MOVING HOMOLOGY CLASSES TO INFINITY

M. FARBER AND D. SCHÜTZ

ABSTRACT. Let $q: \tilde{X} \to X$ be a regular covering over a finite polyhedron with free abelian group of covering translations. Each nonzero cohomology class $\xi \in H^1(X; \mathbf{R})$ with $q^*\xi = 0$ determines a notion of "infinity" of the noncompact space \tilde{X} . In this paper we characterize homology classes z in \tilde{X} which can be realized in arbitrary small neighborhoods of infinity in \tilde{X} . This problem was motivated by applications in the theory of critical points of closed 1-forms initiated in [2], [3].

1. Introduction

Consider a regular covering $q: \tilde{X} \to X$ over a finite polyhedron X with free abelian group of covering translations $H \simeq \mathbf{Z}^r$. In the case of infinite cyclic coverings r=1 the space \tilde{X} has two ends [5] and one may specify an end of \tilde{X} by choosing a nonzero homomorphism $H \to \mathbf{R}$ viewed up to a positive multiplicative constant. According to the formalism of [5], in the case r>1 the space \tilde{X} has only one end. Nevertheless, as we show in this paper, for any $r\geq 1$ one has the notion of a neighborhood of infinity in \tilde{X} with respect to a nonzero linear map $H \to \mathbf{R}$ viewed up to a positive multiplicative constant. In other words, each nonzero cohomology class $\xi \in H^1(X; \mathbf{R})$ with $q^*\xi = 0$ determines a notion of "infinity" of the noncompact space \tilde{X} .

In this paper we characterize homology classes $z \in H_i(\tilde{X}; \mathbf{k})$ which can be realized by cycles lying in arbitrary small neighborhoods of infinity of \tilde{X} with respect to a given nonzero cohomology class $\xi \in H^1(X; \mathbf{R})$. This problem was motivated by applications in the theory of critical points of closed 1-forms initiated in [2], [3] where it was used (in the case of rank one classes only) to obtain cohomological lower bounds for $\operatorname{cat}(X,\xi)$. The main result of this paper states that a homology class z with coefficients in a field z is movable to infinity of z with respect to a cohomology class z of full rank z if and only if z is z if z if and only if z is the movable to infinity is in some sense independent of the direction z.

We also study the problem of describing the set of all "directions" $\mathcal{M}_z \subset H^1(X; \mathbf{R})$ with respect to which a given homology class is movable to infinity.

Date: August 24, 2005.

²⁰⁰⁰ Mathematics Subject Classification. Primary 55N25; Secondary 55U99.

The authors thank the Max-Planck Institute for Mathematics in Bonn for hospitality.

We show that this set is either empty or it is very large, see Theorem 2 for the exact statement.

The results of this paper generalize earlier work [2] which treats the simplest case of infinite cyclic covers $H \simeq \mathbf{Z}$. The main technical tool of our proof is an exact sequence (see (8)) relating the Novikov homology [7] with the \lim^0 and \lim^1 terms of an inverse system associated to neighborhoods of infinity. We later show that the \lim^1 -term vanishes.

It would be interesting to generalize the results of [3] where the problem of movability to infinity of homology classes with integral coefficients was studied for cyclic covers.

Techniques similar to those used here were employed in [6], [7], [8].

2. The Abel - Jacobi Map.

Let X be a connected finite cell complex and $q: \tilde{X} \to X$ a regular covering having a free abelian group of covering transformations $H \simeq \mathbf{Z}^r$. Because of the exact sequence

$$1 \to \pi_1(\tilde{X}) \to \pi_1(X) \to H \to 0,$$

the dual vector space $H^* = \operatorname{Hom}(H, \mathbf{R})$ can be identified with the subgroup of $H^1(X; \mathbf{R}) = \operatorname{Hom}(\pi_1(X); \mathbf{R})$ consisting of all cohomology classes $\xi \in H^1(X; \mathbf{R})$ such that $q^*(\xi) = 0 \in H^1(\tilde{X}; \mathbf{R})$. Denote $H_{\mathbf{R}} = H \otimes \mathbf{R}$; it is a vector space of dimension r containing H as a lattice.

Proposition 1. There exists a canonical Abel - Jacobi map $A: \tilde{X} \to H_{\mathbf{R}}$ having the following properties:

- (a) A is H-equivariant; here H acts on \tilde{X} by covering transformations and it acts on $H_{\mathbf{R}}$ by translations.¹
- (b) A is proper (i.e. the preimage of a compact subset of $H_{\mathbf{R}}$ is compact).
- (c) A is determined uniquely up to replacing it by a map $A': \tilde{X} \to H_{\mathbf{R}}$ of the form $A' = A + F \circ q$ where $F: X \to H_{\mathbf{R}}$ is a continuous map.

Proof. The Abel - Jacobi map A can be constructed as follows. Let e_1, \ldots, e_r be a free basis of H and let ξ_1, \ldots, ξ_r be the dual basis of H^* . Choose a continuous closed 1-form² ω_i on X lying in class ξ_i . Then the induced form $q^*(\omega_i) = df_i$ on \tilde{X} is exact; the function $f_i : \tilde{X} \to \mathbf{R}$ is determined uniquely up to adding a constant. One defines the Abel - Jacobi map A as follows

(1)
$$A(x) = \sum_{i=1}^{r} e_i \otimes f_i(x) \in H_{\mathbf{R}}, \quad x \in \tilde{X}.$$

¹We use additive notation for the group operation in H when H is viewed as a subgroup of $H_{\mathbf{R}}$; in all other circumstances we use multiplicative notation for the group operation of H. With these conventions statement (a) can be expressed by A(gx) = A(x) + g.

²For the notion of a continuous closed 1-form on a topological space we refer to [2, 4]. Briefly, a continuous closed 1-form on X is given by an open cover $\mathcal{U} = \{U\}$ of X and a continuous function $f_U : U \to \mathbf{R}$ for each open set $U \in \mathcal{U}$ such that for $U, V \in \mathcal{U}$ the difference $f_U - f_V$ is locally constant on $U \cap V$.

Let ω_i' be a different closed 1-form on X lying in cohomology class ξ_i . Then $\omega_i' = \omega_i + d\phi_i$ where $\phi_i : X \to \mathbf{R}$ and $q^*(\omega_i') = df_i'$ with $f_i' = f_i + \phi_i \circ q$. Hence we see that the new map A' has the form $A' = A + F \circ q$ where

$$F(x) = \sum_{i=1}^{r} e_i \otimes \phi_i(x), \quad x \in X.$$

To show that A (given by formula (1)) is H-equivariant note that for $g \in H$ and $x \in \tilde{X}$ one has $f_i(gx) = f_i(x) + \xi_i(g)$. Substituting into (1) one finds A(gx) = A(x) + g which proves (a).

