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Abstract. We calculate the Novikov homology of right-angled Artin groups

and certain HNN-extensions of these groups. This is used to obtain information
on the homological Sigma invariants of Bieri-Neumann-Strebel-Renz for these

groups. These invariants are subsets of all homomorphisms from a group
to the reals containing information on the finiteness properties of kernels of

such homomorphisms. We also derive information on the homotopical Sigma

invariants and show that one cannot expect any symmetry relations between
a homomorphism and its negative regarding these invariants. While it was

previously known that these invariants are not symmetric in general, we give

the first examples of homomorphisms which are symmetric with respect to the
homological invariant, but not with respect to the homotopical invariant.

1. Introduction

The Sigma invariants of Bieri-Neumann-Strebel-Renz [4, 5] have proven to be an
important tool in studying finiteness properties of groups. While they are in general
very difficult to compute, there are interesting groups for which they have been
completely determined and which give rise to very intriguing examples. These
groups include right-angled Artin groups, see [19], and Thompson’s group F , see
[3]. As an application, Bieri-Geoghegan-Kochloukova [3] use the Sigma invariants
of Thompson’s group F to show that F contains subgroups of type Fm−1 which are
not of type Fm for all m ≥ 1, see Section 2 below for the definition of type Fm.
There are two different versions of finiteness properties, one based on homotopical
and one based on homological techniques, and it was shown by Bestvina-Brady [1]
that they are indeed different. One also has homotopical and homological Sigma
invariants which are also different in general, see [19].
We will give a precise definition in Section 2, but for the moment we can think of
the Sigma invariants as certain subsets Σk(G) and Σk(G; Z) of Hom(G,R) for any
k ≥ 0 and G a finitely generated group1. Here Σk(G) refers to the homotopical
version and Σk(G; Z) to the homological version.
Given a nonzero homomorphism χ : G → R, one can always consider the negative
homomorphism −χ : G→ R. There are very simple examples of groups and homo-
morphisms χ : G→ R which show that the Sigma invariants are not invariant un-
der this antipodal action, possibly the easiest example being the Baumslag-Solitar
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1In fact G should satisfy certain finiteness conditions depending on k.
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group G = 〈a, b | a−1ba = b2〉 with the homomorphism sending a to 1 and b to 0.
On the other hand, for right-angled Artin groups the Sigma invariants are invariant
under the antipodal action.
Groups for which a computation of the Sigma invariants are quite accessible in-
clude HNN-extensions, provided one has information on the Sigma invariants of
the groups being extended. Also, for these groups it is easy to break the symme-
try of Σk(G) under the antipodal action. Here one should note that right-angled
Artin groups can also be build via HNN-extensions, a fact used by Meier-Meinert-
VanWyk in [19] to determine their Sigma invariants, but as the extension is always
along only one inclusion one gets the described symmetry in the Sigma invariants.
By forming non-symmetric HNN-extensions of right-angled Artin groups we show
that practically any behaviour under the antipodal action is possible.

Theorem 1.1. Let p, q be positive integers. Then there exists a group G of type F
and a homomorphism χ : G→ Z with

χ ∈ Σp(G)− Σp+1(G)
−χ ∈ Σq(G)− Σq+1(G)

Recall that a group is of type F if there exists a finite K(G, 1). For certain
metabelian groups G Kochloukova [15] has given a calculation of Σk(G) in terms
of Σ1(G). Using this result one can obtain other examples satisfying the statement
of Theorem 1.1. In these examples we always have Σk(G) = Σk(G; Z).
There is also a version of Theorem 1.1 where Σk(G) is replaced by Σk(G; Z) and
we demand that χ,−χ /∈ Σ2(G). Recall that we always have Σk(G) ⊂ Σk(G; Z),
and for k ≥ 2 we have χ ∈ Σk(G) if and only if χ ∈ Σk(G; Z) ∩ Σ2(G). Finally, we
obtain examples where we only get one of χ and −χ in Σ2(G).

Theorem 1.2. There exists a group G of type F and a homomorphism χ : G→ Z
such that for all p ≥ 2 we have

χ ∈ Σp(G)
−χ ∈ Σp(G; Z)− Σ2(G).

Theorem 1.2 has interesting consequences for a Theorem of Latour [17] regarding
conditions for the existence of a non-singular closed 1-form within a cohomology
class χ ∈ H1(M ; R), where M is a high-dimensional closed manifold. One condition
demands the contractibility of certain path spacesMχ andM−χ, see Section 8 for
details. In all previously known examples with M a closed manifold, contractibil-
ity of Mχ was equivalent to contractibility of M−χ, but using Theorem 1.2 we
construct an example where only one of these path spaces is contractible.
We determine the homological Sigma invariants using Novikov homology. It is
known that χ ∈ Σk(G; Z) is equivalent to the vanishing of certain Novikov homology
groups, see Lemma 2.4 for details. Knowing the exact value of a non-vanishing
Novikov homology group gives extra information which is useful for looking at
HNN-extensions, as we can use methods from group homology.
It turns out that the Novikov homology of a right-angled Artin group is easily
accessible. To make this more precise, recall that for a finite flag complex L the
right-angled Artin group GL is generated by the vertices of L, and two generators
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commute exactly when the corresponding vertices span a 1-simplex. If χ : GL → R
is non-zero on all generators, then

H∗(GL; ẐGLχ) ∼= ẐGLχ ⊗Z H̃∗−1(L),

where the isomorphism is induced by an isomorphism of chain complexes. Here
ẐGLχ denotes the Novikov ring, compare Section 2. If χ vanishes on some gener-
ators, we get a spectral sequence which carries enough information to determine
Σk(GL; Z). This gives a purely algebraic and simple calculation of these Sigma in-
variants. The original calculation of Meyer, Meinert and VanWyk [19], which also
included the homotopical invariants, used both geometric and algebraic arguments,
and a simplification using geometric arguments was done by Bux and Gonzalez [7].
Arguments using Novikov homology will only give information about the homolog-
ical invariants; in order to understand the homotopical invariants it is necessary to
get information about the homotopy type of certain halfspaces. Such a halfspace
is defined as NL = h−1([0,∞)) with h : XL → R a map with h(gx) = χ(g) + h(x),
where XL is the universal cover of a finite K(GL, 1). While in [7] the first non-
vanishing homotopy group of N is determined, it is shown in [1, Thm.8.6] that N
has the homotopy type of a wedge of copies of L, provided all generators of GL
are send to 1. This gives a bit of extra information which is not needed for the
Sigma invariants of a right-angled Artin group, but it is useful when considering
non-symmetric HNN-extensions of right-angled Artin groups.
Namely, it turns out that considering subcomplexes K of L leads to naturality in
groups GK → GL which is also reflected in the halfspaces, that is, up to homotopy
the natural map NK → NL corresponds to inclusion of the wedge of copies of
K into the wedge of copies of L. This naturality allows us to understand the
halfspaces for non-symmetric HNN-extensions of right-angled Artin groups, leading
to the examples described in Theorem 1.1 and 1.2. Since we need this more refined
version of [1, Thm.8.6], we give a proof in Section 5. Our proof uses in fact different
techniques than [1], we exploit the fact that GL can be build using HNN-extensions
of a smaller right-angled Artin group. However, the techniques of [1] can also be
used to obtain this result.

2. Sigma invariants and Novikov rings

A group G is said to be of type FPn, if there is a resolution

(1) . . . −→ Fi −→ Fi−1 −→ . . . −→ F0 −→ Z −→ 0

of free ZG-modules such that Fi is finitely generated for i ≤ n. Here Z is considered
as a trivial ZG-module.
We define

S(G) = (Hom(G,R)− {0})/R+,

that is, we identify nonzero homomorphisms, if one is a positive multiple of the
other. This is a sphere of dimension rank(G/[G,G])− 1. If χ : G→ R is a nonzero
homomorphism, we still write χ ∈ S(G).
Given such χ, we let Gχ = {g ∈ G |χ(g) ≥ 0}. If there is a resolution (1) of free
ZGχ modules with Fi finitely generated for i ≤ k, we say Gχ is of type FPk. We
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now set

Σk(G; Z) = {χ ∈ S(G) |Gχ is of type FPk}.

If G is of type Fn, that is, there exists a K(G, 1) with finite n-skeleton, there is a
more geometric criterion to check for χ ∈ Σk(G; Z). Let X be the universal cover
of the K(G, 1) with finite n-skeleton and χ : G → R a nonzero homomorphism.
Let h : X → R be a height function with respect to χ, that is, we have h(gx) =
χ(g) + h(x) for all x ∈ X and g ∈ G. To see that such h exist, note that it can
easily be defined on the 0-skeleton X(0), and since R is contractible, the map can
always be extended to the higher skeleta.
Now for r ∈ R, let

Nr = {x ∈ X |h(x) ≥ r}.

We call Nr a halfspace with respect to χ .

Proposition 2.1 (Bieri-Renz, [5]). Let G be a group of type Fn. For k ≤ n we
have χ ∈ Σk(G; Z) if and only if there is a real number r ≥ 0 with the property that
the homomorphism H̃i(N0)→ H̃i(N−r), induced by inclusion, is the zero map for
all i < m, where H̃ denotes reduced homology.

This Proposition suggests the definition of another invariant by replacing reduced
homology by homotopy. This leads to the homotopical Sigma invariants.

Definition 2.2. Let G be a group of type Fn and χ : G→ R a nonzero homomor-
phism. We say χ ∈ Σk(G) if there is a real number r ≥ 0 with the property that
the map πi(N0)→ πi(N−r), induced by inclusion, is the zero map for all i < m.

This definition does not depend on the choices involved. Furthermore, using Propo-
sition 2.1 it is easy to see that Σ1(G; Z) = Σ1(G) and Σk(G) ⊂ Σk(G; Z). However,
it follows from the work of Bestvina and Brady [1] that in general Σ2(G) 6= Σ2(G; Z),
see [7, 19]. Nevertheless, Σk(G) = Σ2(G) ∩ Σk(G; Z) for k ≥ 2, see [5, Ch.6].
We now want to describe yet another criterion for the homological Sigma invariant
involving Novikov homology. For this we need a completion of the group ring.
Let G be a group and χ : G→ R a homomorphism. We denote by ZG the abelian
group of all functions λ : G→ Z. For λ ∈ ZG denote suppλ = {g ∈ G |λ(g) 6= 0}.

