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Abstract. We use the Mackaay–Vaz universal sl3-link homology to deepen

the study of s-invariants on Khovanov’s link homology associated to sl3. Such
s-invariants have already been studied by Lobb and Wu in characteristic 0

and we show how to extend this to other characteristics, particularly to p = 3.

We also use Bar-Natan’s scanning algorithm for efficient calculations of these
invariants, and exhibit more examples of unusual behaviour that has been

previously observed by Lewark–Lobb.

1. Introduction

Rasmussen’s groundbreaking work [Ras10] on a lower bound for the slice genus of
a knot coming from Khovanov homology [Kho00] has been generalized in many
different directions. One of these directions was pursued independently by Lobb
[Lob09] and Wu [Wu09] using Khovanov–Rozansky sln-link homology [KR08] for
n ≥ 3.

Many of the formal properties of Rasmussen’s s-invariant carry over to the setting
using sln, n ≥ 3, but one big difference lies in computability. While the s-invariant
can easily be computed in bulk for knots with up to 20 crossings, and even knots
with 60 crossings do not represent a serious difficulty, the same can certainly not
be said for sln-link homology. However, for n = 3 Lewark [Lew13] showed that
the scanning technique of Bar-Natan [BN07] can be adapted for fast calculations of
sl3-link homology as defined in [Kho04], and for general n this can be done provided
the knot is bipartite, see Lewark–Lobb [LL16].

Whether a knot is bipartite or not is generally difficult to tell, but certain pretzel
knots are, compare [LL16], and Lewark–Lobb were able to use these knots to show
that the resulting s-invariants for sln can be quite different for various n, and that
other interesting phenomena appear for n ≥ 3. One of these phenomena is that
there are more spectral sequences starting from sln-link homology than one might
expect, and that their E∞-pages can even lead to different slice obstructions.

In this paper, we focus on the case of sl3-link homology. This allows us to perform
reasonably fast computations without having to restrict ourselves to bipartite knots.
Furthermore, Lewark [Lew13] restricted himself to computations of the standard
sl3-link homology, making s-invariant computations somewhat reliant on being able
to infer the spectral sequence from the homology.

The calculations of s-invariants in [Lew13, LL16] are done in characteristic 0, but
recent results for standard Khovanov homology, compare [LZ21, Sch25, DLS24,
Lew24], suggest that different characteristics should also be of interest for sl3-link
homology. The extension to characteristics p 6= 3 is straightforward, but we also
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get a homomorphism s3
sl3

: C→ Z in this case, where C is the smooth concordance
group of knots.

Theorem 1.1. The homomorphism s3
sl3

: C→ Z satisfies

(1) g4(K) ≥ |s3
sl3

(K)|/2 for each knot K, where g4 refers to the 4-genus of K.

(2) s3
sl3

(T (p, q)) = (p− 1)(q − 1) for the (p, q)-torus knot T (p, q).

(3) The image of s3
sl3

is generated by the image of T (2, 3).

The first two conditions mean that s3
sl3

is (up to a scalar) a slice-torus invariant,
compare [Liv04]. The third condition is worth mentioning, since for p 6= 3 the
homomorphism only satisfies (1) and (2), but not (3). This puts s3

sl3
closer to the

standard Rasmussen s-invariants, but we will see that they are not the same. It also
shows that s3

sl3
is linearly independent of s0

sl3
and we will also see that p = 0, 2, 3

give linearly independent homomorphisms.

The aforementioned spectral sequences, which can also be used to calculate spsl3 ,

are closely related to Frobenius algebras of the form F[X]/f(X), where f(X) is a
separable polynomial of degree 3. In particular, X3 − 1 is used for p 6= 3 in the
definition of spsl3 , and X3 −X for p = 3.