Any equivariant map $A': \tilde{X} \to H_{\mathbf{R}}$ is of the the form (1) and hence the argument given above proves part (c).

To show that A is proper it is enough to show that any sequence $x_n \in \tilde{X}$ such that $A(x_n)$ converges to a vector $h \in H_{\mathbf{R}}$ has a convergent subsequence. If $h = \sum_{i=1}^r h_i e_i$ then our assumption is that for any $i = 1, \ldots, r$ the sequence $f_i(x_n)$ converges to h_i . Since X is compact we may assume that the sequence $q(x_n) \in X$ converges to a point $x_0 \in X$. Let $U \subset X$ be a small connected neighborhood of x_0 such that $q^{-1}(U)$ is a disjoint union $\bigcup_j U_j$ and each U_j is mapped homeomorphically onto U by q. We will also assume that U is so small that for any $x, x' \in U_j$ one has

(2)
$$|f_i(x) - f_i(x')| < 1/2, \quad i = 1, 2, \dots, r.$$

Let us show that for large n all points x_n lie in the same set U_j . This would clearly imply that the sequence x_n has a limit point. Suppose that $x_n \in U_j$ and $x_m \in gU_j$ where $g \in H$, $g \neq 0$. Find $i = 1, \ldots, r$ such that $|\xi_i(g)| \geq 1$. Then we have $|f_i(gx_n) - f_i(x_m)| < 1/2$ and $|f_i(gx_n) - f_i(x_n)| = |\xi_i(g)| \geq 1$ which together imply $|f_i(x_n) - f_i(x_m)| \geq 1/2$. The last inequality cannot be satisfied for large n and m as $f_i(x_n)$ converges to $h_i \in \mathbf{R}$, see above.

This completes the proof. \Box

3. Neighborhoods of infinity in \tilde{X} .

Consider again a connected finite cell complex X and a regular covering $q: \tilde{X} \to X$ with group of covering translations $H \simeq \mathbf{Z}^r$. Let $\xi \in H^1(X; \mathbf{R})$ be a nonzero cohomology class with the property $q^*(\xi) = 0$. As we observed above, ξ determines a linear functional $\xi_{\mathbf{R}}: H_{\mathbf{R}} \to \mathbf{R}$.

Definition 2. A subset $N \subset \tilde{X}$ is called a neighborhood of infinity in \tilde{X} with respect to the cohomology class ξ if N contains the set

(3)
$$\{x \in \tilde{X}; \ \xi_{\mathbf{R}}(A(x)) > c\} \subset N,$$

for some real $c \in \mathbf{R}$. Here $A : \tilde{X} \to H_{\mathbf{R}}$ is an Abel - Jacobi map for the covering $q : \tilde{X} \to X$.

This notion is independent of the choice of the Abel - Jacobi map $A: \tilde{X} \to H_{\mathbf{R}}$. Indeed, any other Abel - Jacobi map $A': \tilde{X} \to H_{\mathbf{R}}$ has the form $A' = A + F \circ q$ where $F: X \to H_{\mathbf{R}}$ is continuous. Since X is compact, there exists a constant C > 0 such that $|\xi_{\mathbf{R}}(F(y))| < C$ for all $y \in X$. Hence

 $\xi_{\mathbf{R}}(A(x)) > c$ implies $\xi_{\mathbf{R}}(A'(x)) > c - C$ and similarly $\xi_{\mathbf{R}}(A'(x)) > c$ implies $\xi_{\mathbf{R}}(A(x)) > c - C$ where $x \in \tilde{X}$.

Let $N \subset \widetilde{X}$ be a neighborhood of infinity with respect to ξ . For a covering transformation $g \in H$ the set gN is also a neighborhood of infinity with respect to ξ .

Lemma 3. Fix a cell structure on X and consider the induced cell structure on \tilde{X} . Then for any nonzero cohomology class $\xi \in H^1(X; \mathbf{R})$ with $q^*(\xi) = 0$ there exists a neighborhood of infinity $N \subset \tilde{X}$ with respect to ξ having the following properties:

- (A) N is a cell subcomplex of \tilde{X} ;
- (B) The complement $\ddot{X} N$ is a neighborhood of infinity with respect to the cohomology class $-\xi$;
- (C) For every cell e of X there is a lift \tilde{e} lying in N such that for $g \in H$ the cell $g\tilde{e} \subset N$ if and only if $\xi(g) \geq 0$;
- (D) If $N' \subset \tilde{X}$ is an arbitrary neighborhood of infinity with respect to ξ and if $g \in H$ is an arbitrary element with $\xi(g) > 0$ then there exists n > 0 such that $g^n N \subset N'$.

Proof. For each cell e_i of X choose a cell \tilde{e}_i of \tilde{X} covering e_i , where $i = 1, 2, \ldots, k$. We claim that one may choose the lifts \tilde{e}_i such that the following property holds: the boundary of any cell \tilde{e}_i lies in the union

(4)
$$\partial \tilde{e}_i \subset \bigcup_j g_j \tilde{e}_j, \quad \dim \tilde{e}_j = \dim \tilde{e}_i - 1,$$

where

(5)
$$\xi(g_j) \ge 0.$$

Note that the same cell \tilde{e}_j may appear in the union (4) several times with different covering translations g_j . The union (4) has finitely many terms. Lifts \tilde{e}_i with the above property can be constructed inductively with respect to dim e_i . For an arbitrary choice of lifts \tilde{e}_i condition (4) is satisfied and to achieve (5) one may have to replace \tilde{e}_i by $g^n\tilde{e}_i$ where $g \in H$, $\xi(g) > 0$ and n is large enough.

Now we set

$$N = \bigcup_{i=1}^k \left(\bigcup_{\xi(g) \ge 0} g\tilde{e}_i \right).$$

Here the union is taken with respect to all $g \in H$ with $\xi(g) > 0$ and with respect to i = 1, ..., k. Let us show that N satisfies conditions (A)-(D) of Lemma 3. Condition (A) is satisfies because of (4), (5). Condition (C) is obvious by construction. Now we want to show that N is a neighborhood of infinity with respect to ξ and that the complement $\tilde{X} - N$ is a neighborhood of infinity with respect to $-\xi$. Let $A: \tilde{X} \to H_{\mathbf{R}}$ be an Abel - Jacobi map. Since the closures of the cells \tilde{e}_i are compact there exist constants

L < K such that for any i = 1, ..., k and for any $x \in \tilde{e}_i$ one has $L < \xi_{\mathbf{R}}(A(x)) < K$. Then we see that $\{x \in \tilde{X}; \xi_{\mathbf{R}}(A(x)) > K\}$ is contained in N, and $\{x \in \tilde{X}; -\xi(A(x)) > -L\}$ is contained in $\tilde{X} - N$. We are left to prove statement (D). We know that $N \subset \{x \in \tilde{X}; \xi_{\mathbf{R}}(A(x)) > L\}$. If $c \in \mathbf{R}$ is such that $N' \supset \{x \in \tilde{X}; \xi(A(x)) > c\}$ then $g^n N \subset N'$ assuming that $n\xi(g) + L > c$. This completes the proof.