Definition 2.3. The Novikov-Sikorav completion ẐGχ is defined as

ẐGχ = {λ ∈ ZG | ∀ r ∈ R suppλ ∩ χ−1((−∞, r]) is finite}

The multiplication is given by the extension of the multiplication of the group ring.
The resulting Novikov homology is given by

H∗(G; ẐGχ) = H∗(ẐGχ ⊗ZG P∗)

where P∗ is a free ZG-resolution of the trivial ZG module Z, that is, ordinary group
homology with coefficients in ẐGχ,viewed as a right ZG-module.
Definition 2.3 is in fact due to Sikorav [24], Novikov’s original definition [21] required
χ to be injective. We denote this case by

N̂χ = ̂ZG/kerχχ.
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The ring N̂χ has the nice property that it is a Euclidean ring, see [9]. In particular,
the homology groups Hi(G; N̂χ) = Hi(N̂χ ⊗ZG P∗) have a well defined rank, called
the Novikov-Betti number bi(G;χ), and torsion coefficients for i ≤ n, where n is
such that G is of type FPn .
The relation to the Sigma invariants is given by the following lemma, a proof of
which can be found in Bieri [2, Thm.A.1].

Lemma 2.4. Let G be a group of type FPn and k ≤ n. Then the following are
equivalent.

(1) χ ∈ Σk(G; Z).
(2) Hi(G; ẐGχ) = 0 for i ≤ k. �

From the Universal Coefficient Spectral Sequence we therefore get

Corollary 2.5. Let G be a group of type FPn and k ≤ n. If χ ∈ Σk(G; Z), then
Hi(G;M) = 0 for i ≤ k and all right ẐGχ-modules M . �

Let G be a group, H a subgroup and φ : H → G an injective homomorphism. The
HNN-extension of G with respect to φ is defined as

G∗φ = 〈G, t | t−1ht = φ(h) for all h ∈ H〉
that is, the group generated by G and a disjoint element t subject to conjugation
relations for elements of H. If φ is inclusion, we simply write G∗H .
Now if χ : G → R is a homomorphism with χ|H = χ ◦ φ, we can extend χ to
χx : G∗φ → R for every x ∈ R via

χx(g) = χ(g) and χx(t) = x.

If x ∈ R is not of crucial importance, we will simply write χ = χx : G∗φ → R.

The inclusion i : G → G∗φ induces an inclusion of completions i : ẐGχ → ẐG∗φχ
and we obtain a long exact sequence, see Brown [6, Ch.VII.9],

(2) . . . −→ Hn(H; ẐG∗φχ) α−→ Hn(G; ẐG∗φχ)
β−→

Hn(G∗φ; ẐG∗φχ) −→ Hn−1(H; ẐG∗φχ) −→ . . .

where β is induced by inclusion i : G → G∗φ, and α = (φ, t)∗ − i∗, where i∗ is
induced by the inclusion i : H → G and

(φ, t) : (H, ẐG∗φχ)→ (G, ẐG∗φχ)

is the pair φ : H → G and t : ẐG∗φχ → ẐG∗φχ, which is right multiplication by t.
Note that Brown [6] uses a different convention in the definition of group homology
leading to sign changes compared to [6, Ch.VII.9].
We note the following immediate corollary which is well known, see [19] and [20].

Corollary 2.6. Let χ : G∗φ → R as above, and G, H of type FPm for m ≥ 1.

(1) If χ|G ∈ Σm(G; Z) and χ|H ∈ Σm−1(H; Z), then χ ∈ Σm(G∗φ; Z).
(2) If χ ∈ Σm(G∗φ; Z) and χ|G ∈ Σm−1(G; Z), then χ|H ∈ Σm−1(H; Z).
(3) If χ ∈ Σm(G∗φ; Z) and χ|H ∈ Σm(H; Z), then χ|G ∈ Σm(G; Z).
(4) If χ|H = 0 and χ|G 6= 0, then χ /∈ Σ1(G∗φ; Z). �
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3. Right-angled Artin groups

A simplicial complex L is called a flag complex, if every finite collection of pairwise
adjacent vertices of L spans a simplex in L. We denote the set of vertices by L(0).
By a full subcomplex of L we mean a subcomplex L̄ of L such that L̄(0) ⊂ L(0)

and a finite collection of vertices of L̄ spans a simplex in L̄ if and only if it spans a
simplex in L. Clearly L̄ is also a flag complex then.

Definition 3.1. Let L be a finite flag complex. The right-angled Artin group
GL associated to L is the group with generating set {t1, . . . , tn} in one-to-one
correspondence with the vertex set L(0) = {v1, . . . , vn}, and relations [ti, tj ] = 1
precisely if vi, vj span a 1-simplex.

If the vertices vi0 , . . . , vik ∈ L(0) form a k-simplex in L, we denote this simplex by
[vi0 : . . . : vik ]. We also consider the empty simplex which we denote by [ ] or ∅.
If L is a finite flag complex, and L∗ a full subcomplex, let L† be the full subcomplex
of L spanned by the vertices in L− L∗. Given a simplex σ in L†, we write

L∗(σ) = Lk (σ) ∩ L∗

where Lk (σ) is the link of σ in L, that is, the union of all simplices τ in L disjoint
from σ, such that τ ∪σ is also a simplex in L. We also allow the empty simplex ∅ for
σ, in which case we get L∗(∅) = L∗. Notice that L∗(σ) is a full subcomplex of L∗

and hence of L. We thus get subgroups GL∗(σ) of GL, which are again right-angled
Artin groups.
For a simplex σ in L we write |σ| = k, if σ is spanned by k + 1 vertices. We also
set |∅| = −1.

Remark 3.2. Let the vertex set of L be {v1, . . . , vn} and let L∗ be the full sub-
complex of L whose vertex set is {v1, . . . , vn−1}. With K = L∗(vn), we get an
HNN-extension

GL = GL∗ ∗GK .
In particular, any right-angled Artin group can be build inductively from the trivial
group by HNN-extensions along right-angled Artin subgroups. We can therefore
build a K(GL, 1) complex inductively by using the standard procedure for HNN-
extensions, that is, given a K(GL∗ , 1) and a K(GK , 1), we get

K(GL, 1) = K(GL∗ , 1) ∪K(GK , 1)× [0, 1]/∼,(3)

where (x, j) ∼ i(x), for j = 0, 1, x ∈ K(GK , 1) and i : K(GK , 1) → K(GL∗ , 1) a
map inducing the inclusion on fundamental group, compare [11, Ch.7.1].

Let L be a finite flag complex, and L(0) the set of vertices. We write

Tn =
∏

v∈L(0)

S1,

which we think of as a CW-complex, where each circle has the CW-structure with
one cell of dimension 0 and 1. That is, for every subset σ of L(0), there is a unique
cell Tσ ⊂ Tn with dimension |σ| determined by the property that the projection
pv : Tσ → S1 is onto if and only if v ∈ σ. Let

QL =
⋃
σ∈L

Tσ ⊂ Tn
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be the union of Tσ over all simplices σ in L.

Lemma 3.3. With the notation above, QL is a K(GL, 1).

Proof. The proof is by induction over the number of vertices in L. The main
observation is that QL is given via (3), if we use the inclusion QK ⊂ QL∗ , so the
result follows from Remark 3.2. �

Remark 3.4. Lemma 3.3 can also be proven using results from non-positively
curved geometry, compare for example [1]. These more advanced techniques can
give more useful information, compare Remark 8.5.

Let XL be the universal cover of QL. The left ZGL-chain complex C∗(XL) can
be described as follows. The k-th chain group is freely generated by the (k − 1)-
simplices of L. Here we also consider the empty simplex, which generates C0. Let us
write 〈vi1 : . . . : vik〉 for the generator corresponding to the simplex [vi1 : . . . : vik ].
The orientation can be chosen so that

∂(〈vi1 : . . . : vik〉) =
k∑
j=1

(−1)j(1− tij )〈vi1 : . . . : v̂ij : . . . : vik〉

where v̂ij indicates that this vertex is omitted.

Proposition 3.5. Let L be a flag complex, L∗ a full subcomplex, and L† the full
subcomplex spanned by the vertices in L−L∗. Let M be a right ZGL-module. Then
there exists a spectral sequence (Erp q) with

E1
p q =

⊕
σ∈(L†)(p−1)

Hq(GL∗(σ);M),

which converges to Hp+q(GL;M). Here (L†)(p−1) denotes the set of (p−1)-simplices
in L†; in the case p = 0 this set contains the empty simplex.
If M = r∗N , where N is a right ZGL∗-module and r : GL → GL∗ is the retraction
sending the generators corresponding to vertices of L† to the trivial element, this
spectral sequence collapses at E1 and we get

H∗(GL;M) ∼=
⊕
σ∈L†

H∗−|σ|−1(GL∗(σ);N),

where the direct sum is over all simplices σ in L†, including the empty simplex.

Proof. Define a free ZGL-double complex C∗ ∗ by

Cp q =
⊕

σ∈(L†)(p−1)

ZGL ⊗ZGL∗(σ) Cq(L
∗(σ)).

Let us denote the generators of Cq(L∗(σ)) by 〈vj1 : . . . : vjq+1〉|〈vi1 :...:vip 〉, where
σ = [vi1 : . . . : vip ] ∈ (L†)(p−1). Then let ∂′′ : Cp q → Cp q−1 be given by

∂′′(1⊗ 〈vj1 : . . . : vjq+1〉|〈vi1 :...:vip 〉) =

(−1)p
q+1∑
k=1

(−1)k ⊗ (1− tjk)〈vj1 : . . . : v̂jk : . . . : vjq+1〉|〈vi1 :...:vip 〉,
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and ∂′ : Cp q → Cp−1 q be given by

∂′(1⊗ 〈vj1 : . . . : vjq+1〉|〈vi1 :...:vip 〉) =

(−1)q+1

p∑
l=1

(−1)l(1− tjl)⊗ 〈vj1 : . . . : vjq+1〉|〈vi1 :...:v̂il :...:vip 〉.

The total complex (TC, ∂′ + (−1)p ∂′′) can be identified with C∗(XL) via

1⊗ 〈vj1 : . . . : vjq+1〉|〈vi1 :...:vip 〉 ↔ 〈vj1 : . . . : vjq+1 : vi1 : . . . : vik〉.

