79.

Linear Algebra 1, Solutions to exercises 79 to 91.
Epiphany 21/22.

(a) Verify by direct computation that the Chebyshev-I operator

on

d2_d

[ x_
dz? dx
the space C[—1, 1] is symmetric with respect to the inner product given by the

E[ == (1 —IQ)

formula (f, g) = f_ll f(z)g(x)(1 — 22~ 2d.
(b) Find the matrix and the characteristic polynomial of the Chebyshev-I operator £;

on

the space R[z]3 (use the basis {1, z, 22 z3}).

(c¢) Hence find the Chebyshev-I polynomials of degree 2 and 3.

(d) What is the set of all eigenvalues of L as an operator on the space of all polynomi-

als

Rz]?

(e) Find the Chebyshev-I polynomial of degree 5. (For simplicity use the convention

in

which Chebyshev-I polynomials have leading coefficient 1, even if this is not

compatible with them having unit norm.)

Solution: (a) For any f,g € C[—1,1], apply integration by parts

@tng = [ (Vimar) g
TS apg, - /_llmf/gm
= —/1 V1—-22f'gdx.
-1

This is symmetric in f and g, so (L£;(f),9) = (L1(g), f), which equals (f, L;(g)) because
of the symmetry of the inner product. So L; is a symmetric operator.

Our operator transforms 1 to 0, = to —u, 22 to —4z2 + 2, 23 to —92% + 6. The
corresponding matrix is

0 O 2 0

0 -1 0 6

0O 0 —4 O

0 O 0 -9

The characteristic polynomial is pa(\) =det(A — AXI) = XA+ 1)(A+4)(A+9).

The eigenvector corresponding to —4 is (—1/2,0,1,0), which gives the eigenfunction
fa(x) = 22 — 1/2 (or fo(x) = 222 — 1). The eigenvector corresponding to —9 is
(0, —3/4,0,1)!, which gives the eigenfunction f3(z) = 23 — 3z/4 (or f3(z) = 42 — 3x).

Liz¥ = —k%z* + lower-order terms. So the matrix of £; acting on R[z]y with basis
{1,z,22,...,2N} is an upper triangular matrix with elements 0, —1,...,—k2,..., —N?
on its principal diagonal. Now if P is any eigenfunction in R[z], with eigenvalue X, then
P is a polynomial of some degree N, and so A € {0, —2,...,—k% ..., —N2}. Hence the

eigenvalues of £; on R[z] are {—k? | k € Z,k > 0}.
This polynomial can be written as Cs(z) = 2° + az* 4 ba?® + ca? + dx + e with unknown
coefficients a,b,c,d,e € R. Then C5(z) is an eigenfunction for £, with the eigenvalue
—25. Therefore,
(1 — 22)(2023 + 12a2” 4 6bx + 2¢) — (52 4 4az® + 3bx? + 2cx + d)
= —25(2° + az® + b2 + ca® + dx +e).



Comparing coefficients for z*, 23, 22, z and 1 we obtain

zt —12a — 4a = —25a;
3 20 — 6b — 3b = —25b;
z? 12¢ — 2¢ — 2¢ = —25¢;
T 6b — d = —25d;
1: 2c = —2be.

Therefore, a =c=e=0,b=—5/4 and d = 5/16, i.e. Ls(z) =" — 523 + L.

80. (a) Verify by direct computation that the Chebyshev-1I operator

d? d
Lij=(1—-2%)— —3x—
n=(=e )dx2 dz
on the space C[—1,1] is symmetric with respect to the inner product given by the

formula (f, g) f f(x )(1 — 22)2da.

(b) Find the matrix and the characteristic polynomial of the Chebyshev-II operator L£;;
on the space R[x]4 (use the basis {1, z, 2% 23, z}).

(c) What is the set of all eigenvalues of L;; as an operator on the space of all polynomials
Rlx]?

(d) Find the Chebyshev-II polynomial of degree 5. (For simplicity use the convention
in which Chebyshev-II polynomials have leading coefficient 1, even if this is not
compatible with them having unit norm.)