4. Homology classes movable to infinity.

Let X be a connected finite cell complex and $q: \tilde{X} \to X$ be a regular covering with free abelian group of covering translations $H \simeq \mathbf{Z}^r$. Let \mathbf{k} be a field. The following definition was introduced in [2] in the case r = 1.

Definition 4. A homology class $z \in H_i(\tilde{X}; \mathbf{k})$ is said to be movable to infinity of \tilde{X} with respect to a nonzero cohomology class $\xi \in H^1(X; \mathbf{R})$, $q^*(\xi) = 0$, if in any neighborhood N of infinity with respect to ξ there exists a (singular) cycle representing z.

Equivalently, a homology class $z \in H_i(\tilde{X}; \mathbf{k})$ is movable to infinity with respect to $\xi \in H^1(X; \mathbf{R})$ if z lies in the intersection

(6)
$$\bigcap_{N} \operatorname{Im} \left[H_{i}(N; \mathbf{k}) \to H_{i}(\tilde{X}; \mathbf{k}) \right]$$

where N runs over all neighborhoods of infinity in X with respect to ξ . This can also be expressed by saying that z lies in the kernel of the natural homomorphism

(7)
$$H_i(\tilde{X}; \mathbf{k}) \to \lim_{\leftarrow} H_i(\tilde{X}, N; \mathbf{k})$$

where in the inverse limit N runs over all neighborhoods of infinity in \tilde{X} with respect to ξ .

Example 5. Let X be a closed smooth manifold admitting a closed 1-form ω with no zeros. Then any homology class $z \in H_i(\tilde{X}; \mathbf{k})$ is movable to infinity with respect to $\xi = [\omega] \in H^1(X; \mathbf{R})$ assuming that $q^*(\xi) = 0$.

5. Statement of the main result.

The following theorem gives an explicit description of all movable homology classes. It generalizes the results of [2], §5 which treats the case of infinite cyclic covers $q: \tilde{X} \to X$.

Theorem 1. Let X be a finite cell complex and $q: \tilde{X} \to X$ be a regular covering having a free abelian group of covering transformations $H \simeq \mathbf{Z}^r$. Let $\xi \in H^1(X; \mathbf{R})$ be a nonzero cohomology class of rank r satisfying $q^*(\xi) = 0$. The following properties (A), (B), (C) of a nonzero homology class $z \in H_i(\tilde{X}; \mathbf{k})$ (where \mathbf{k} is a field) are equivalent:

(A) z is movable to infinity with respect to ξ .

- (B) Any singular cycle c in \tilde{X} realizing the class z bounds an infinite singular chain c' in \tilde{X} containing only finitely many simplices lying outside every neighborhood of infinity $N \subset \tilde{X}$ with respect to ξ .
- (C) There exists a nonzero element $x \in \mathbf{k}[H]$ such that $x \cdot z = 0$.

Note that the implications $(C) \Rightarrow (B) \Rightarrow (A)$ are straightforward (see below); the only nontrivial statement is the implication $(A) \Rightarrow (C)$. Let us explain why $(C) \Rightarrow (B)$. Suppose that the class $z \in H_i(\tilde{X}; \mathbf{k})$ is torsion, i.e. $x \cdot z = 0$ where $x \in \mathbf{k}[H]$, $x \neq 0$. Without loss of generality we may assume that x = 1 - y where $y \in \mathbf{k}[H]$ has the form $y = \sum a_j g_j$ where $a_j \in \mathbf{k}$, $g_j \in H$ and $\xi(g_j) > 0$. Let c be a chain representing the class z. Then the cycle $x \cdot c$ bounds, i.e. $(1 - y) \cdot c = \partial c_1$ where c_1 is a finite chain in \tilde{X} . Set $c' = c_1 + yc_1 + y^2c_1 + \ldots$. Then $\partial c' = c$ and c' has finitely many simplices lying outside every neighborhood of infinity $N \subset \tilde{X}$ with respect to ξ .

The proof of Theorem 1 will be completed in $\S 9$. Note that property (C) does not involve the class ξ ; we derive some implications of this fact in $\S 10$.

6. The lim¹ Exact sequence.

In this section we describe an exact sequence which will be used in the proof of Theorem 1. As above, let $q: \tilde{X} \to X$ be a regular covering of a finite cell complex X. We assume that the group of covering translations is free abelian $H \simeq Z^r$. Let $\xi \in H^1(X; \mathbf{R})$ be a nonzero cohomology class with $q^*(\xi) = 0$. Such ξ can be viewed as a group homomorphism $\xi : H \to \mathbf{R}$, where $\xi(gg') = \xi(g) + \xi(g')$ for $g, g' \in H$. Note that now we use multiplicative notation for the group operation in H. Consider the group ring $\mathbf{k}[H]$ and its Novikov completion $\widehat{\mathbf{k}[H]}_{\xi}$. Elements of $\mathbf{k}[H]$ are finite sums of the form $\sum a_i g_i$ where $a_i \in \mathbf{k}$ and $g_i \in H$. Elements of $\widehat{\mathbf{k}[H]}_{\xi}$ are countable sums $\sum a_i g_i$ having the property $\lim_{i \to +\infty} \xi(g_i) = +\infty$.

Note that the Novikov completion $\mathbf{k}[H]_{\xi}$ is a field assuming that $\xi: H \to \mathbf{R}$ is injective, i.e. $\mathrm{rk}(\xi) = r$. Indeed, if $x \in \widehat{\mathbf{k}[H]}_{\xi}$ is nonzero then x can be written in form $\sum a_i g_i$ with $a_i \neq 0$ and $\xi(g_1) < \xi(g_2) < \xi(g_3) < \dots$ tends to infinity. Hence $a_1^{-1}g_1^{-1}x = 1 - y$ where $y = \sum b_j g_j' \in \widehat{\mathbf{k}[H]}_{\xi}$ is such that $\xi(g_j') \geq \epsilon > 0$. We see that $x^{-1} = (1 + y + y^2 + \dots) \cdot g_1^{-1}a_1^{-1}$ and the series converges in the completed ring $\widehat{\mathbf{k}[H]}_{\xi}$.

Proposition 6. Assume that $\xi \in H^1(X; \mathbf{R})$ is nonzero and $q^*(\xi) = 0$. Then there is an exact sequence

(8)
$$0 \to \lim_{\leftarrow} H_{q+1}(\tilde{X}, N; \mathbf{k}) \to H_q(\tilde{X}; \widehat{\mathbf{k}[H]}_{\xi}) \to \lim_{\leftarrow} H_q(\tilde{X}, N; \mathbf{k}) \to 0,$$

where N runs over all neighborhoods of infinity in \tilde{X} with respect to ξ .

