A \exp ($ int $)$. But for this to be 2π-periodic, we need n to be an integer.
(d) Use $\int_{-\pi}^{\pi} \exp ($ ipt $) \exp (i q t) d t=2 \pi$ if $q=-p$, and zero if $q \neq-p$. So the given functions are mutually-orthogonal, and each has norm $\sqrt{2 \pi}$.
83. Prove that each of the following sets forms a group under ordinary multiplication.
(a) $\left\{2^{k} \mid k \in \mathbb{Z}\right\}$.
(b) $\left\{\left.\frac{1+2 m}{1+2 n} \right\rvert\, m, n \in \mathbb{Z}\right\}$.
(c) $\{\cos \theta+i \sin \theta \mid \theta\}$ where θ runs over all rational numbers.

Solution: Associativity of the multiplication in the real or complex numbers implies associativity in each case.
(a) $2^{k} 2^{l}=2^{k+l}$ implies closure. The identity is $1=2^{0}$ and the inverse of 2^{k} is 2^{-k}.
(b) Closure follows from the observation that the product of two odd numbers is odd. The identity has $m=n=0$. The inverse swaps the role of m and n.
(c) We are dealing with complex numbers of the form $e^{i \theta}$ where θ is rational. The multiplication then just adds the relevant θ values. That the sum of two rationals is rational gives closure. The identity has $\theta=0$ and the inverse for θ requires the value $-\theta$ which is also rational.
84. Think of the integers \mathbb{Z} as points equally spaced along the real line. Define two kinds of transformations on \mathbb{Z} :
(1) Translations of the form T_{a} (where a is an integer) which have the effect of translating $\mathbb{Z} a$ places to the right (if $a \geq 0$; or $-a$ places to the left if $a<0$) using the formula $n \mapsto n+a$.
(2) Reflections of the form R_{c} (where c is an integer) which have the effect of reflecting \mathbb{Z} in the point $\frac{c}{2}$ using the formula $n \mapsto c-n$.
Work out the effect of composing the following pairs of transformations: (a) $T_{b} T_{a}$, (b) $R_{d} T_{a}$, (c) $T_{b} R_{c}$, (d) $R_{d} R_{c}$. [In each case, because these are functions the compositions have to be evaluated from right to left; e.g., $T_{b} T_{a}$ means first do T_{a} and then do T_{b}.]

Now let A be the set of all such T_{a} and R_{c}. Show that A is a group and that we can find examples of elements $g, h \in A$ such that $g h \neq h g, g^{2}=h^{2}=e$ and $\forall s>0,(g h)^{s} \neq e$.

Solution: (a) The effect of $T_{b} T_{a}$ is $n \mapsto n+a \mapsto n+a+b$, so $T_{b} T_{a}=T_{a+b}$.
(b) The effect of $R_{d} T_{a}$ is $n \mapsto n+a \mapsto d-(n+a)=(d-a)-n$, so $R_{d} T_{a}=R_{d-a}$.
(c) $n \mapsto c-n \mapsto b+c-n$, so $T_{b} R_{c}=R_{b+c}$.
(d) $n \mapsto c-n \mapsto d-(c-n)=(d-c)+n$, so $R_{d} R_{c}=T_{d-c}$.

The above calculations show we have closure. The group law is composition of functions so associativity holds. The identity is T_{0}. The inverse of T_{a} is T_{-a} and that of R_{c} is R_{c}.
For the final bit, just take two different reflections. E.g., $g=R_{1}$ and $h=R_{0}$. Then $g^{2}=h^{2}=e, g h=T_{1}, h g=T_{-1}$, and $(g h)^{k}=T_{k} \neq e$.
85. Let G be the set of all 2×2 matrices of the form $\left(\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right)$ where $a \in \mathbb{R}$. Show that G is an abelian group under matrix multiplication. What is it isomorphic to?

Solution: Since $\left(\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right)=\left(\begin{array}{cc}1 & a+b \\ 0 & 1\end{array}\right)$, the product of two elements is precisely of the form $\left(\begin{array}{ll}1 & \tilde{a} \\ 0 & 1\end{array}\right)$ where $\tilde{a}=a+b$, so we have closure. Associativity comes from the fact that matrix multiplication is associative. I_{2} is in G simply by choosing $a=0$ and is the identity. Finally, the inverse of $\left(\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right)$ is $\left(\begin{array}{cc}1 & -a \\ 0 & 1\end{array}\right)$.
Since $\left(\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right)=\left(\begin{array}{cc}1 & a+b \\ 0 & 1\end{array}\right)=\left(\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right)$ the group is abelian and isomorphic to \mathbb{R} as an additive group.
86. (a) Let G be the set of all 2×2 matrices of the form $\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right)$ where $a, b, d \in \mathbb{R}$, and $a d \neq 0$. Show that G is a group under matrix multiplication.
(b) With G as in part (a), define $Z(G)=\{g \in G \mid$ such that, $\forall h \in G, g h=h g\}$. Identify the elements of $Z(G)$ and show that it is also a group. $[Z(G)$ is called the centre of G.]