Solution: (a) For any f,g € C[—1,1], apply integration by parts
(L11(f),9) = /_11 ((1 - 332)3/2f/)/9d56
= 0l - [ -
- - 11(1—w2)3/2f’g’dz
Similarly,

(f: Lr(g)) = /1 f ((1 _ x2)3/2g/>/dx

-1

— (1 — 2?32, /f 2)8/2/

1

- _/ (1—22)32f'g'da.

-1

So, L satisfies the definition of symmetric operator.
(b) In the basis {1, 2,22 23 2%} the matrix of our operator is

0 0 2 0 0
0 -3 0 6 0
0 0 -8 0 12
0 0 0 —-15 O
0 0 O 0 -24

The characteristic polynomial is p4(A) = det(A—AI) = —A(A+3)(A+8)(A+15)(A+24).



(c) Lrrz* = —k(k+2)z*+lower-order terms. So the matrix of £;; acting on R[z] with basis

{1,z,22,...,2NY} is an upper triangular matrix with elements 0, —3, ..., —k(k+2),..., —N(N+2)
on its principal diagonal. Now if P is any eigenfunction in R[z], with eigenvalue \, then P
is a polynomial of some degree N, and so A € {0,-2,...,—k(k+2),...,—N(N +2)}.

Hence the eigenvalues of L;; on Rz] are {—k(k +2) | k € Z,k > 0}.

(d) This polynomial can be written as Cz(x) = z° + az? + ba3 + cx? + dz + e with some
unknown coefficients a,b,c,d,e € R. Then C}(z) is an eigenfunction for L;; with the
eigenvalue —35. Therefore

(1 — 22)(2023 + 12a2” + 6bx + 2¢) — 3x(52* + 4ax® + 3ba? + 2cx + d)
= —35(2° + az’ + ba® + ca® + dx +e).

Comparing coefficients for 2%, 23, 22,  and 1 we obtain

zh —12a — 12a = —35aq;
z3 20 — 6b — 9b = —35b;
z2 12¢ — 2¢ — 6¢ = —35c¢;
T 6b — 3d = —35d;
1: 2¢c = —3be.

Therefore, a=c=e=0,b=—1and d =3/16, i.e. Ls(x) = x® — 23+ %x.

81. Let F[27] be the vector space of all real 2m-periodic infinitely differentiable functions in
one variable ¢ with the inner product (f,g) = [7_ f(t)g(t)dt.

(a) Prove that the operator L = d?/dt* on F[27] is symmetric.

(b) Find all eigenvalues and eigenfunctions of the above operator L on F[27].

Solution: (a) For f,g € F[27] we have

™ s
(Lf.9)= | f'®at)dt=[ft)g®)]", [ ft)d(t)dt
—T —T
The first term is zero owing to the periodicity, and the second term is symmetric in f and
g. So (Lf,g) = (Lg, f) = (f,Lg), where the second equality follows from the symmetry
of the inner product. Thus the operator L is symmetric.

(b) The eigenvalue equation Lf = Af is a differential equation with the general solution
f(t) = Aexp(vV/At) + Bexp(—V/At). (or f(t) = At + B if A = 0). This is periodic iff
A= —n? withn =0,1,2,.... For each n > 0 we have two independent eigenfunctions,
namely cos(nt) and sin(nt). For A = 0 there is one eigenfunction, namely f = constant.

82. Let F[27] be the vector space from the above problem ?? and consider the operator
Ly =d/dt on F[2r].

(a) Prove that L; is skew-symmetric, i.e. for any f, g € F[2x], we have (L1 f, g) = —(f, L1g).

(b) Deduce that the only eigenfunctions for L in F'[27] are constant functions (with the
zero eigenvalue).

(c) Let Fr[27] be the complexification of the above F'[27]. Prove that the only eigenval-
ues for Ly on F¢[27] are complex numbers {ni | n € Z} and for each such number

A\, = ni, there is only one (up to a non-zero scalar factor) eigenfunction ™ in
F(C[27T ]



(d) Prove that the functions 1,e, e~ et =2t .  enit et are orthogonal in
Fc[27]. What are the norms of those functions?

Solution: (a) For f,g € F[27] we have
(mir0) = [ @ a0d =090, - [ f0d0d = (7, 119).