A similar exact sequence appears (in a slightly different context) in the thesis of J.-C. Sikorav. In Proposition 13 below we show that the \lim^{1} term in (8) vanishes assuming that ξ has maximal rank.

Proof. For any real number $a \in \mathbf{R}$ denote $H_a = \{g \in H; \xi(g) \geq a\}$. If $a \geq 0$ then $H_a \subset H$ is a sub-semigroup. Consider the semigroup ring $B = \mathbf{k}[H_0]$; here H_0 is H_a with a = 0. We view the whole group ring $\mathbf{k}[H]$ as a $(\mathbf{k}[H] - B)$ -bimodule which we denote M. Similarly, for $a \in \mathbf{R}$, a > 0 denote $M_a = \mathbf{k}[H_a] \subset M$; it is an B-submodule of M. We have an isomorphism

(9)
$$\widehat{\mathbf{k}[H]}_{\xi} = \lim M/M_a$$

where in the inverse limit a tends to $+\infty$. Note that in the last equation both sides are $(\mathbf{k}[H] - B)$ -bimodules and (9) is an isomorphism of bimodules.³

Fix a cellular neighborhood of infinity N in X with respect to ξ as constructed in Lemma 3. The semigroup H_0 acts on N preserving the cell structure. Let $C_*(N)$ denote the cellular chain complex of N; it is a chain complex of B-modules. Note that $C_i(N)$ is a finitely generated free B-module by Lemma 3, condition (C). We have

$$(10) M \otimes_B C_*(N) = C_*(\tilde{X});$$

this is an isomorphism of $\mathbf{k}[H]$ -modules.

Fix a group element $g \in H$ with $\xi(g) > 0$. For $n \to \infty$ the sets $g^n N$ form a basis of neighborhoods of infinity with respect to ξ (by statement (4) of Lemma 3). Let C_n denote the chain complex $C_*(\tilde{X})/C_*(g^n N)$ where $n \in \mathbf{Z}$, $n \to +\infty$. The map $C_{n+1} \to C_n$ is an epimorphism and hence the inverse system $\{C_n\}$ satisfies the Mittag - Leffler condition, see [9]. We obtain using (10) that the inverse limit chain complex can be identified with

$$\lim_{\leftarrow} C_n = \left(\lim_{\leftarrow} M/M_a\right) \otimes_B C_*(N)$$

$$= \widehat{\mathbf{k}[H]}_{\xi} \otimes_{B} C_{*}(N) = \widehat{\mathbf{k}[H]}_{\xi} \otimes_{\mathbf{k}H} C_{*}(\tilde{X})$$

By Theorem 3.5.2 from [9] we have an exact sequence

$$0 \to \lim_{\leftarrow} H_{q+1}(C_n) \to H_q(\lim_{\leftarrow} C_n) \to \lim_{\leftarrow} H_q(C_n) \to 0.$$

As the discussion above shows, the middle term can be identified with the module $H_q(\tilde{X}; \widehat{\mathbf{k}[H]}_{\xi})$, the term on the right is $\lim_{\longleftarrow} H_q(\tilde{X}, N; \mathbf{k})$ and the term on the left is $\lim_{\longleftarrow} H_{q+1}(\tilde{X}, N; \mathbf{k})$. This completes the proof.

Proposition 6 is true for any commutative ring \mathbf{k} .

7. Some commutative algebra.

In this section we discuss curious properties of a localization of the ring $B = \mathbf{k}[H_0]$ which appeared in the previous section. Recall our notations: \mathbf{k} is a field; $H = \mathbf{Z}^r$ is a free abelian group of rank $r \geq 1$; $\xi : H \to \mathbf{R}$ is a group homomorphism and finally $H_0 = \{h \in H; \xi(h) \geq 0\}$. In this section

³Note that M/M_a is not a left $\mathbf{k}[H]$ -module but the limit is.

we will require ξ to be injective. Clearly H_0 is a sub-semigroup of H. For $a \in \mathbb{R}$, $a \geq 0$, we denote

$$H_{\geq a} = \{g \in H; \xi(g) \geq a\}, \quad H_{>a} = \{g \in H; \xi(g) > a\}.$$

These are subsemigroups of $H_0 = H_{>0}$. We also denote

$$J_{\geq a} = \mathbf{k}[H_{\geq a}], \quad J_{>a} = \mathbf{k}[H_{>a}];$$

these are ideals of B. One has $J_{\geq a} \supset J_{>a}$ and the ideals $J_{\geq a}$ and $J_{>a}$ coincide assuming that $a \notin \xi(H)$.

Let $S=1+J_{>0}$ be the set of all elements of the form 1+x where $x\in J_{>0}$. Obviously $S\subset B$ is a multiplicative subset. The ring B' is obtained by inverting elements of S, i.e. $B'=S^{-1}B$. Any ideal $J\subset B$ determines ideal $J'=S^{-1}J\subset B'$. In particular, the ideals $J_{\geq a},\,J_{>a}\subset B$ determine the ideals $J'_{\geq a},\,J'_{>a}\subset B'$.

For r=1 the ring B is simply the polynomial ring $\mathbf{k}[T]$ in one variable. It follows that for r=1 the rings B and B' are principal ideal domains. For r>1 the rings B and B' are not Noetherian, see below. However even for r>1 the ring B' retains some of the properties of principal ideal domains. For instance, we show that every finitely generated ideal of B' is principal. Also, we give a full classification of finitely presented B'-modules.

Lemma 7.

- (A) For $a \in \xi(H)$, $a \ge 0$, the ideal $J'_{>a} \subset B'$ is principal.
- (B) If r > 1 the ideal $J'_{>a} \subset B'$ is not finitely generated.
- (C) Any finitely generated ideal of B' coincides with $J'_{\geq a}$ for some $a \geq 0$, $a \in \xi(H)$. Hence any finitely generated ideal of B' is principal.
- (D) Let r > 1. Then any ideal of B' which is not finitely generated coincides with one of the ideals $J'_{>a}$ for some a > 0.

Proof. If $g \in H$ is such that $\xi(g) = a$ then g generates $\mathbf{k}[H_{\geq a}] = J_{\geq a}$; this proves (A). If r > 1 then the image $\xi(H) \subset \mathbf{R}$ is dense. One has

$$J'_{>a} = \bigcup_{b \in \xi(H), \ b > a} \ J'_{\geq b}.$$

This implies (B) as any finite set of elements of $J'_{>a}$ lies in some $J'_{\geq b}$, where b > a, and hence it cannot generate $J'_{>a}$ since $J'_{\geq b} \subseteq J'_{>a}$.