The first part of the theorem follows directly.
If M is of the form r∗N for some ZGL∗ -module N , we get that

1⊗ ∂′ : M ⊗ZGL Cp q →M ⊗ZGL Cp−1 q

is the zero homomorphism, as tjl acts trivial on M for vjl ∈ L†. Therefore M ⊗ZGL
TC∗ is a direct sum of chain complexes

M ⊗ZGL ZGL ⊗ZGL∗(σ) C∗−|σ|−1(XL∗(σ)) = N ⊗ZGL∗ C∗−|σ|−1(XL∗(σ)).

The result follows. �

4. Novikov homology of right-angled Artin groups

In this section, we want to express the Novikov homology of GL in terms of the flag
complex L. Let χ : GL → R be a homomorphism, and let L∗ be the full subcomplex
of L corresponding to the vertices vi with χ(ti) 6= 0. Similarly, let L† be the full
subcomplex of L corresponding to the vertices vj with χ(tj) = 0. The retraction
r : GL → GL∗ , which sends all the generators corresponding to vertices of L† to 1,
induces a ring homomorphism r : ẐGLχ → ẐGL∗χ.

Theorem 4.1. Let L be a flag complex, χ : GL → R a homomorphism and L∗, L†

be as above. If M is a right ẐGLχ-module which is torsionfree as an abelian group,
then there is a spectral sequence (Erp q) with

E1
p q =

⊕
σ∈(L†)(p−1)

M ⊗Z H̃q−1(L∗(σ))

converging to Hp+q(GL;M).

If M = r∗N for a right ẐGL∗χ-module N , the spectral sequence collapses and

H∗(GL;M) ∼=
⊕
σ∈L†

N ⊗Z H̃∗−|σ|−2(L∗(σ)).

Proof. For any simplicial complex L we can look at the reduced chain complex
C̃∗(L), with C̃k(L) the free abelian group generated by the k-simplices. Note that
C̃−1(L) = Z is generated by the empty simplex. Also, let C̃+

∗ (L) be the suspension
of C̃∗(L), that is, C̃+

n = C̃n−1(L) together with the obvious boundary map.

Now define ϕn : ẐGL∗χ ⊗Z C̃
+
n (L∗)→ ẐGL∗χ ⊗ZGL∗ Cn(XL∗) by

ϕn(1⊗ [vi1 : . . . : vin ]) =
n∏
j=1

(1− tij )−1 ⊗ 〈vi1 : . . . : vin〉.
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Note that, since [vi1 : . . . : vin ] is a simplex, all tij commute. Also, as χ(tij ) 6= 0,
1− tij is invertible. The inverse is 1 + tij + t2ij + . . . or t−1

ij
+ t−2

ij
+ . . ., depending

on whether χ(tij ) > 0 or χ(tij ) < 0.
It follows that ϕ commutes with the boundary and therefore induces an isomorphism
between free ẐGL∗χ-chain complexes. Now if M is a right ẐGL∗χ-module, we get

Hn(GL∗ ;M) ∼= Hn(M ⊗ẐGL∗χ
ẐGL∗χ ⊗Z C̃

+
∗ (L∗))

∼= Hn(M ⊗Z C̃
+
∗ (L∗)),

and the right-hand side is M ⊗Z H̃n−1(L∗) by the classical Universal Coefficient
Theorem, provided that M is torsionfree.
The same argument works for L∗(σ) for every simplex σ of L†, so the result follows
from Proposition 3.5. �

Let us denote two special cases.

Corollary 4.2. Let χ : GL → R be a homomorphism with χ(ti) 6= 0 for all
generators of GL. Then

Hn(GL; ẐGLχ) ∼= ẐGLχ ⊗Z H̃n−1(L)

for all n ∈ Z. �

Corollary 4.3. Let L be a flag complex, χ : GL → R a homomorphism, L∗ the full
subcomplex generated by the vertices whose image under χ is non-zero, and L† the
full subcomplex generated by the vertices whose image under χ is zero. Then

Hn(GL; N̂χ) ∼=
⊕
σ∈L†

N̂χ ⊗Z H̃n−|σ|−2(L∗(σ))

for all n ∈ Z.

Proof. Simply note that N̂χ viewed as a ẐGLχ-module is of the form r∗N̂χ with
N̂χ viewed as a ẐGL∗χ-module. �

Remark 4.4. Since L is a finite simplicial complex, the groups H̃k(L∗(σ)) are
finitely generated abelian groups. If we write Z/n = Z/nZ, it is easy to see that

ẐGχ ⊗Z Z/n ∼= Ẑ/nGχ
for any group G and homomorphism χ : G → R. Therefore every non-zero sum-
mand in H̃n−|σ|−2(L∗(σ)) leads to a non-zero summand in Hn(GL; N̂χ). In partic-
ular, for the Novikov-Betti numbers we obtain

bi(GL;χ) =
∑
σ∈L†

b̃i−|σ|−2(L∗(σ)),

where b̃i is the “reduced” Betti number, that is, the rank of H̃i, and for the torsion
coefficients

max{qi−|σ|−2(L∗(σ)) |σ ∈ L†} ≤ qi(GL;χ) ≤
∑
σ∈L†

qi−|σ|−2(L∗(σ)).

We can therefore recover the homological version of the main theorems of [7, 19].
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Corollary 4.5. Let L be a flag complex, χ : GL → R a homomorphism, L∗ the
full subcomplex generated by the vertices whose image under χ is non-zero, and L†

the full subcomplex generated by the vertices whose image under χ is zero. Then
χ ∈ Σn(GL; Z) if and only if for every simplex σ of L† (including the empty simplex)
L∗(σ) is (n− |σ| − 2)-acyclic.

Proof. If all L∗(σ) are (n − |σ| − 2)-acyclic, it follows from Theorem 4.1 that
Hi(GL; ẐGLχ) = 0 for all i ≤ n which gives χ ∈ Σn(GL; Z) by Lemma 2.4.
If L∗(σ) is not (n− |σ| − 2)-acyclic for some σ, we see from Corollary 4.3 together
with Corollary 2.5 that χ /∈ Σn(GL; Z). �

If χ vanishes on certain generators, it is in general very difficult to make precise
calculations with Theorem 4.1, but simpler calculations can sometimes be made.

Example 4.6. Let L be a finite flag complex and χ : GL → R a homomorphism
which is non-zero on every generator. Extend χ to χ : GL × Z → R by sending
the extra generator to 0. The augmentation ε : ̂ZGL × Zχ → ẐGLχ induces a

̂ZGL × Zχ-module structure on ẐGLχ and there is a short exact sequence

0 −→ ̂ZGL × Zχ
1−t−→ ̂ZGL × Zχ

ε−→ ẐGLχ −→ 0

where t corresponds to the generator of Z. The differential d1 in the spectral
sequence of Theorem 4.1 is induced by multiplication with 1 − t, and so E2

0 q =

ẐGLχ ⊗Z H̃q−1(L). As E2
p q = 0 for p 6= 0, we get

H∗(GL × Z; ̂ZGL × Zχ) ∼= ẐGLχ ⊗Z H̃∗−1(L).

By Corollary 4.3 we have

H∗(GL × Z; N̂χ) = (N̂χ ⊗Z H∗−1(L))⊕ (N̂χ ⊗Z H∗−2(L)).

Remark 4.7. In [19] the invariant Σk(G; Z) is also considered for arbitrary com-
mutative rings R. To define the invariant Σk(G;R) one has to replace the Z in the
definition of Σk(G; Z) systematically by R, for example, one considers resolutions
over RGχ, and the relevant Novikov homology is TorRGp (R̂Gχ, R). The criterion in
Corollary 4.5 is then that χ ∈ Σn(GL;R) if and only if for every simplex σ of L†,
L∗(σ) is (n− |σ| − 2)-R-acyclic, with a space X being k-R-acyclic if H̃i(X;R) = 0
for i ≤ k.
The above proof carries over, except that one has to be slightly more careful in
two steps. Firstly, in Theorem 4.1 an R-torsion-free R̂GLχ-module M need not
be flat over R. However, for Corollary 4.5 we are only interested in the first non-
vanishing homology group, and by the universal coefficient spectral sequence this
is M ⊗R Hi(L∗(σ);R) for some i and σ.

Secondly, if M is an R-module, it need not be the case that R̂GLχ⊗RM ∼= M̂GLχ,
as in Remark 4.4. But there is a commutative diagram

RGL ⊗RM

��

∼= // MGL� _

��

R̂GLχ ⊗RM // M̂GLχ
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which shows that R̂GLχ ⊗RM is non-trivial if and only if M is.

5. The homotopy type of halfspaces

For the homotopical Sigma invariants we want to understand the homotopy type
of the halfspaces Nr = h−1([r,∞)) with respect to some χ and a height function h.
Let us begin by constructing a specific height function for XL, the universal cover
of QL.
We choose a basepoint ∗ ∈ XL which is a lift of the unique 0-cell in QL. We then
get an embedding G ↪→ XL sending g to g∗. This can be repeated for every full
subcomplex K ⊂ L, resulting in inclusions iLK : XK ↪→ XL sending ∗ to ∗.
Notice that the cells in XL are cubical in the sense that the characteristic maps for
each cell are of the form ϕ : [0, 1]k → XL.

Lemma 5.1. There exists a collection of height functions hK : XK → R for every
full subcomplex K ⊂ L with the following properties.

(1) For every pair K1 ⊂ K2 of full subcomplexes of L we have hK2 ◦ i
K2
K1

= hK1 .
(2) We have hL(∗) = 0.
(3) For every cell in XL there is a characteristic map ϕ : [0, 1]k → XL such

that hL ◦ ϕ : [0, 1]k → R is linear.

Proof. The proof is by induction on the number of vertices in L. For the empty
subcomplex note that X∅ = {∗}, and we let h∅(∗) = 0.
Let v1, . . . , vn be the vertices of L, and let L∗ be the full subcomplex containing
the vertices v1, . . . , vn−1. We also write K = L∗(vn). It follows from (3), see also
[11, Ch.6], that

XL = GL ×GL∗ XL∗ ∪GL ×GK XK × [0, 1]/∼(4)

where [g, x, 0] ∼ [g, iL
∗

K (x)] and [g, x, 1] ∼ [gtn, iL
∗

K (x)] for all g ∈ GL, x ∈ XK . Here
G ×H X is the quotient space of G × X via the H-action h · (g, x) = (gh−1, hx)
where H is a subgroup of G and X a space with left H-action.
Assume by induction that hL∗ and hK exist with the required properties. Then
define

hL([g, x]) = χ(g) + hL∗(x) for g ∈ GL, x ∈ XL∗

hL([g, x, t]) = χ(g) + hK(x) + t · χ(tn) for g ∈ GL, x ∈ XK .