(b) If Lif = \f with f # 0, then (L1f, f) = —(f, L1f) gives A||f||*> = —A||f||* and hence
A=0. Sowe get L1 f = f/ =0 and thus f is constant.

(c) In the complex case, the inner product is (f,g) f f(t) dt The same calcula-
tion as in (b) now gives || f||2 = —\||f||%, and hence A has the form A = in with n
real. Thus the eigenfunction equation L1 f = Af says f' = inf, which has the solution
f(t) = Aexp(int). But for this to be 27-periodic, we need n to be an integer.

) Use f exp(ipt) exp(igt) dt = 2w if ¢ = —p, and zero if ¢ # —p. So the given functions
are mutually-orthogonal, and each has norm /2.

83. Prove that each of the following sets forms a group under ordinary multiplication.

(a) {2F|k € Z}.
(b) {11122’: |m,n € Z}.
(c) {cosf + isinf |0} where 6 runs over all rational numbers.

Solution: Associativity of the multiplication in the real or complex numbers implies associativity
in each case.
(a) 2¥2! = 2%+ implies closure. The identity is 1 = 2° and the inverse of 2¥ is 2%,
(b) Closure follows from the observation that the product of two odd numbers is odd. The
identity has m = n = 0. The inverse swaps the role of m and n.

(c) We are dealing with complex numbers of the form ¢ where @ is rational. The multiplica-
tion then just adds the relevant 6 values. That the sum of two rationals is rational gives
closure. The identity has 8 = 0 and the inverse for 0 requires the value —f which is also
rational.

84. Think of the integers Z as points equally spaced along the real line. Define two kinds of
transformations on Z:

(1) Translations of the form T, (where a is an integer) which have the effect of translating
Z a places to the right (if a > 0; or —a places to the left if a < 0) using the formula
n—n-+a.

(2) Reflections of the form R, (where ¢ is an integer) which have the effect of reflecting
Z in the point § using the formula n — ¢ —n.

Work out the effect of composing the following pairs of transformations: (a) T,7,, (b)
RJT,, (¢) T,R,., (d) RyR.. [In each case, because these are functions the compositions
have to be evaluated from right to left; e.g., 7,7, means first do 7, and then do 7;.]

Now let A be the set of all such T, and R.. Show that A is a group and that we can find
examples of elements g, h € A such that gh # hg, g*> = h? = e and Vs > 0, (gh)® # e.

Solution: (a) The effect of TyT, isn—n+ar—n+a+b, so TpTy, = Tyrp.
(b) The effect of RgT, isn—n+ar—d—(n+a)=(d—a)—n, so RgT, = Rq_,.
(c)n—c—n—b+c—mn,so ThR. = Ry



85. Let GG be the set of all 2 x 2 matrices of the form

87.

(dn—c—n—d—(c—n)=(d—c)+n,so RgR. =Ty_..
The above calculations show we have closure. The group law is composition of functions so
associativity holds. The identity is Ty. The inverse of T}, is T, and that of R, is R..

For the final bit, just take two different reflections. E.g., ¢ = R; and h = Ry. Then
g =h?>=e¢, gh=T, hg=T_1, and (gh)* =T}, # e.

(é T) where a € R. Show that G is

an abelian group under matrix multiplication. What is it isomorphic to?

Solution: Since (é ‘11)((1) Il’) = ((1) aJlrb), the product of two elements is precisely of the form <1 >

a
0 1
where @ = a+ b, so we have closure. Associativity comes from the fact that matrix multiplica-
tion is associative. Is is in G simply by choosing a = 0 and is the identity. Finally, the inverse
lay: (1—

of (0‘11) is (, )

Since (é‘f)(é ll’) = (é“irb) = ((1] ll’)((l) 1) the group is abelian and isomorphic to R as an additive
group.

Let G be the set of all 2 x 2 matrices of the form where a, b, d € R, and

a b
0 d
ad # 0. Show that G is a group under matrix multiplication.

With G as in part (a), define Z(G) = {¢g € G| such that,Vh € G, gh = hg}. Identify
the elements of Z(G) and show that it is also a group. [Z(G) is called the centre of
G\

Solution: (a) Since (35)(&1) = (% “/1¥") and R is closed under addition and multiplication we

(a)

(b)

0d
have that all entries are real and aedh # 0 since ad, eh # 0, we have closure. Associativity

comes from the fact that matrix multiplication is associative (this is a case where you
should not multiply out three example matrices two ways!). I is in G and is the identity.