Solution: (a) Since $\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right)\left(\begin{array}{ll}e & f \\ 0 & h\end{array}\right)=\left(\begin{array}{cc}a e & a f+b h \\ 0 & d h\end{array}\right)$ and \mathbb{R} is closed under addition and multiplication we have that all entries are real and $a e d h \neq 0$ since $a d, e h \neq 0$, we have closure. Associativity comes from the fact that matrix multiplication is associative (this is a case where you should not multiply out three example matrices two ways!). I_{2} is in G and is the identity. Finally, the inverse of $\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right)$ is $\left(\begin{array}{cc}a^{-1} & -a^{-1} b d^{-1} \\ 0 & d^{-1}\end{array}\right)$ with entries once more in \mathbb{R}.
(b) Suppose $\left(\begin{array}{ll}A & B \\ 0 & D\end{array}\right)$ is in $Z(G)$, so $\left(\begin{array}{cc}A a & A b+B d \\ 0 & D d\end{array}\right)=\left(\begin{array}{cc}A & B \\ 0 & D\end{array}\right)\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right)=\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right)\left(\begin{array}{cc}A & B \\ 0 & D\end{array}\right)=\left(\begin{array}{cc}a A & a B+b D \\ 0 & d D\end{array}\right)$ whenever $a d \neq 0$, or equivalently, $A b+B d=a B+b D$ whenever $a d \neq 0$. Taking $a=2$, $d=1$ and $b=0$ shows $B=0$; then taking $b=1$ shows $A=D$. If $B=0$ and $A=D$ the equation is satisfied, so $Z(G)=\left\{\left(\begin{array}{cc}A & 0 \\ 0 & A\end{array}\right)\right.$ with $\left.A \neq 0\right\}$. To see $Z(G)$ is a group we note that closure follows from $\left(\begin{array}{cc}A & 0 \\ 0 & A\end{array}\right)\left(\begin{array}{cc}A^{\prime} & 0 \\ 0 & A^{\prime}\end{array}\right)=\left(\begin{array}{cc}A A^{\prime} & 0 \\ 0 & A A^{\prime}\end{array}\right)$, matrix multiplication is associative, we get the identity for $A=1$, and $\left(\begin{array}{cc}A & 0 \\ 0 & A\end{array}\right)$ has inverse $\left(\begin{array}{cc}A^{-1} & 0 \\ 0 & A^{-1}\end{array}\right)$.
87. (a) The modular group is defined by $S L(2, \mathbb{Z})=\left\{A=\left(\begin{array}{c}a \\ c \\ c\end{array}\right)\right.$ with $a, b, c, d \in \mathbb{Z}$ and det $\left.A=1\right\}$. Show that $S L(2, \mathbb{Z})$ is indeed a group under matrix multiplication (you may assume associativity).
(b) Show that $T=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ belongs to $S L(2, \mathbb{Z})$ and compute T^{n} with $n \in \mathbb{Z}$ (for negative integers T^{-n} means $\left.\left(T^{-1}\right)^{n}\right)$. What is the connection with Exercise ?? ?

Solution: (a) Since \mathbb{Z} is a group, $S L(2, \mathbb{Z})$ is closed under matrix multiplication and inversion. The identity matrix $I_{2} \in S L(2, \mathbb{Z})$ so $S L(2, \mathbb{Z})$ is a group.
(b) T has clearly determinant +1 and all its entries are in \mathbb{Z} so $T \in S L(2, \mathbb{Z})$. Furthermore $T^{n}=\left(\begin{array}{cc}1 & n \\ 0 & 1\end{array}\right)$ for all $n \in \mathbb{Z}$. This means that $G=\left\{T^{n}\right.$ with $\left.n \in \mathbb{Z}\right\}$ is a subgroup of $S L(2, \mathbb{Z})$ identical to the subgroup of Exercise ?? with $a \in \mathbb{Z}$. This subgroup is isomorphic to \mathbb{Z} as an additive group.
88. Let G be a group such that for every element $g \in G, g^{2}=e$. Show that G is abelian (i.e. $g f=f g$ for any $f, g \in G)$.

Solution: Let g, h be any two elements in G. Then since G is a group we have closure under group operation which implies $g h \in G$, hence $(g h)^{2}=e$ and expanding the left hand side out we have $g h g h=e$. Multiply this on the left by g and on the right by h to find $g^{2} h g h^{2}=g e h$, and since $g^{2}=h^{2}=e$ this simplifies to $h g=g h$, so the group is Abelian.
89. Show that the group \mathbb{Z}_{8}^{\times}has order 4 . Is it isomorphic either to \mathbb{Z}_{4} or to the Klein group V ?