It is easy to see that this is well defined and has the required properties. �

Let NL be the maximal subcomplex of XL contained in N0 = h−1
L ([0,∞)). Then

the monoid

G+
L = {g ∈ GL |χ(g) ≥ 0}

acts on NL. We can get an inductive description for NL as in (4). For this let
v1, . . . , vn be the vertices of L, and let L∗ be the full subcomplex containing the
vertices v1, . . . , vn−1. We again write K = L∗(vn). Then

NL = G+
L ×G+

L∗
NL∗ ∪G+

L ×G+
K
NK × [0, 1]/∼

with ∼ as in (4), and where G+
L ×G+

L∗
NL∗ is the quotient space of G+

L ×NL∗ via

identifying (gh, x) with (g, hx) for g ∈ G+
L , h ∈ G+

L∗ and x ∈ NL∗ .
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Remark 5.2. Using the methods of [7] it is easy to see that NL has the homotopy
type of N0, but we will not need this result. As there is an r > 0 with Nr ⊂ NL,
we can use NL and its translates g ·NL for g ∈ GL in the definition of Σk(GL).

In [1, Th.8.6] it is shown (in the case χ(ti) = 1 for all generators of GL) that NL
has the homotopy type of a wedge of L’s. The statement is not completely precise
in the case when L is disconnected, compare the note below [1, Th.8.6].
We now want to give an alternative approach to determining the homotopy type of
NL which will also discuss the functoriality induced by subcomplexes K ⊂ L.
Let us analyze the components of NL. Since G+

L acts on NL it also acts on π0(NL) =
π0(NL, ∗), where ∗ ∈ NL is the basepoint. If we denote the component of x ∈ NL
by [x], it is clear that every component is of the form g · [∗] with g ∈ G+

L .

Lemma 5.3. Every component of NL is of the form g · [∗] with g ∈ kerχ.

Proof. We can assume that χ(ti) ≥ 0 for every generator of GL. Let g · [∗] be a
component with χ(g) ≥ 0. Clearly g∗ and gti∗ are in the same component for every
generator, compare Figure 1, so we can assume that g[G,G] = tk1

1 · · · tknn [G,G] with
all ni ≥ 0, where [G,G] is the commutator subgroup. Then gt−k1

1 · · · t−knn ∈ kerχ,

NL

gt

gt

g

gt

gt t

−1
2

2

1

1 2
−1

Figure 1.

and g∗ is in the same component as gt−k1
1 · · · t−knn ∗. �

If we think of the set of components as a discrete space, we get that

πL = G+
L ×G+

L∗
π0(NL∗) ∪G+

L ×G+
K
π0(NK)× [0, 1]/∼

with [g, [x], 0] ∼ [g, iL
∗

K [x]] and [g, [x], 1] ∼ [g, iL
∗

K [x]], is a graph with G+
L -action,

such that π0(πL) = π0(NL).

Lemma 5.4. The graph πL is a forest, that is, a disjoint union of trees.

Proof. Since all the components of πL are homeomorphic with a homeomorphism
induced by some g ∈ kerχ, we only have to consider the component Γ containing
[1, [∗]] ∈ G+

L ×G+
L∗
π0(NL∗). Let

H+ = {h ∈ G+
L∗ |h[∗] = [∗]},

which is a monoid. Note that [gh−1, [∗]] = [gh−1, h[∗]] = [g, [∗]] for h ∈ H+,
provided that χ(gh−1) ≥ 0.
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Two elements [g1, [∗]], [g2, [∗]] ∈ πL are connected by an edge if and only if there are
h, k ∈ H+ with g2 = g1h

εtε
′

n k
ε′′ and ε, ε′, ε′′ ∈ {±1}. We have to show that edge-

loops in Γ are contractible, that is, finite sequences of points [g0, [∗]], . . . , [gk, [∗]]
with [gi, [∗]] and [gi+1, [∗]] connected by an edge, and such that [g0, [∗]] = [gk, [∗]] =
[1, [∗]].

Hence there exist hi, ki ∈ H+ with gi+1 = gih
εi
i t

ε′i
n k

ε′′i
i . Therefore

1 = hε00 t
ε′0
n k

ε′′0
0 · · ·h

εn−1
n−1 t

ε′n−1
n k

ε′′n−1
n−1 .

But by the Normal Form Theorem for HNN-extensions [18, Ch.IV] we get that

there is an i and a subword t
ε′i−1
n k

ε′′i−1
i−1 h

εi
i t

ε′i
n with k

ε′′i−1
i−1 h

εi
i ∈ K and ε′i−1 = −ε′i.

Therefore

gi+1 = gi−1h
εi−1
i−1 t

ε′i−1
n k

ε′′i−1
i−1 h

εi
i t

ε′i
n k

ε′′i
i

= gi−1h
εi−1
i−1 k

ε′′i−1
i−1 h

εi
i k

ε′′i
i

and [gi+1, [∗]] = [gi−1h
εi−1
i−1 k

ε′′i−1
i−1 h

εi
i k

ε′′i
i , [∗]] = [gi−1, [∗]]. Therefore the loop repre-

sented by [gi−1, [∗]], [gi, [∗]] and [gi+1, [∗]] is null-homotopic, and the result follows
by induction. �

Recall that v1, . . . , vn are the vertices of the flag complex L. Define an equivalence
relation on the set of vertices by vi ∼ vj if they are in the same component. Denote
an equivalence class by ∗i and embed ∗i into L by choosing a representative. This
defines a basepoint in every component of L.

Lemma 5.5. Let χ : GL → R be a homomorphism with χ(ti) > 0 for all generators
of GL, and let g ∈ GL. If ti, tj are generators of GL such that vi ∼ vj, then
gtri [∗] = gtsj [∗] for all r, s ≥ 0 with gtri , gt

s
j ∈ G∗L.

Proof. We have that ∗ and tk∗ are connected by a 1-cell in NL for all generators
tk. So if h ∈ G+

L , we get h∗ and htk∗ are connected by a 1-cell in NL. So for k ≥ 0
we get

gtri [∗] = [gtri ∗] = [gtr+ki ∗] = gtr+ki [∗].
Also if ti and tj commute, we get

gtri [∗] = gtri t
s
j [∗] = gtsjt

r
i [∗] = gtsj [∗].

If vi and vj are in the same component of L, there is a finite sequence of generators
ti = ti0 , . . . , tik = tj with tim and tim+1 commuting, and we get

gtri [∗] = gtr1i1 [∗] = . . . = gt
rk−1
ik−1

[∗] = gtsj [∗]

by the argument above. �

Proposition 5.6. Let χ : GL → R a homomorphism, L∗ the full subcomplex
containing the vertices with χ(ti) 6= 0 and let L† be the full subcomplex containing
the vertices with χ(tj) = 0. Then the following are equivalent.

(1) χ ∈ Σ1(GL).
(2) NL is connected.
(3) L∗ is connected, and for every vertex vi ∈ L† we have L∗(vi) is nonempty.
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Proof. (1) ⇒ (3) follows from Corollary 4.5, because Σ1(G) = Σ1(G; Z).
(2) ⇒ (1) follows from the Definition.
(3) ⇒ (2) is proven by induction on the number of vertices in L†. If L† = ∅, we
can assume that χ(ti) > 0 for all generators, as replacing ti with t−1

i induces an
automorphism of GL.
Let g ∈ G+

L , so that g[∗] is a component ofNL. If g is a word which uses only positive
powers of the generators ti, it is clear that g[∗] = [∗]. Otherwise let g = ht−1

j w,
with w a word which uses only positive powers of the generators. But by Lemma
5.5 there is a r ≥ 1 with ht−1

j w[∗] = htr−1
j [∗]. Therefore we can reduce the number

of negative powers in g without changing the component. By induction, we get
g[∗] = [∗].
If χ(tn) = 0, let L̄ be the full subcomplex of L containing all vertices except vn.
Then NL̄ is connected by (3) and the induction assumption. Also, there is a ti in
GL∗ which commutes with tn. If g ∈ GL̄, we get g[∗] = [∗] by the connectivity
of NL̄. If g = htsnw with w ∈ GL̄, let r ≥ 0 such that w−1tri ∈ G+

L̄
. Then

g[∗] = htsnww
−1tri [∗] = htri t

s
n[∗] = htri [∗], as tsn[∗] = [∗]. Therefore we can reduce

the occurences of tn, which shows by induction that g[∗] = [∗]. �

We will for now assume that χ(ti) > 0 for all generators ti of GL.
Define

ML = GL × L ∪ π0(NL)/∼

where (g, ∗i) ∼ gtri [∗] for g ∈ GL and r ≥ 0 such that χ(gtri ) ≥ 0, and (g, x) ∼ g[∗]
for g ∈ G+

L and all x ∈ L. In words, ML has a copy of L for every g ∈ GL with
χ(g) < 0, and basepoints are identified with certain components of NL. Clearly,
ML has a G+

L -action.

Example 5.7. If L is connected, we get π0(NL) is a point by Proposition 5.6, and
ML is a wedge of copies of L, one for each g ∈ GL with χ(g) < 0.

If K ⊂ L is a full subcomplex, the inclusion need not preserve basepoints. In
fact, K can have more components than L, but we can choose basepoints for the
components of K as above for L. Then choose a map jLK : K → L homotopic
to the inclusion which sends basepoints to basepoints. If K1 ⊂ K2 ⊂ L we get
maps with jLK2

◦ jK2
K1
' jLK1

. This induces equivariant maps ϕLK : MK → ML with
ϕLK2
◦ ϕK2

K1
' ϕLK1

equivariantly.