Any nonzero element $x \in B'$ can be written in the form x = gu where $g \in H_0$ and u is an invertible element of B'. Moreover, this representation is unique as the only group element $g \in H_0$ which is invertible in B' is g = 1. Now assume that $x_1, \ldots, x_k \in B$ generate an ideal $J \subset B'$. Write $x_i = g_i u_i$ where $g_i \in H$ and u_i is a unit. We obtain that J is also generated by the group elements $g_1, \ldots, g_k \in H_0$. Therefore, J coincides with $J'_{\geq a}$ where $a = \min\{\xi(g_i); i = 1, \ldots, k\}$. This proves (C).

Let $J \subset B'$ be an ideal which has no finite generating set. Let $\{x_i\}_{i \in I}$ be an infinite generating set where $x_i \in B'$. As above, we may write $x_i = g_i u_i$

where $g_i \in H_0$ and u_i is a unit. Let a be the infimum of the numbers $\xi(g_i)$. If $a = \xi(g_i)$ for some i then x_i generates J and $J = J'_{\geq a}$ is principal. If $a < \xi(g_i)$ for all $i \in I$ then clearly $J = J'_{\geq a}$. This proves (D).

Lemma 8. Let $f: F_1 \to F_0$ be a homomorphism between finitely generated free B'-modules. Denote $m = \operatorname{rk}(F_1)$, $n = \operatorname{rk}(F_0)$. Then there exist free basis $\alpha_1, \ldots, \alpha_m \in F_1$ and $\beta_1, \ldots, \beta_n \in F_0$ and an integer $k \leq \min\{m, n\}$ such that

(11)
$$f(\alpha_i) = g_i \beta_i, \quad i = 1, \dots, k,$$

and

(12)
$$f(\alpha_i) = 0, \quad i = k+1, \dots, m.$$

Here $g_i \in H$ are group elements satisfying $0 \le \xi(g_1) \le \xi(g_2) \le \cdots \le \xi(g_k)$.

Proof. Start with arbitrary free basis $\alpha_1, \ldots, \alpha_m \in F_1$ and $\beta_1, \ldots, \beta_n \in F_0$ and write

$$f(\alpha_i) = \sum_{j=1}^n a_{ij}\beta_j$$
, where $i = 1, \dots, m$, $a_{ij} \in B'$.

Find the largest number $a \geq 0$ such that one has $a_{ij} \in J'_a$ for all i, j. Without loss of generality we may assume that the element $a_{11} \in B'$ is such that $a_{11} = gu$ where $g \in H$, $\xi(g) = a$ and $u \in B'$ is a unit. Now we may replace the initially chosen basis by $\alpha'_1, \ldots, \alpha'_m \in F_1$ and $\beta'_1, \ldots, \beta'_n \in F_0$ where

$$\alpha'_{1} = \alpha_{1},$$
 $\alpha'_{i} = \alpha_{i} - a_{i1}g^{-1}u^{-1}\alpha_{1}, \quad i = 2, ..., n,$
 $\beta'_{1} = u\beta_{1} + \sum_{j=2}^{n} a_{1j}g^{-1}\beta_{j},$
 $\beta'_{i} = \beta_{i}, \quad i = 2, ..., m.$

Note that $a_{ij}g^{-1}u^{-1}$ and $a_{1j}g^{-1}$ are well defined as elements of B'. In the new basis we have

$$f(\alpha'_1) = g\beta'_1$$
 and $f(\alpha'_i) = \sum_{i=2}^n a'_{ij}\beta'_j$.

Our statement now follows by induction.

Corollary 9. Let $f: F_1 \to F_0$ be a homomorphism between free B'-modules of finite rank. Then the kernel Ker(f) is free and its rank is at most $rk(F_1)$. Similarly, the image Im(f) is free and its rank is at most $rk(F_0)$.

Corollary 10. Any finitely presented B'-module M is isomorphic to a finite direct sum of the form $B' \oplus B' \oplus \cdots \oplus B' \oplus C_1 \oplus \cdots \oplus C_k$ where each module C_i has the form $C_i = B'/(g_iB')$ with $g_i \in H$, $\xi(g_i) > 0$.

Note that the isomorphism type of each "cyclic" module $C_i = B'/(g_i B')$ is fully determined by the real number $a_i = \xi(g_i) > 0$.

Corollary 11. Let M be a finitely presented B'-module. Then there exists a group element $g \in H$ with $\xi(g) \geq 0$ such that for any torsion element $m \in M$ one has gm = 0.

Proof. Take $g \in H$ such that $\xi(g) \ge \max\{\xi(g_i), i = 1, \dots, k\}$ where $g_i \in H$ appear in the previous Corollary.

Corollary 12. Let C_* be a free chain complex of B'-modules such that each module C_i is finitely generated. Then each homology module $H_i(C)$ is finitely presented.

Proof. Let $d: C_i \to C_{i-1}$ be the boundary homomorphism. Using Corollary 9 we find that the module of cycles $Z_i = \text{Ker}(d)$ as well as the module of boundaries $B_{i-1} = \text{Im}(d)$ are finitely generated free modules. Therefore $H_i(C) = Z_i/B_i$ is finitely presented.

8. Vanishing of the lim¹ term.

We now show that under certain conditions the \lim^{1} term of the exact sequence (8) vanishes.

Proposition 13. Let X be a finite CW-complex and $q: \tilde{X} \to X$ a normal covering with free abelian group of covering translations $H \simeq \mathbf{Z}^r$. Let $\xi \in H^1(X; \mathbf{R})$ be a cohomology class of rank $r = \operatorname{rk}(H)$ such that $q^*(\xi) = 0$. Then for any field \mathbf{k} one has

(13)
$$\lim_{\leftarrow} H_q(\tilde{X}, N; \mathbf{k}) = 0$$

where N runs over all neighborhoods of infinity in \tilde{X} with respect to ξ .

To prove Proposition 13 we show that the inverse system $H_q(\tilde{X}, N; \mathbf{k})$ satisfies the Mittag-Leffler condition (see [9], Proposition 3.5.7), i.e. that for any neighborhood of infinity $N \subset \tilde{X}$ there exists a neighborhood of infinity $N' \subset N$ such that for any neighborhood of infinity $N'' \subset N'$ one has

(14)
$$\operatorname{Im}\left[H_q(\tilde{X}, N'') \to H_q(\tilde{X}, N)\right] = \operatorname{Im}\left[H_q(\tilde{X}, N') \to H_q(\tilde{X}, N)\right].$$

In (14) all homology groups are with coefficients in the field \mathbf{k} and all neighborhoods of infinity are with respect to a fixed cohomology class ξ , see above. Equality (14) follows from the following slightly stronger statement:

Proposition 14. Let $N \subset \tilde{X}$ be a neighborhood of infinity with respect to ξ . Then there exists a neighborhood of infinity $N' \subset N$ such that

(15)
$$\operatorname{Im}\left[H_q(\tilde{X}) \to H_q(\tilde{X}, N)\right] = \operatorname{Im}\left[H_q(\tilde{X}, N') \to H_q(\tilde{X}, N)\right],$$

where all homology groups have k (i.e. a field) as the ring of coefficients.