Solution: The group table, from multiplication modulo 8 , is

\times	$\overline{1}$	$\overline{3}$	$\overline{5}$	$\overline{7}$
$\overline{1}$	$\overline{1}$	$\overline{3}$	$\overline{5}$	$\overline{7}$
$\overline{3}$	$\overline{3}$	$\overline{1}$	$\overline{7}$	$\overline{5}$
$\overline{5}$	$\overline{5}$	$\overline{7}$	$\overline{1}$	$\overline{3}$
$\overline{7}$	$\overline{7}$	$\overline{5}$	$\overline{3}$	$\overline{1}$

The Klein group V has table

\cdot	e	a	b	c
e	e	a	b	c
a	a	e	c	b
b	b	c	e	a
c	c	b	a	e

and clearly $\mathbb{Z}_{8}^{\times} \cong V$.
90. Write down the group table of the multiplicative group \mathbb{Z}_{9}^{\times}. Is this group isomorphic to \mathbb{Z}_{n} for any n ?

Solution: The group table of \mathbb{Z}_{9}^{\times}is

\times	$\overline{1}$	$\overline{2}$	$\overline{4}$	$\overline{5}$	$\overline{7}$	$\overline{8}$
$\overline{1}$	$\overline{1}$	$\overline{\bar{c}}$	$\overline{\bar{c}}$	$\overline{5}$	$\overline{7}$	$\overline{8}$
$\overline{2}$	$\overline{2}$	$\overline{4}$	$\overline{8}$	$\overline{1}$	$\overline{5}$	$\overline{7}$
$\overline{4}$	$\overline{4}$	$\overline{8}$	$\overline{7}$	$\overline{2}$	$\overline{1}$	$\overline{5}$
$\overline{5}$	$\overline{5}$	$\overline{1}$	$\overline{2}$	$\overline{7}$	$\overline{8}$	$\overline{4}$
$\overline{7}$	$\overline{7}$	$\overline{5}$	$\overline{1}$	$\overline{8}$	$\overline{4}$	$\overline{2}$
$\overline{8}$	$\overline{8}$	$\overline{7}$	$\overline{5}$	$\overline{4}$	$\overline{2}$	$\overline{1}$

The group table of \mathbb{Z}_{6}, with its elements re-arranged, is

+	$\overline{0}$	$\overline{1}$	$\overline{2}$	$\overline{5}$	$\overline{4}$	$\overline{3}$
$\overline{0}$	$\overline{0}$	$\overline{1}$	$\overline{2}$	$\overline{5}$	$\overline{4}$	$\overline{3}$
$\overline{1}$	$\overline{1}$	$\overline{2}$	$\overline{3}$	$\overline{0}$	$\overline{5}$	$\overline{4}$
$\overline{2}$	$\overline{2}$	$\overline{3}$	$\overline{4}$	$\overline{1}$	$\overline{0}$	$\overline{5}$
$\overline{5}$	$\overline{5}$	$\overline{0}$	$\overline{1}$	$\overline{4}$	$\overline{3}$	$\overline{2}$
$\overline{4}$	$\overline{4}$	$\overline{5}$	$\overline{0}$	$\overline{3}$	$\overline{2}$	$\overline{1}$
$\overline{3}$	$\overline{3}$	$\overline{4}$	$\overline{5}$	$\overline{2}$	$\overline{1}$	$\overline{0}$

The tables are the same, and so $\mathbb{Z}_{9}^{\times} \cong \mathbb{Z}_{6}$.
91. Write down the group table for $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$, the direct product of two copies of the cyclic group of order two, and compute its order. Is this group isomorphic to any group discussed during lectures?

Solution: Every element in $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ can be written as $\left(g_{1}, g_{2}\right)$ with $g_{1}, g_{2} \in \mathbb{Z}_{2}$. The order of the direct product group is the product of the orders of each \mathbb{Z}_{2} factors, i.e. it has order 4 and the elements are $\mathbb{Z}_{2} \times \mathbb{Z}_{2}=\{(0,0),(1,0),(0,1),(1,1)\}$ with group table given by

\cdot	$(0,0)$	$(1,0)$	$(0,1)$	$(1,1)$
$(0,0)$	$(0,0)$	$(1,0)$	$(0,1)$	$(1,1)$
$(1,0)$	$(1,0)$	$(0,0)$	$(1,1)$	$(0,1)$
$(0,1)$	$(0,1)$	$(1,1)$	$(0,0)$	$(1,0)$
$(1,1)$	$(1,1)$	$(0,1)$	$(1,0)$	$(0,0)$

which is clearly isomorphic to the Klein group.