Proposition 5.8. For every full subcomplex K ⊂ L there is an equivariant map
ψK : NK → MK which is an unequivariant homotopy equivalence, and such that
for K1 ⊂ K2 ⊂ L the diagram

NK1

i
K2
K1 //

ψK1

��

NK2

ψK2

��

MK1

ϕ
K2
K1 // MK2

commutes up to equivariant homotopy.
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Proof. The proof is by induction on the number of vertices in L. For 0 or 1 vertex
the statement is clear.
Using induction, we get

NL = G+
L ×G+

L∗
NL∗ ∪G+

L ×G+
K
NK × [0, 1]/∼

' G+
L ×G+

L∗
ML∗ ∪G+

L ×G+
K
MK × [0, 1]/≈

with [g, y, 0] ≈ [g, ϕL
∗

K (y)] and [g, y, 1] ≈ [gtn, ϕL
∗

K (y)] for g ∈ G+
L and y ∈ NK , via

an equivariant map with domain NL. The right-hand-side written out is

(5)
(

(GL × L∗ ∪G+
L ×G+

L∗
π0(NL∗))/∼

)
∪((

(GL ×K ∪G+
L ×G+

K
π0(NK))/∼

)
× [0, 1]

)/
≈

with identifications as before. If we do the ≈-identification in two steps, we get

NL ' (GL × L∗ ∪ πL/∼) ∪ (GL ×K × [0, 1])/≈(6)

with (g, x, 0) ≈ (g, jL
∗

K (x)) and (g, x, 1) ≈ (gtn, jL
∗

K (x)) for x ∈ K and g ∈ GL,
and for s ∈ [0, 1] we also identify (g, x, s) ≈ [g, [∗], s] for g ∈ G+

L , and (g, ∗i, s) ≈
[gtri , [∗], s], provided χ(gtri ) ≥ 0.
This space is the forest πL, together with copies of L∗ wedged to it, one for each
g ∈ GL with χ(g) < 0, and such that the copies of L∗ corresponding to g and gtn
are connected via K × [0, 1].
Now if χ(g) < 0, but χ(gtn) ≥ 0, we get that L∗ corresponding to g is being coned
off along K. Denote this as CKL∗, which is homotopy equivalent to L. Also, if
form L∗ ∪K× [0, 1]∪CKL∗ by identifying K×{0, 1} with copies in L∗ and CKL∗,
it is easy to see that the result is homotopy equivalent to the wedge of L.

~_

Figure 2.

In the right-hand-side of (6) we have infinite sequences of such objects, compare
Figure 2. It follows that the right hand side is homotopy equivalent to ML by this
and collapsing the forest πL to its components.
To see that the construction is natural with respect to full subcomplexes, note that
we can do the above construction for every subcomplex containing vn and so that
they are natural up to equivariant homotopy. If we consider a subcomplex not
containing vn, naturality follows by induction. �

For r ∈ imχ let Nr
L = hNL, where h ∈ GL satisfies χ(h) = r. Also let

Mr
L = GL × L ∪ π0(Nr

L)/∼
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where (g, ∗i) ∼ [gtsi∗] for g ∈ GL and s ≥ 0 such that χ(gtsi ) ≥ r, and (g, x) ∼ [g∗]
for χ(g) ≥ r. For r < s we have an obvious projection psr : Ms

L →Mr
L.

If g ∈ GL satisfies χ(g) = r, we get a homeomorphism ug : ML → Mr
L by

ug([h, x]) = [gh, x] and ug([x]) = [gx] for (h, x) ∈ GL × L and [x] ∈ π0(NL).
If vg−1 : Nr

L → NL denotes left-multiplication by g−1, we get that

ψrL = ug ◦ ψL ◦ vg−1 : Nr
L →Mr

L

is a homotopy equivalence which is G+
L equivariant, and for r < s the diagram

(7) Ns
L

//

ψsL
��

Nr
L

ψrL
��

Ms
L

psr
// Mr

L

commutes, as is easily seen from the cases with r or s equal 0.
For ψL to be a homotopy equivalence, we need χ to be non-zero on all generators,
and we will not attempt to describe the homotopy type of NL in general. But the
next Lemma contains partial information which is useful for determining Σ2(GL)
in general.

Lemma 5.9. Let χ : GL → R a homomorphism, L∗ the full subcomplex containing
the vertices with χ(ti) 6= 0 and let L† be the full subcomplex containing the vertices
with χ(tj) = 0. For every s ∈ imχ there is a retraction ρs : Ns

L → Ns
L∗ which

makes the diagram

Ns
L

⊂
//

ρs

��

Nr
L

ρr

��

Ns
L∗

⊂
// Nr

L∗

commute for every s > r ∈ imχ.

Proof. The proof is by induction on the number of vertices in L† with the induction
start L† empty being trivial. Assume the statement holds for L̄ a full subcomplex
L containing L∗. If vn /∈ L̄, let K be the full subcomplex of L̄ containing all vertices
adjacent to vn. Then if L′ is the full subcomplex of L containing L̄ and vn, we get

Ns
L′ = G+

L′ ×G+
L̄
Ns
L̄ ∪G

+
L′ ×G+

K
Ns
K × [0, 1]/∼(8)

with identifications as in (4). If ρ : GL′ → GL̄ is the retraction obtained by sending
tn to 1, we get a retraction ρs : Ns

L′ → Ns
L̄

defined by ρs([g, x]) = ρ(g) · x for
g ∈ G+

L′ and x ∈ Ns
L̄

, and ρs([g, x, t]) = r(g) · iL̄K for g ∈ G+
L′ , x ∈ Ns

L̄
and t ∈ [0, 1].

It is clear that the resulting diagram for s > r commutes. �

Theorem 5.10. Let χ : GL → R a homomorphism, L∗ the full subcomplex con-
taining the vertices with χ(ti) 6= 0 and let L† be the full subcomplex containing the
vertices with χ(tj) = 0. Then the following are equivalent.

(1) χ ∈ Σ2(GL).
(2) NL is simply connected.
(3) L∗ is simply connected, for every vertex vi ∈ (L†)(0) we have L∗(vi) is

connected, and for every 1-simplex σ ∈ (L†)(1) we have L∗(σ) is nonempty.
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Proof. (1) ⇒ (3): Since χ ∈ Σ2(GL) implies χ ∈ Σ2(GL; Z), Corollary 4.5 im-
plies that we only need to show that L∗ is simply connected. If L∗ is not simply
connected, then for all r < 0 the homomorphism π1(NL∗) → π1(Nr

L∗) induced by
inclusion is non-trivial, as follows from Proposition 5.8 together with diagram (7).
This implies π1(NL)→ π1(Nr

L) is non-trivial for all r < 0 by Lemma 5.9, which by
definition implies χ /∈ Σ2(G).
(3) ⇒ (2) is again shown by induction on the number vertices in L†. If L† is
empty, the result follows from Proposition 5.8. Let L′, L̄ and K be as in the proof
of Lemma 5.9, and assume inductively that NL̄ is simply connected. Note that
K∗ = L∗(vn) is connected, and K∗(vi) = L∗([vi : vn]) for every vertex vi ∈ K−L∗.
Therefore NK is connected by Proposition 5.6. It follows from (8) and a Seifert-Van
Kampen argument that NL′ is simply connected. After finitely many steps we get
NL simply connected.
(2) ⇒ (1) follows from the definition. �

Remark 5.11. Since Σk(G) = Σk(G; Z) ∩ Σ2(G) for k ≥ 2, Theorem 5.10 and
Corollary 4.5 recover the main theorems of [7, 19].

6. Non-trivial HNN-extensions of right-angled Artin groups

Given a finite flag complex L and a full subcomplex K, we can form a new flag
complex L̄ by adding a vertex and requiring that it is adjacent to every vertex of
K. The resulting right-angled Artin group GL̄ is a trivial HNN-extension of GL
along GK , compare Remark 3.2.
We now want to look at the situation where we have two full subcomplexes K1,K2

of L which are isomorphic as simplicial complexes. Such an isomorphism induces
an isomorphism of groups φ : GK1 → GK2 , and we can form the HNN-extension

G = GL∗φ,

The extra generator of G is denoted by t.
Any homomorphism χ : GL → R with χ ◦ φ = χ|GK1

extends to homomorphisms
χx : G→ R by setting χx(t) = x for any x ∈ R. We will usually drop the subscript
x in χ : G→ R.
If we assume χ(ti) 6= 0 for all generators of GL, the exact sequence (2) becomes

ẐGχ ⊗Z H̃n−1(K1) α−→ ẐGχ ⊗Z H̃n−1(L) −→ Hn(G; ẐGχ) −→

ẐGχ ⊗Z H̃n−2(K1) α−→ ẐGχ ⊗Z H̃n−2(L) −→ . . .

Note for example, that L connected implies χ ∈ Σ1(G; Z). Also, if the Betti num-
bers of K1 and L are different, we get nonvanishing H∗(G; ẐGχ) independent of
χ(t). By looking at the chain complex description in the proof of Theorem 4.1, we
see that α : ẐGχ ⊗Z H̃∗(K1)→ ẐGχ ⊗Z H̃∗(L) is given by

α(1⊗ z) = t⊗ j∗(z)− 1⊗ i∗(z)(9)

for z ∈ H̃∗(K1), with i∗ : H̃∗(K1) → H̃∗(L) is induced by inclusion and j∗ is
induced by the isomorphism K1 → K2 followed by inclusion. Now i∗ and j∗ can
induce quite different maps on homology, and we want to construct examples where
K1 ↪→ L is a homotopy equivalence, while K2 ↪→ L is not.
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Definition 6.1. Let f : K → L be a simplicial map between finite simplicial
complexes. We call f a full simplicial embedding, if it is injective as a continuous
map, and if vertices v0, . . . , vk span a k-simplex in K if and only if f(v0), . . . , f(vk)
span a k-simplex in L for all k ≥ 0.

Example 6.2. Let K = {0, 1} and L = [0, 1] with two vertices 0 and 1. Then the
inclusion K → L is not a full embedding. But if we subdivide L by adding a vertex
1
2 , the inclusion becomes a full embedding. Note that GK = F2, GL = Z2, and the
map induced by inclusion i∗ : F2 → Z2 is clearly not injective. However, with L′

the barycentric subdivision of L, we get GL′ = F2 × Z, and we have an injection
i∗ : GK → GL′ .

Lemma 6.3. Let f : K → L be an injective simplicial map between finite flag
complexes. Then f is a full embedding if and only if the following holds: two vertices
v0, v1 in K span a 1-simplex if and only if f(v0) and f(v1) span a 1-simplex in L.
In this case, GK is a retract of GL.

Proof. The ‘if and only if’-statement is clear since flag complexes are determined
by their 1-skeleton. The retraction for the induced homomorphism i∗ : GK → GL
is defined as follows: if ti is a generator corresponding to the vertex ui ∈ L(0), we
set r(ti) = tj ∈ GK , if there is a vertex vj ∈ K(0) with f(vj) = ui, and we set
r(ti) = 1 ∈ GK , if ui is not in the image. From the full embedding condition it
follows that r respects all relations in GL, and we have ri∗ = idGK . �

Lemma 6.4. Let K,L be finite flag complexes and f : K → L a simplicial map.
Then there exists a finite flag complex M containing L as a deformation retract,
and a full simplicial embedding g : K →M homotopic to f .