This can be expressed by saying that for any N there exists $N' \subset N$ such that any cycle of \tilde{X} relative to N which can be refined to a cycle relative to N' can be refined to an absolute cycle in \tilde{X} . Proposition 14 clearly implies the Mittag-Leffler condition and hence Proposition 13.

Proof of Proposition 14. We will first prove Proposition 14 assuming that N is a neighborhood of infinity as in Lemma 3.

Let $C_*(N)$ and $C_*(\tilde{X})$ denote the cellular chain complexes of N and \tilde{X} with coefficients in \mathbf{k} . They are naturally B-modules where $B = \mathbf{k}[H_0]$. As above, let $S \subset B$ denote the multiplicative subset of all elements of the form 1+x where $x \in J_{>0}$. Consider the localized complexes $S^{-1}C_*(N)$ and $S^{-1}C_*(\tilde{X})$ which we will denote by $C'_*(N)$ and $C'_*(\tilde{X})$ correspondingly. The canonical inclusions $C_*(N) \to C'_*(N)$ and $C_*(\tilde{X}) \to C'_*(\tilde{X})$ determine a chain homomorphism $F: C_*(\tilde{X})/C_*(N) \to C'_*(\tilde{X})/C'_*(N)$. We claim that F is an isomorphism. Injectivity of F is equivalent to $C_*(\tilde{X}) \cap C'_*(N) = C_*(N)$ (which is obvious) and surjectivity of F is equivalent to $C_*(\tilde{X}) + C'_*(N) = C'_*(\tilde{X})$. The latter follows from the following observation: if $c \in C_*(\tilde{X})$ and $c \in C_*(\tilde{X})$ and $c \in C_*(\tilde{X})$ then the "fractional" chain $c \in C_*(\tilde{X})$ and $c \in C_*(\tilde{X})$ and $c \in C_*(\tilde{X})$ then the "fractional" chain $c \in C_*(\tilde{X})$ and $c \in C_*(\tilde{X})$ then the "fractional" chain $c \in C_*(\tilde{X})$ and $c \in C_*(\tilde{X})$

(16)
$$\frac{c}{1-x} = [c + xc + x^2c + \dots + x^{k-1}c] + \frac{x^kc}{1-x}$$

where the term in the square brackets lies in $C_*(X)$ and the fraction in the RHS lies in $C'_*(N)$ for k large enough.

The short exact sequence of chain complexes over the ring $B' = S^{-1}B$

$$0 \to C'_*(N) \to C'_*(\tilde{X}) \to C_*(\tilde{X})/C_*(N) \to 0$$

gives the exact sequence

$$\cdots \to H'_q(N) \xrightarrow{i_*} H'_q(\tilde{X}) \to H_q(\tilde{X}, N) \xrightarrow{\partial} H'_{q-1}(N) \to \cdots$$

where $H'_*(N)$ denotes homology of the complex $C'_*(N)$ and similarly for $H'_*(\tilde{X})$; the symbol $H_q(\tilde{X},N)$ denotes $H_q(\tilde{X},N;\mathbf{k})$. Note that each homology module $H'_*(N)$ is finitely presented over B' (by Corollary 12) and the kernel of the homomorphism $i_*:H'_q(N)\to H'_q(\tilde{X})$ coincides with the torsion submodule⁴ of $H'_q(N)$. Applying Corollary 11 we obtain that there exists a group element $g\in H$ with $\xi(g)\geq 0$ such that multiplication by g annihilates the torsion submodule of $H'_q(N)$. Hence we obtain that the composition

(17)
$$H_{q+1}(\tilde{X}, N) \xrightarrow{\partial} H'_q(N) \xrightarrow{g} H'_q(N)$$

is trivial. This implies triviality of the composition

(18)
$$H_{q+1}(\tilde{X}, N) \xrightarrow{g} H_{q+1}(\tilde{X}, N) \xrightarrow{\partial} H'_{q}(N)$$

and thus the image $\text{Im}[g:H_{q+1}(\tilde{X},N)\to H_{q+1}(\tilde{X},N)]$ coincides with $\text{Im}[H'_{q+1}(\tilde{X})\to H_{q+1}(\tilde{X},N)].$

⁴Since $H'_q(\tilde{X}) = Q(\mathbf{k}[H]) \otimes_{S^{-1}B} H'_q(N)$ where $Q(\mathbf{k}[H])$ is the field of fractions of $\mathbf{k}[H]$.

Notice that $\operatorname{Im}[H'_{q+1}(\tilde{X}) \to H_{q+1}(\tilde{X}, N)] = \operatorname{Im}[H_{q+1}(\tilde{X}) \to H_{q+1}(\tilde{X}, N)]$ as easily follows from (16).

This proves the claim of Proposition 14 for the specially chosen neighborhood N if one sets $N' = gN \subset N$.

To prove Proposition 14 for an arbitrary neighborhood of infinity $N_1 \subset \tilde{X}$ we note that for some $g_1 \in H$ with $\xi(g_1) > 0$ one has $g_1 N \subset N_1$, see Lemma 3. Then $g_1 N' \subset N_1$ and we have

$$\operatorname{Im}[H_q(\tilde{X}, g_1 N') \to H_q(\tilde{X}, N_1)] =$$

$$\operatorname{Im}[H_q(\tilde{X}, g_1 N') \to H_q(\tilde{X}, g_1 N) \to H_q(\tilde{X}, N_1)] =$$

$$\operatorname{Im}[H_q(\tilde{X}) \to H_q(\tilde{X}, g_1 N) \to H_q(\tilde{X}, N_1)] =$$

$$\operatorname{Im}[H_q(\tilde{X}) \to H_q(\tilde{X}, N_1)]. \quad \Box$$

9. Proof of Theorem 1.

Let $C_* = C_*(\tilde{X})$ be the cellular chain complex of \tilde{X} with coefficients in \mathbf{k} . It is free and finitely generated over $\mathbf{k}[H]$. Consider two larger rings

$$\mathbf{k}[H] \subset Q(\mathbf{k}[H]) \subset \widehat{\mathbf{k}[H]}_{\xi}$$

where $Q(\mathbf{k}[H])$ is the field of quotients of $\mathbf{k}[H]$. Accordingly, we have three chain complexes $C_* \subset C'_* \subset C''_*$ where $C_* = C_*(\tilde{X})$ and $C'_* = Q(\mathbf{k}[H]) \otimes_{\mathbf{k}[H]} C_*$ is obtained by localization while $C''_* = \widehat{\mathbf{k}[H]}_{\xi} \otimes_{\mathbf{k}[H]} C_*$ is obtained by completion. The induced homomorphisms on homology are

(19)
$$H_i(\tilde{X}; \mathbf{k}) \xrightarrow{\alpha} H_i(C') \xrightarrow{\beta} H_i(C'').$$

We claim (1) that β is injective and (2) that the kernel of the composition $\beta \circ \alpha$ coincides with the set of homology classes $z \in H_i(\tilde{X}; \mathbf{k})$ which are movable to infinity with respect to ξ . Claim (1) follows since $\widehat{\mathbf{k}[H]}_{\xi}$ contains $Q(\mathbf{k}[H])$ as a subfield. Claim (2) follows since $H_i(C'') \simeq \lim_{\leftarrow} H_i(\tilde{X}, N; \mathbf{k})$ by Propositions 6 and 13, and (7).