. . ol —alpd-1y . . )
Finally, the inverse of (82) is (%, ad_bld ) with entries once more in R.

(b) Suppose (3 5) is in Z(G), so (" 37" = (3 D)Eh) = (G D) = (G 58P)
whenever ad # 0, or equivalently, Ab+ Bd = aB + bD whenever ad # 0. Taking a = 2,
d=1and b =0 shows B = 0; then taking b = 1shows A= D. If B=0and A= D the
equation is satisfied, so Z(G) = {(6‘2) with A # 0}. To see Z(G) is a group we note
that closure follows from (’32)(’3, 2,) = (A(’;V AE)4,), matrix multiplication is associative,
we get the identity for A =1, and (4 $) has inverse (Agl A0

The modular group is defined by SL(2,7Z) = {A = ( Z) witha, b, c,d € Zanddet A =
Show that SL(2,Z) is indeed a group under matrix multiplication (you may assume
associativity).

Show that 7" = (; 1) belongs to SL(2,Z) and compute 7™ with n € Z (for negative
integers 7" means (7~')"). What is the connection with Exercise 77 ?

Solution: (a) Since Z is a group, SL(2,7Z) is closed under matrix multiplication and inversion.

The identity matrix I € SL(2,7Z) so SL(2,7) is a group.

(b) T has clearly determinant +1 and all its entries are in Z so T' € SL(2,7Z). Furthermore
™ = ((1) 1) foralln € Z. This means that G = {T™ withn € Z} is a subgroup of SL(2, Z)
identical to the subgroup of Exercise 77 with a € Z. This subgroup is isomorphic to Z as
an additive group.

1}.



88. Let G be a group such that for every element g € G, g*> = e. Show that G is abelian (i.e.
9f = fgfor any f,g € G).

Solution: Let g, h be any two elements in G. Then since GG is a group we have closure under
group operation which implies gh € G, hence (gh)? = e and expanding the left hand side out
we have ghgh = e. Multiply this on the left by g and on the right by A to find g?hgh? = geh,
and since g = h? = e this simplifies to hg = gh, so the group is Abelian.

89. Show that the group Zg has order 4. Is it isomorphic either to Z, or to the Klein group V7

Solution: The group table, from multiplication modulo 8, is

=l o1 wl = X
| o1 ol = =
ot 31— ol el
Wl =] | oy o
=l ol ot 3| =3I

The Klein group V has table

o "9 O

QO S oo
S0 o QS
S o o oo
Q@ oo

and clearly Z§ = V.

90. Write down the group table of the multiplicative group Zg. Is this group isomorphic
to Z,, for any n?

Solution: The group table of Zg is

x|1 2 4 5 7 8
1(1 2 4 5 7 8
212 4 8 1 5 7
414 8 7 2 1 5
55 1 2 7 8 4
7|7 5 1 8 4 2
8(8 7 5 4 2 1

The group table of Zg, with its elements re-arranged, is
+10 1 2 5 4 3
0/0 1 2 5 4 3
111 2 3 0 5 4
212 3 4 1 0 5
5|/5 0 1 4 3 2
414 5 0 3 2 1
313 45 2 10

The tables are the same, and so Z; = Zs.

91. Write down the group table for Zy x Zs, the direct product of two copies of the cyclic
group of order two, and compute its order. Is this group isomorphic to any group discussed
during lectures?



Solution: Every element in Zo X Zso can be written as (g1, g2) with g1, g2 € Zo. The order of the
direct product group is the product of the orders of each Zs factors, i.e. it has order 4 and the
elements are Za x Zs = {(0,0), (1,0), (0,1), (1,1)} with group table given by

(0,0) | (0,0) (1,0) (0,1) (1,1)
(1L,0) | (LO) (0,0) (1,1) (0,1)
(0,1) | (0,1) (1,1) (0,0) (1,0)
(L1) | (L) (0,1) (1,0) (0,0

which is clearly isomorphic to the Klein group.