Proof. We first want to replace f by a simplicial map g′ : K → M ′ which is
injective on vertices. Let v0, v1 be vertices with f(v0) = f(v1) = u ∈ L. Form
a new simplicial complex L1 by forming the cone over the star of u, that is, we
add one vertex u′, and whenever there is a k-simplex σ involving u, we add the
(k + 1)-simplex σ ∪ {u′} to L1. Then L1 is still a flag complex and it contains L
as a deformation retract. If we define f1 : K → L1 by f1(v) = f(v) for v 6= v1,
f1(v1) = u′, we get a simplicial map homotopic to i ◦ f : K → L1, which is slightly
less non-injective than f . If f1 is not injective, we repeat this process finitely many
times.
So assume that g′ : K →M ′ is injective on vertices, M ′ contains L as a deformation
retract and i◦f is homotopic to g′. Let v0, v1 be two vertices of K which do not form
a 1-simplex, but such that f(v0) and f(v1) form a 1-simplex in M ′. Let u0 = g′(v0)
and u1 = g′(v1), and let M∗ be the full subcomplex of M ′ containing u1 and all
vertices u adjacent to u1, except u0. Now form M1 by coning off M∗, that is, we add
a vertex u′1, and for every k-simplex σ in M∗ we add the (k+ 1)-simplex σ ∪ {u′1}.
Again M1 deformation retracts to M ′, and defining g1 : K →M1 by g1(v) = g′(v)
for v 6= v1 and g1(v1) = u′1 gives an injective simplicial map homotopic to i ◦ g′.
Also, if v2, v3 are vertices in K not forming a 1-simplex, then g1(v2), g1(v3) form
a 1-simplex in M1 if and only if {v2, v3} 6= {v0, v1} and g′(v2), g′(v3) form a 1-
simplex. As there are only finitely many such pairs, we can repeat the argument
finitely many times to end up with the desired full embedding. �
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Let K be a finite flag complex and f : K → K a continuous map. By the simplicial
approximation theorem, there is r ≥ 0 and a simplicial map f ′ : K [r] → K homo-
topic to f , where K [r] is the r-th barycentric subdivision of K, which is also a flag
complex. By Lemma 6.4 we can find a full embedding g : K [r] →M with M a flag
complex containing K as a deformation retract.

Lemma 6.5. There exists a finite flag complex L with the following properties:

(1) K [r] and M are full subcomplexes of L with inclusions i : K [r] → L and
j : M → L.

(2) The set of vertices is the disjoint union of the vertices of K [r] and M .
(3) The full embedding i : K [r] → L is a homotopy equivalence.
(4) The full embedding j ◦ g : K [r] → L is homotopic to i ◦ f : K → L.

Proof. If r = 0, let L = K × [0, 1] ∪K×{1} M with the standard subdivision of
K × [0, 1].
If r > 0, let s : K [r−1] → K be a simplicial approximation of the identity, and
M(s) the simplicial analogue of a mapping cylinder as constructed in [12, p.183].
By checking the construction there, one sees that M(s) is a flag complex, as K [r−1]

and K are. Furthermore, the set of vertices is the disjoint union of the vertices of
K [r] and K, so K [r] and K are fully embedded in M(s). Also, there is a deformation
retraction rt : M(s) → K with r1 ◦ i = s : K [r] → K. In particular, the inclusion
i : K [r] → M(s) is a homotopy equivalence. Now let L = M(s) ∪K M . It is clear
that L has the desired properties. �

Definition 6.6. Let N̂ be the set of all non-negative integers together with an
element ∞. We order this set by the usual order of integers together with p < ∞
for all non-negative integers p.

For the next theorem, we set

Σ∞(G; Z) =
⋂
p≥1

Σp(G; Z)

Σ∞+1(G; Z) = ∅.

Theorem 6.7. Let p, q ∈ N̂. Then there exists a group G of type F and a homo-
morphism χ : G→ R with

χ ∈ Σp(G; Z)− Σp+1(G; Z)
−χ ∈ Σq(G; Z)− Σq+1(G; Z)

The homomorphism can be chosen to have image in Z.

Proof. We can assume p 6= q for otherwise we can find a right-angled Artin group
and χ with that property. Without loss of generality let p > q.
If q ≥ 1, let K be a flag complex realizing Sq, and f : Sq → Sq a map of degree 2.
Let L be the flag complex arising from Lemma 6.5 and M the one-point union of L
and a flag complex realizing Sp (in case p =∞ we set M = L). Then let G be the
HNN-extension of GM along GK[r] using the two full embeddings from Lemma 6.5.
To define χ : G → R, let χ(ti) = 1 for every generator ti ∈ GM and let χ(t) = 1.
Then α : ẐGχ⊗Z H̃∗(Sq)→ ẐGχ⊗Z H̃∗(Sq ∨Sp) is by Lemma 6.5 and (9) the map

α(1⊗ z) = t⊗ f∗(z)− 1⊗ i∗(z).
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In degree q this is the map α(x) = x(2t− 1) for x ∈ ẐGχ, which is an isomorphism
since χ(t) > 0. If we look at −χ, we still get the formula for α, but this time
it is a map ẐG−χ → ẐG−χ and α is injective but not surjective. It follows that
−χ ∈ Σq(G; Z) − Σq+1(G; Z) from Lemma 2.4 and (2), while χ ∈ Σq+1(G; Z).
If p < ∞, note that Hp+1(G; ẐGχ) 6= 0, since H̃p(M) 6= 0 while H̃p(K) = 0.
Therefore χ ∈ Σp(G; Z)− Σp+1(G; Z).
If q = 0 we have to use a slightly different technique. We assume p < ∞, for
otherwise the Baumslag-Solitar group G = 〈s, t | t−1st = s2〉 will do.
Let L be a finite flag complex subdividing Sp, and M the union of L with two
vertices v, w with v being adjacent to exactly one vertex of L, see Figure 3. Fur-
thermore, let K be the two vertices v, w.

v w

Figure 3.

We denote the generators of GK = F2 by r, s where r corresponds to v. Let
θ : GK → GM be given by θ(r) = r and θ(s) = s2. Then let G = GM∗θ and
χ : G→ R is given by sending every generator other than s to 1, and χ(s) = 0.

In Theorem 4.1 we get E1
1 0 = E1

0 p+1 = ẐGχ as the only non-zero terms, so
Hi(GM ; ẐGχ) ∼= ẐGχ for i = 1, p + 1 and Hi(GM ; ẐGχ) = 0 otherwise. Simi-
larly H∗(GK ; ẐGχ) ∼= ẐGχ⊗Z H̃∗−2(∅) as E1

u v = 0 for u 6= 1. Note that ∅ = K∗(w)
and H̃−1(∅) = Z. The long exact sequence (2) contains

. . . −→ H2(G; ẐGχ) −→ ẐGχ
α−→ ẐGχ −→ H1(G; ẐGχ) −→ 0

where α = (t, θ)∗ − i∗. First note that i∗ is an isomorphism. To see this, look at
the short exact sequence of chain complexes

0 −→ ẐGχ ⊗ZGK C∗(GK) −→ ẐGχ ⊗ZGM C∗(GM ) −→ Q∗ −→ 0

where Q∗ is the free ẐGχ-chain complex with Qi = ẐGχ ⊗ZGL Ci(GL) for i 6= 0, 2,
Q0 = 0 and Q2 = ẐGχ ⊕ ẐGχ ⊗ZGL C2(GL), where the extra summand in Q2

comes from the edge between v and L. Without the extra summand in Q2 we
would get H1(Q∗) = ẐGχ and Hi(Q∗) = Hi(GL; ẐGχ) for i 6= 1. The boundary
of the extra summand is ∂(x) = x(1 − r) and as (1 − r) is invertible, we get
H∗(Q∗) = H∗(GL; ẐGχ) = ẐGχ ⊗Z H̃∗−1(Sp).

From the long exact sequence it follows that i∗ : H1(GK ; ẐGχ)→ H1(GM ; ẐGχ) is
surjective. As we know that these are free ẐGχ-modules of rank one, it is injective
as well by [2, 16] (note that injectivity is clear for p > 1). Now (t, θ)∗ increases the
value of χ, so α is an isomorphism in degree 1. Therefore Hi(G; ẐGχ) = 0 for i ≤ p.
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Also Hp+1(G; ẐGχ) ∼= Hp+1(GM ; ẐGχ) 6= 0 as follows again from the long exact
sequence for HNN-extensions. Therefore χ ∈ Σp(G; Z)−Σp+1(G; Z) by Lemma 2.4.
We need to show that −χ 6∈ Σ1(G; Z). For this we need to analyze α closer in the
case when t is send to a negative value. Define a chain map τ∗ : C∗(GK)→ C∗(GM )
with τ∗(gx) = θ(g)τ∗(x) for g ∈ GK . To do this, note that θ extends naturally to θ :
ZGK → ZGM with this property. So let τ0 : C0(GK) = ZGK → ZGM = C0(GM )
be given by τ0 = θ.
Also C1(GK) = ZGK⊕ZGK and C1(GM ) = ZGM ⊕ZGM ⊕(ZGM )k and we define

τ1(x, y) = (θ(x), θ(y)(s+ 1), 0).(10)

As τ0(∂(x, y)) = θ(x)(r − 1) + θ(y)(s2 − 1), we see that this induces the required
chain map τ∗. We want to show that H1(G; N̂−χ) 6= 0. Observe that N̂−χ can
be identified with the Laurent series ring Z((t−1)) whose elements are of the form∑u
n=−∞mnt

n, and the ẐG−χ-module structure is given by the ring homomorphism
sending all generators except s to t, and s being send to 1. The map (t, θ)∗ :
H1(GK ; N̂−χ)→ H1(GL; N̂−χ) is easily seen by using (10) to be

(t, θ)∗

(
u∑

n=−∞
mnt

n

)
= 2

u∑
n=−∞

mnt
n+1.

Therefore α : N̂−χ → N̂−χ is given by α(x) = x(2t − 1) which is not surjective.
Therefore H1(G; N̂−χ) 6= 0 which implies −χ /∈ Σ1(G; Z) by Corollary 2.5. �

We can define Σ∞(G) and Σ∞+1(G) analogously. We will see in the next section
that the examples constructed above in fact satisfy χ ∈ Σp(G) − Σp+1(G; Z) and
−χ ∈ Σq(G)− Σq+1(G; Z).