From these two claims it follows that the set of homology classes $z \in H_i(\tilde{X}; \mathbf{k})$ which are movable to infinity with respect to ξ coincides with the kernel of α . Since α is a localization homomorphism with respect to the set of all nonzero elements of the ring $\mathbf{k}[H]$ we obtain that a homology class $z \in H_i(\tilde{X}; \mathbf{k})$ lies in its kernel if and only if it is torsion.

10. The set of directions with respect to which a given homology class is movable to infinity.

Let X be a finite cell complex and $q: \tilde{X} \to X$ be a regular covering having a free abelian group of covering transformations $H \simeq \mathbf{Z}^r$. Fix a homology

class $z \in H_i(\tilde{X}; \mathbf{k})$ and consider the set

$$\mathcal{M}_z \subset H^* \subset H^1(X; \mathbf{R})$$

of all cohomology classes $\xi \in H^1(X; \mathbf{R})$ with $q^*(\xi) = 0$ such that z is movable to infinity with respect to ξ . In this section we discuss the structure of the set \mathcal{M}_z .

Theorem 2. If \mathcal{M}_z contains a cohomology class $\xi \in H^1(X; \mathbf{R})$ with $\operatorname{rk}(\xi) = r$ then \mathcal{M}_z contains a set of the form $H^* - \bigcup_{j=1}^k Q_j$ where each $Q_j \subset H^*$ is an integral hyperplane

(20)
$$Q_j = \{ \xi \in H^*; \, \xi(\gamma_j) = 0 \} = \gamma_j^{\perp}, \quad j = 1, \dots, k,$$

where $\gamma_j \in H$, $\gamma_j \neq 1 \in H$. In particular, if \mathcal{M}_z contains a single rank r cohomology class then it contains all classes $\xi' \in H^*$ with $\operatorname{rk}(\xi') = r$.

Proof. Let z be movable to infinity with respect to ξ , where $\operatorname{rk}(\xi) = r$. By Theorem 1 there exists a nonzero element $x \in \mathbf{k}[H]$ such that $x \cdot z = 0$. We can write $x = \sum_{h \in H} a_h h$, $a_h \in \mathbf{k}$ with only finitely many $a_h \neq 0$. Let $\sup x = \{h \in H : a_h \neq 0\}$. Consider the finite set $\{h_1 h_2^{-1} \in H; h_1, h_2 \in \sup x, h_1 \neq h_2\}$; we can write this set as $\{\gamma_1, \ldots, \gamma_k\}$ for some integer k; here $\gamma_j \in H$. Each γ_j determines the hyperplane Q_j given by (20).

Let us show that any class $\xi' \in H^*$ which does not lie in the union of hyperplanes Q_j belongs to \mathcal{M}_z . Indeed, if $\xi' \in H^* - \bigcup_{j=1}^k Q_j$ then $\xi'(h_1) \neq \xi'(h_2)$ for any pair of distinct $h_1, h_2 \in \operatorname{supp} x$. Now we can use the relation $x \cdot z = 0$ and repeat the argument of the easy part $(C) \Rightarrow (B) \Rightarrow (A)$ of the proof of Theorem 1 (see §5) with the class ξ' replacing ξ .

Theorem 2 implies that if \mathcal{M}_z contains a cohomology class of rank r then it also contains a cohomology class of rank 1. The next statement shows that the converse also holds.

Proposition 15. If \mathcal{M}_z contains a cohomology class of rank 1 then it contains a cohomology class of rank r and hence the conclusion of Theorem 2 holds.

Proof. The proof is similar to the proof of [2, Lm.5.3]. Let ξ be a rank 1 cohomology class such that z is movable to infinity with respect to ξ . We show that there exists a nonzero $x \in \mathbf{k}[H]$ such that $x \cdot z = 0$; the result then follows from Theorem 1. Let $\Gamma \subset H$ denote the kernel of the surjective homomorphism $\xi : H \to \mathbf{Z}$. Then $\mathbf{k}[H] = \mathbf{k}[\Gamma][t, t^{-1}]$ where t is mapped to 1 under ξ . Choose a finite subcomplex $K \subset \tilde{X}$ with $H \cdot K = \tilde{X}$ such that $z \in \text{Im}(i_* : H_q(K; \mathbf{k}) \to H_q(\tilde{X}; \mathbf{k}))$.

Note that $H_q(\Gamma \cdot K; \mathbf{k})$ is a finitely generated $\mathbf{k}[\Gamma]$ -module. Here $\Gamma \cdot K$ denotes the union $\bigcup_{g \in \Gamma} gK$. This claim follows since $\mathbf{k}[\Gamma]$ is Noetherian and the complex $\Gamma \cdot K$ has finitely many Γ -orbits of cells.

By the choice of K we know that z can be represented in $H_q(\Gamma \cdot K; \mathbf{k})$. Since z is movable to infinity with respect to ξ we get that z can be represented in $H_q(\bigcup_{k>N} t^k \Gamma \cdot K; \mathbf{k})$ for every $N \in \mathbf{Z}$. Let N be a positive integer such that $\Gamma \cdot K \cap t^N \Gamma \cdot K = \emptyset$. Let us show that for every $k \geq N$ the class z lies in $\text{Im}(i_* : H_q(t^k \Gamma \cdot K; \mathbf{k}) \to H_q(\tilde{X}; \mathbf{k}))$.

Let $B = \bigcup_{r \geq k} t^r \Gamma \cdot K$ and $C = \bigcup_{r \leq k} t^r \Gamma \cdot K$. Then $\tilde{X} = B \cup C$ and by a suitable choice of K we can achieve that $B \cap C = t^k \Gamma \cdot K$. Our claim now follows from the Mayer-Vietoris sequence

$$\dots \longrightarrow H_q(B \cap C; \mathbf{k}) \longrightarrow H_q(B; \mathbf{k}) \oplus H_q(C; \mathbf{k}) \longrightarrow H_q(\tilde{X}; \mathbf{k}) \longrightarrow \dots$$

since z can be represented in $H_q(B; \mathbf{k})$ and $H_q(C; \mathbf{k})$. Denote

$$V = \bigcap_{k>N} \operatorname{Im} \left(i_* : H_q(t^k \Gamma \cdot K; \mathbf{k}) \to H_q(\tilde{X}; \mathbf{k}) \right).$$

Since $\mathbf{k}[\Gamma]$ is Noetherian we get that V is a finitely generated $\mathbf{k}[\Gamma]$ -module containing z. Furthermore t^{-1} induces a $\mathbf{k}[\Gamma]$ -endomorphism $t^{-1}: V \to V$. By the Cayley-Hamilton Theorem, see Eisenbud [1, Thm.4.3], there is a polynomial $p(x) \in \mathbf{k}[\Gamma][x]$ such that $p(t^{-1}) = 0: V \to V$. In particular $p(t^{-1})z = 0$. But $p(t^{-1})$ can be interpreted as an element of $\mathbf{k}[H]$ with the corresponding action. Thus we can choose $x = p(t^{-1}) \in \mathbf{k}[H]$.