7. The homotopy type of halfspaces II

To study the homotopical invariant Σk(G), we consider the following situation. We
have a finite flag complex L and a finite flag complex K together with two full
simplicial embeddings i0 : K → L and i1 : K → L. As before this gives rise to the
HNN-extension G along the injections GK → GL induced by i0 and i1.
Note that G admits a finite K(G, 1) given by

Q = QL ∪QK × [0, 1]/∼

where (x, 0) ∼ i0(x) and (x, 1) ∼ i1(x).
If X denotes the universal cover of Q, we get

X = G×GL XL ∪G×GK XK × [0, 1]/∼

with the usual identifications. Furthermore, for χ : G → R as in Section 6, we get
a height function h : X → R by h([g, x]) = χ(g) + hL(x) for g ∈ G, x ∈ XL and
h([g, y, s]) = χ(g) + hK(y) + χ(t) · s for g ∈ G, y ∈ XK and s ∈ [0, 1]. Here hL and
hK are the height functions from Lemma 5.1.
Let us assume that χ is non-zero on all the generators of G. Let us also assume
that χ(t) = 1 for the extra generator t ∈ G. The case χ(t) = −1 is then handled
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by interchanging the role of i0 and i1. Let N be the maximal subcomplex of X
contained in h−1([0,∞)). With G+ = {g ∈ G |χ(g) ≥ 0}, we get

N = G+ ×G+
L
NL ∪G+ ×G+

K
NK × [0, 1]/∼

with the usual identifications.

Lemma 7.1. Let K, L be finite connected flag complexes and i0, i1 : K → L
full simplicial embeddings, and χ : G → R a homomorphism with χ(ti) 6= 0 for
all generators ti ∈ GL corresponding to vertices of L, and χ(t) = 1 for the extra
generator of G.

(1) If i0# : π1(K)→ π1(L) is an isomorphism, then χ ∈ Σ2(G).
(2) If i1# : π1(K) → π1(L) is injective and the normal closure of π1(K) in

π1(L) is not the whole group, then −χ /∈ Σ2(G).

Proof. To see (1), we want to show that N is simply connected. By Proposition
5.8 we get that N is homotopy equivalent toG+ ×G+

L

∨
g∈G−L

L

 ∪
G+ ×G+

K

∨
g∈G−K

K × [0, 1]

/∼
where the identifications of [g, x, 0] and [g, x, 1] are induced by the inclusions i0 :
K → L and i1 : K → L respectively, and G−L = {g ∈ GL |χ(g) < 0}. Let π be the
subcomplex given by

π = G+ ×G+
L
{∗} ∪G+ ×G+

K
{∗} × [0, 1]/∼ .

Then π is a tree by an argument similar to the proof of Lemma 5.4. By collapsing
this tree, we get

N '
∨
g∈G−

L ∪
∨
g∈G−

K ∧ [0, 1]+/∼

with the following identifications. Let gx be an element of the copy of K corre-
sponding to g ∈ G− = {g ∈ G |χ(g) < 0}. Then (gx, 0) ∼ gj0(x), where j0 : K → L
sends the basepoint of K to the basepoint of L and is homotopic to i0 : K → L,
and gj0(x) means we consider j0(x) as an element of the copy of L corresponding
to g ∈ G−. Similarly (gx, 1) ∼ gtj1(x), provided that χ(gt) < 0. If χ(gt) ≥ 0, we
identify (gx, 1) with the basepoint ∗. Recall that K and L are considered based
spaces as in Section 5; also [0, 1]+ is the interval with a disjoint base point, and
K ∧ [0, 1]+ = K × [0, 1]+/K ∨ [0, 1]+.
Now let F be a finite subset of G− with the following property: if g ∈ F , then
χ(gt) ≥ 0 or gt ∈ F . Such sets can be ordered by inclusion, and we define

NF =
∨
g∈F

L ∪
∨
g∈F

K ∧ [0, 1]+/∼

as a subcomplex of N . Then π1(N) ∼= lim
−→

π1(NF ) where the direct limit is taken
over all such finite sets F .
For g ∈ G− −F with gt ∈ F or χ(gt) ≥ 0, we can write

NF∪{g} = (NF ∪K ∧ [0, 1]+) ∪ (NF ∨ L)
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with

NF ∨K = (NF ∪K ∧ [0, 1]+) ∩ (NF ∨ L).

Note that NF ∪K ∧ [0, 1]+ ' NF . By the Seifert-van Kampen theorem we have a
push-out diagram

(11) π1(NF ) ∗ π1(K)
id#∗i0#

//

��

π1(NF ) ∗ π1(L)

��

π1(NF ) // π1(NF∪{g})

So if i0# is an isomorphism, we get that π1(NF )→ π1(NF∪{g}) is an isomorphism.
Since π1(N∅) = 1, this shows that N is simply connected, which proves (1).
Instead of studying −χ, we keep the discussion above, but interchange the role of
i0 and i1. So let us assume that i0# : π1(K) → π1(L) is injective, and if H is the
quotient of π1(L) by the normal closure of i0#(π1(K)) in π1(L), we get that H is
non-trivial. We want to show that in this situation χ /∈ Σ2(G).
From (11) we get that π1(NF ) → π1(NF∪{g}) is injective. Also, we get that
π1(NF ) → π1(NF∪{g}) surjects onto H, by letting π1(L) → H be the quotient
map and sending π1(NF ) to 1, and using the push-out property of (11). This
shows that π1(N) is non-trivial.
To get χ /∈ Σ2(G), we have to show that the image of i# : π1(N) → π1(gN) is
non-trivial for all g ∈ G−, where i : N → gN is inclusion. For all s ∈ imχ we
can define Ns

F by using wedges for g with χ(g) < s. For s < 0, it is easy to see
that there is an obvious projection NF → Ns

F which induces a surjection on π1 by
using (11) and the analogous diagram for Ns

F . Therefore i# : π1(N) → π1(gN) is
surjective for all g ∈ G−, which proves (2). �

Remark 7.2. If both i0 and i1 induce isomorphisms on fundamental group, we
get of course ±χ ∈ Σ2(G). Note that Lemma 7.1 applies to the examples used
for Theorem 6.7 with q ≥ 1. Therefore the homological Sigma invariant can be
replaced by the homotopical Sigma invariant in these examples.
To get examples with

χ ∈ Σp(G; Z)− (Σp+1(G; Z) ∪ Σ2(G))
−χ ∈ Σq(G; Z)− (Σq+1(G; Z) ∪ Σ2(G))

for p, q ≥ 1, one can choose L′ = L∨A with L as in the proof of Theorem 6.7 and A
a finite flag complex with vanishing reduced homology and non-trivial fundamental
group. Then condition (2) of Lemma 7.1 applies to both inclusions of K into L′,
ensuring that ±χ /∈ Σ2(G).

Theorem 7.3. There exists a group G of type F and a homomorphism χ : G→ R
such that

χ ∈ Σ∞(G)
−χ ∈ Σ∞(G; Z)− Σ2(G).

The homomorphism can be chosen to have image in Z.
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Proof. The binary icosahedral group has a presentation

I = 〈x, y |x2 = y3 = (xy)5〉
and is non-trivial and perfect, see [14], so we can find a CW-complex with one
0-cell, two 1-cells and two 2-cells. From the Euler characteristic, we see that this
CW-complex has vanishing reduced homology, so let A be a subdivision which is a
flag complex. Pick a vertex ∗ ∈ A as a basepoint and let K = A∨A. We claim there
is a map f : K → K inducing an injection on π1 and such that the normal closure
of the image is not the whole group. Note that π1(K) ∼= I ∗ I, and a presentation
is given by

π1(K) ∼= 〈x, y, x̄, ȳ |x2 = y3 = (xy)5, x̄2 = ȳ3 = (x̄ȳ)5〉.
Now define ϕ : π1(K) → π1(K) by ϕ(x) = x, ϕ(y) = y, ϕ(x̄) = x̄−1xx̄ and
ϕ(ȳ) = x̄−1yx̄. It is clear that ϕ is injective, and if p : π1(K) → I denotes the
projection to the second factor I of I ∗ I, we get that the image of ϕ is contained
in the kernel of p, which is clearly not the whole group.
Since K is a 2-dimensional complex, we can realize ϕ by a continuous function
f : K → K. Now let L be the finite flag complex from Lemma 6.5, and G the HNN-
extension of GL along GK[r] and the two full simplicial embeddings K [r] → L. We
define χ : G → R by sending every generator to 1, so χ ∈ Σ2(G) and −χ /∈ Σ2(G)
by Lemma 7.1. Since H̃∗(L) = H̃∗(K) = 0 we get H∗(G; ẐG±χ) = 0 from (2) and
Theorem 4.1. Therefore ±χ ∈ Σ∞(G; Z) and the result follows from Lemma 2.4
and the fact that Σk(G) = Σk(G; Z) ∩ Σ2(G) for k ≥ 2. �

We can combine the examples for Theorem 6.7 and Theorem 7.3 to get

Theorem 7.4. For every pair p, q ∈ N̂ there exists a group of type F and a homo-
morphism χ : G→ R such that

χ ∈ Σp(G)− Σp+1(G)
−χ ∈ Σq(G; Z)− (Σq+1(G; Z)− Σ2(G)).

The homomorphism can be chosen to have image in Z.

Proof. We will sketch the proof as the techniques are very similar to previous ar-
guments.
We consider various cases. If p, q ≥ 2 let K, L and f be as in the proof of Theorem
7.3. If p ≥ q let K1 = K ∨ Sq. Also let f1 : K1 → K1 be the wedge of f with a
map of degree 2 on Sq. Let L1 be the result from Lemma 6.5 and let L2 = L1∨Sp,
provided p < ∞. It is easy to see that the standard construction gives G and χ
with the desired properties.
If q > p, let K̄ = Sp, g : Sp → Sp a map of degree 2 and L̄ the flag complex arising
from Lemma 6.5. Note that L̄ has the homotopy type of Sp. We set L1 = L∨L̄∨Sq.
Now let Ḡ be the HNN-extension of GL1 along the two full embeddings of K [r] in
L1 and χ as usual. Then χ ∈ Σ2(Ḡ), −χ ∈ Σ2(Ḡ; Z)−Σ2(Ḡ) and the only non-zero
Novikov homology groups are

Hq(Ḡ; ẐḠ±χ) = ẐḠ±χ = Hp(Ḡ; ẐḠ±χ).

We still have two injections GK̄[s] → Ḡ arising from the full embeddings K̄ [s] → L̄
so we can form another HNN-extension G along these injections and the usual
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χ : G → R by sending the extra generator to 1. As before it follows from (2)
that χ ∈ Σp(G; Z)− Σp+1(G; Z) and −χ ∈ Σq(G; Z)− Σq+1(G; Z). Futhermore, it
follows from [19, Thm.5.2] that χ ∈ Σ2(G), while it follows from [10, Prop.10] that
−χ /∈ Σ2(G), since the example from Theorem 7.3 is a retract of G and χ.
If q ≤ 1, we can use the examples from Theorem 6.7, except that for q = 0 and p ≥ 2
we did not actually show that χ ∈ Σ2(G). To see this note that NL is homotopy
equivalent to a disjoint union of wedges of Sp, in particular its components are
simply connected. Also NK is a forest. One easily sees that the halfspace N is
connected (recall χ ∈ Σ1(G)), and with an argument similar to the proof of Lemma
5.4 we see that it is simply connected. We omit the details.
If p ≤ 1, use the examples from Theorem 6.7, but take the one point union of L with
A, where A is a non-simply connected flag complex with H̃∗(A) = 0. The resulting
χ : G → R will satisfy −χ /∈ Σ2(G) by [10, Prop.10], since GA with χ : GA → R
sending every generator to 1 is a retract of this. �

8. Closed 1-forms without singularities

Even though we cannot expect a lot of symmetry in the Sigma invariants with
respect to the antipodal map, we obtain the following rather peculiar symmetry
condition for Σk(G; Z).

Proposition 8.1. Let G be a group of type Fk with k ≥ 2, and let χ : G→ R be a
non-zero homomorphism. Assume there exists a smooth closed connected manifold
M with G = π1(M) whose universal cover M̃ is (k − 1)-connected, and such that

C∗(M ; ẐGχ) = ẐGχ ⊗ZG C∗(M̃)

is chain-contractible, where C∗(M̃) is the simplicial chain complex over ZG obtained
from a smooth triangulation of M . Then ±χ ∈ Σk(G; Z).

Notice that M̃ is certainly 1-connected, so we get ±χ ∈ Σ2(G; Z) provided that
C∗(M ; ẐGχ) is chain-contractible.

Proof. We have the universal coefficient spectral sequence with

E2
p q = TorZG

p (ẐGχ, Hq(M̃))

converging to Hp+q(M ; ẐGχ). Since M̃ is (k − 1)-connected, we have E2
p q = 0 for

q = 1, . . . , k − 1, so

E∞p 0 = TorZG
p (ẐGχ, H0(M̃)) = Hp(G; ẐGχ)

for p ≤ k. As our assumption is H∗(M ; ẐGχ) = 0, we get Hp(G; ẐGχ) = 0 for
p ≤ k, which means χ ∈ Σk(G; Z) by Lemma 2.4.

Let C∗(M̃) = HomZG(C∗(M̃),ZG). As C∗(M̃) is viewed as a left ZG-chain com-
plex, this is a right ZG-chain complex, but we can view it as a left complex by using
the orientation-involution on ZG. Then Poincaré duality gives a chain homotopy
equivalence C∗(M̃) ' Cn−∗(M̃) of free left ZG-chain complexes, where n denotes
the dimension of M . Therefore ẐG−χ⊗ZGC∗(M̃) ' ẐG−χ⊗ZGC

n−∗(M̃), and the
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latter is isomorphic to Hom cZGχ(ẐGχ ⊗ZG Cn−∗(M̃), ẐGχ) via

Φ : ẐG−χ ⊗ZG C
n−∗(M̃) −→ Hom cZGχ(ẐGχ ⊗ZG Cn−∗(M̃), ẐGχ)

λ⊗ ϕ 7→ Φ(λ⊗ ϕ) : 1⊗ x 7→ ϕ(x)λ̄

Note that the involution on ZG extends to an anti-ring-homomorphism ·̄ : ẐG−χ →
ẐGχ, so that both complexes are indeed free left ẐG−χ-chain complexes. A chain
contraction for ẐGχ⊗ZGC∗(M̃) therefore induces a chain contraction for ẐG−χ⊗ZG

C∗(M̃). Thus the spectral sequence argument above also applies to ẐG−χ and we
get −χ ∈ Σk(G; Z). �

The condition that C∗(M ; ẐGχ) is chain-contractible is a necessary condition for
the existence of a non-singular closed 1-form ω representing χ ∈ H1(M ; R) ∼=
Hom(π1(M),R). Here non-singular means that ωx 6= 0 for all x ∈M .
In [17], Latour gives various conditions which are necessary and sufficient for the
existence of a non-singular closed 1-form ω on a closed smooth manifold M within
a given cohomology class χ ∈ H1(M ; R), provided that dimM ≥ 6. Let us quickly
recall these conditions.
If ω is any closed 1-form representing χ, the pullback of ω to M̃ is exact and gives
a height function h : M̃ → R with respect to χ. A map γ : [0,∞)→ M̃ is called a
path to infinity with respect to χ, if limt→∞ h◦γ(t) =∞. Pick a basepoint x0 ∈ M̃ .
We then let

Mχ = {γ : [0,∞)→ M̃ | γ(0) = x0, γ is a path to infinity w.r.t.χ}.
This set is topologized with the compact-open topology together with a ‘control at
infinity’, that is, a sub-basis for the topology is given by the following open sets:
For a, b ∈ [0,∞) and U open in M̃ let

W (a, b;U) = {γ ∈Mχ | γ([a, b]) ⊂ U}
and for a,A ∈ [0,∞) let

W (a,A) = {γ ∈Mχ | ∀t ≥ a h(γ(t))− h(γ(0)) > A}.
If there exists a non-singular closed 1-form ω representing χ, it is easy to see that
M̃ is diffeomorphic to N × R with N a smooth manifold, and a height function
is given by projection to R. It is then easy to see that both Mχ and M−χ are
contractible.
On the other hand, if Mχ is contractible, it can be shown that

C∗(M ; ẐGχ) = ẐGχ ⊗ZG C∗(M̃)

is chain-contractible, see [17], where G = π1(M). As this is a finitely generated
free chain complex over ẐGχ, one can look at its Whitehead torsion τ(M ;χ) in
an appropriate quotient of K1(ẐGχ). We will not define this quotient, but remark
that it is a quotient of the ordinary Whitehead group Wh(π) and in fact vanishes
if and only if Wh(π) vanishes, see [22, 23].
The main result of Latour is then

Theorem 8.2 ([17]). Let M be a smooth closed connected manifold of dimension
at least 6, and χ ∈ H1(M ; R). Then χ can be realized by a non-singular closed
1-form if and only if Mχ and M−χ are contractible and τ(M ;χ) vanishes.
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The condition that Mχ is contractible is known to be equivalent to the following
two conditions, see [17] or [10].

(1) χ ∈ Σ2(G) and
(2) C∗(M ; ẐGχ) is chain-contractible.

Since C∗(M ; ẐGχ) is chain contractible if and only if C∗(M ; ẐG−χ) is chain con-
tractible one can ask whetherMχ is contractible if and only ifM−χ is contractible.
In other words, one can ask whether the analogue of Proposition 8.1 also holds for
the homotopical Sigma invariant.
Based on the work of Bestvina and Brady [1], Damian [8] has constructed an ex-
ample of a manifold where C∗(M ; ẐGχ) is chain-contractible, but neither Mχ nor
M−χ are contractible. We now give an example of a manifold M where only one
of Mχ and M−χ is contractible. The construction is in fact completely analogous
to the construction in [8], replacing [1] with Theorem 7.3. For the convenience of
the reader, we will repeat the construction.

Theorem 8.3. There exists a closed connected smooth manifold M of dimension
at least 6 and a non-zero χ ∈ H1(M ; R) such that Mχ is contractible, but M−χ is
not contractible.

Proof. Let G be the group from Theorem 7.3, which has a finite K(G, 1) denoted
Q, say of dimension n. Embed this K(G, 1) into R2n+3 and let W be a regular
neighborhood of Q, which we can think of as a smooth compact manifold with
boundary. Let M = ∂W , which is of dimension 2n + 2 and homotopy equivalent
to W − Q by the properties of regular neighborhoods. By transversality we get
that every pair of maps (Di+1, Si) → (W,M) factors through (W − Q,M) up to
homotopy for i ≤ n+1, since Dn+2 can avoid the n-dimensional Q in (2n+3)-space.
Therefore πi(M) ∼= πi(W ) ∼= πi(Q) for i ≤ n+ 1. In particular, the universal cover
M̃ is (n+1)-connected, and π1(M) = G. The universal coefficient spectral sequence
with E2

p q = TorZG
p (ẐGχ, Hq(M̃)) converging to Hp+q(M ; ẐGχ) satisfies E2

p q = 0
for p+q ≤ n+1 by Theorem 7.3 and the fact that M̃ is (n+1)-connected. Therefore
Hi(M ; ẐGχ) = 0 for i ≤ n + 1. The same argument gives Hi(M ; ẐG−χ) = 0 for
i ≤ n + 1. Using Poincaré duality we get H∗(M ; ẐG±χ) = 0, and C∗(M ; ẐG±χ)
is chain-contractible as this is a free complex. Now Mχ is contractible as we have
χ ∈ Σ2(G), but M−χ is not contractible, as −χ /∈ Σ2(G). �

Remark 8.4. The dimension of M is in fact much bigger than 6. The dimension
of K used in Lemma 6.5 is 2 and dimL = max{dimK + 1,dimM}. The simplicial
approximation g : K [r] → K used in Theorem 7.3 is far from injective which
increases dimM . In any case dimL ≥ 3. Since n = dimL+ 2, we get that M is at
least 12-dimensional.

Remark 8.5. Since C∗(M ; ẐGχ) is chain contractible in the previous theorem, one
can ask about the Whitehead torsion arising this way. Now G is an HNN-extension
of a right-angled Artin group via two isomorphic right-angled Artin subgroups. If
we look at the universal cover X of Q, we see that X is a non-positively curved space
by the same argument that each XL is a non-positively curved space, compare [1]
(the link of each vertex is a flag complex). Therefore the Whitehead group Wh(G)
vanishes by [13] and the torsion is trivial.
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[23] D. Schütz, On the Whitehead group of Novikov rings associated to irrational homomorphisms,

J. Pure Appl. Algebra 208 (2007), 449-466.
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