11. Examples

- 1. Consider first the case $X = \Sigma_g$ the orientable surface of genus g > 1. Let $q: \tilde{\Sigma}_g \to \Sigma_g$ be the universal abelian cover. In this case the covering translation group $H \simeq \mathbf{Z}^{2g}$. Clearly, $H_2(\tilde{\Sigma}_g; \mathbf{k}) = 0$ and as it is well-known $H_1(\tilde{\Sigma}_g; \mathbf{k})$ has no $\mathbf{k}[H]$ -torsion. Hence by Theorem 1 there are no nonzero homology classes in $\tilde{\Sigma}_g$ which are movable to infinity. Note that the rank of the $\mathbf{k}[H]$ -module $H_1(\tilde{\Sigma}_g; \mathbf{k})$ equals 2g 2 > 0.
- 2. Consider now the universal abelian cover $q: \tilde{X} \to X$ where $X = \Sigma_g \times S^1$. Now $H = \mathbf{Z}^{2g+1}$ and $\tilde{X} = \tilde{\Sigma}_g \times \mathbf{R}$. We find that $H_1(\tilde{X}; \mathbf{k}) = H_1(\tilde{\Sigma}_g; \mathbf{k}) \neq 0$ (see the previous example). If $t: \tilde{X} \to \tilde{X}$ denotes the translation corresponding to the shift by 1 on \mathbf{R} then for any homology class $z \in H_1(\tilde{X}; \mathbf{k})$ one has tz = z, i.e. $(t-1) \cdot z = 0$. We see that any homology class z is torsion with annihilating polynomial x = t-1. Repeating the proof of Theorem 2 one finds that any homology class $z \in H_1(\tilde{X}; \mathbf{k})$ is movable to infinity with respect to any cohomology class $z \in H_1(\tilde{X}; \mathbf{k})$ such that $\xi|_{S^1} \neq 0 \in H^1(S^1; \mathbf{R})$. On the contrary, if $\xi|_{S^1} = 0$ then no nonzero homology class is movable to infinity. We see that in this case the set $\mathcal{M}_z \subset H^1(X; \mathbf{R}) = \mathbf{R}^{2g+1}$ of all directions in which a nonzero class z is movable coincides with the complement to one hyperplane $\xi|_{S^1} = 0$ in H^* .
- 3. Next we briefly show how one may construct examples where $H = \mathbb{Z}^2$ and the set $\mathcal{M}_z \subset H^*$ coincides with the complement to any prescribed finite set of lines Q_1, \ldots, Q_k on the plane H^* having rational slopes. Here we will use the technique developed in [4], pages 25 28.

Assume that the line Q_j passes through the point (n_j, m_j) where n_j and m_j are integers. Consider the polynomial

(21)
$$P = \prod_{j=1}^{k} \left(1 - t_1^{n_j} t_2^{m_j} \right) = \sum_{i,j} L_{ij} t_1^i t_2^j.$$

The numbers L_{ij} are determined by this relation. Denote by $\mathcal{L} \subset \mathbf{R}^2$ the set of points with at least one coordinate integral. One constructs a closed curve w lying on $\mathcal{L} \subset \mathbf{R}^2$ with the property that its winding number with the point $(i + \frac{1}{2}, j + \frac{1}{2})$ equals L_{ij} for any i, j. This closed curve can be interpreted as a word w in two letters which is a product of commutators. One then uses this word to build a two dimensional cell complex having one zero-dimensional cell, two one-dimensional cells, and one two-dimensional cell glued according to the word w. Computations explained in [4], pages 25 - 28 show that $H_1(\tilde{X}; \mathbf{k})$ as a $\mathbf{k}[H]$ -module is isomorphic to the factor of $\mathbf{k}[H]$ with respect to the ideal generated by P. Let $z \in H_1(\tilde{X}; \mathbf{k})$ be the generator. As in the proof of Theorem 2 above one finds that the class z is movable to infinity with respect to any cohomology class $\xi \in H^* - \bigcup_{j=1}^k Q_j$. This argument shows that \mathcal{M}_z contains $H^* - \bigcup_{j=1}^k Q_j$. With more effort one can show that \mathcal{M}_z coincides with $H^* - \bigcup_{j=1}^k Q_j$. We omit the details.

References

- [1] D. Eisenbud, Commutative algebra. With a view towards algebraic geometry, Springer Verlag, New York, 1995.
- [2] M. Farber, Zeros of closed 1-forms, homoclinic orbits and Lusternik-Schnirelman theory, Topol. Methods Nonlinear Anal. 19 (2002), 123-152.
- [3] M. Farber, Lusternik Schnirelman theory and dynamics, "Lusternik Schnirelmann Category and Related Topics", Contemporary Mathematics, 316(2002), 95 111.
- [4] M. Farber, Topology of closed one-forms. Mathematical Surveys and Monographs, 108. American Mathematical Society, Providence, RI, 2004.
- [5] J. Milnor, Infinite cyclic coverings, Conference on the Topology of Manifolds, Boston, 1968, 115-133.
- [6] W. Neumann, Signature related invariants of manifolds. I. Monodromy and γ -invariants, Topology, **18**(1979), 147-172.
- [7] S. Novikov, Multi-valued functions and functionals. An analogue of Morse theory. Soviet. Math. Doklady, 24(1981), 222-226.
- [8] J.Cl. Sikorav, Problèmes d'intersections et de points fixes en géométrie hamiltonienne, Comment. Math. Helv., 62(1987), 62-73.
- [9] C. A. Weibel, An introduction to homological algebra, Cambridge Univ. Press, 1994

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF DURHAM, DURHAM DH1 3LE, UK $E\text{-}mail\ address$: Michael.Farber@durham.ac.uk

FACHBEREICH MATHEMATIK UND INFORMATIK, WESTFÄLISCHE WILHELMS - UNIVERSITÄT MÜNSTER, EINSTEINSTR. 62, D-48149 MÜNSTER, GERMANY

 $E ext{-}mail\ address: }$ schuetz@math.uni-muenster.de