Concordance invariants can also be derived from other separable polynomials, but as
was observed in [LL16] need not give rise to homomorphisms from the concordance
group, at least not in a straightforward way. Lobb–Lewark [LL16, §3] introduced
a notion of KR-equivalence (depending on a knot K) on polynomials over C to get
a better grasp on the various invariants. While X3 − 1 and X3 −X are easily seen
to not be KR-equivalent, finding other separable polynomials not KR-equivalent to
X3−X is more difficult. Lobb–Lewark showed that X3−X−1 is not KR-equivalent
to X3 −X for certain connected sums of pretzel knots.

We make calculations that show that for some torus knots with 4, 5, or 6 strands
the polynomials X3 − X and X3 − X − 1 are not KR-equivalent. We also give a
criterion (see Proposition 8.1) that explains why X3 − X and X3 −X − 1 are so
often KR-equivalent for knots with a small number of crossings.

Acknowledgements. The author would like to thank Lukas Lewark for useful
comments and clearing up a few technicalities, and Andrew Lobb for useful discus-
sions.

2. Rank Three Frobenius systems

A Frobenius system F = (Λ, A, ε,∆) consists of an inclusion of commutative rings
ı : Λ → A, a Λ-module map ε : A → Λ, and a A-bimodule map ∆: A → A ⊗Λ A
which is co-associative and co-commutative, such that (ε ⊗ id)∆ = id. We say
that F is of rank 3, if there exists X ∈ A such that 1, X,X2 is a basis of A as a
Λ-module.

We note that all our rings are assumed to have an identity 1, and any ring homo-
morphism sends 1 to 1.

Example 2.1. The Mackaay–Vaz system

FMV = (Z[a,b, c],Z[a,b, c, X]/(X3 − aX2 − bX − c), ε,∆)
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is given by
ε(1) = 0, ε(X) = 0, ε(X2) = −1,

and

∆(1) = −1⊗X2 −X ⊗X −X2 ⊗ 1 + a(1⊗X +X ⊗ 1) + b⊗ 1,

∆(X) = −X ⊗X2 −X2 ⊗X + aX ⊗X − c⊗ 1, (1)

∆(X2) = −X2 ⊗X2 − bX ⊗X − c(1⊗X +X ⊗ 1).

This Frobenius system has a q-grading given by

|1|q = 0, |a|q = 2, |b|q = 4, |c|q = 6, |X|q = 2.

Following Khovanov [Kho06], a ring homomorphism ψ : Λ→ Λ′ induces a Frobenius
system (Λ′, A′, ε′,∆′), called a base change, where A′ = A⊗Λ Λ′, ε′ = ε⊗ idΛ′ , and
∆′ = (ı′ ⊗ idA′) ◦ (∆⊗ idΛ′), where ı′ : A→ A′ is given by ı′(a) = a⊗ 1.

Example 2.2. Let Λ be a commutative ring and a, b, c ∈ Λ. Define the polynomial

f(X) = X3 − aX2 − bX − c. (2)

Then Ff = (Λ,Λ[X]/(f(X)), ε,∆) is the base change from FMV via the ring ho-
momorphism ψ : Z[a,b, c] → Λ sending 1 to 1, a to a, b to b, and c to c. If
a = b = c = 0 we get the Frobenius system FKh considered by Khovanov in
[Kho04]. If Λ = C, we get the Frobenius systems from Mackaay–Vaz in [MV07, §3].

We want to keep the grading of FMV intact, while also having a more flexible system
as in [MV07, §3]. We will therefore be mainly interested in the following systems.

Example 2.3. Let K be a commutative ring, a, b, c ∈ K and Λ = K[h], and consider
the polynomial

f̄(X) = X3 − ahX2 − bh2X − ch3. (3)

Define A = K[h,X]/(f̄(X)). We then get a Frobenius system Ff̄ = (K[h], A, ε,∆)
as a base change from FMV. Setting |h|q = 2 turns it into a graded Frobenius system
(with elements of K having q-grading 0). The base change K[h]→ K sending h to
1 recovers Example 2.2 for general a, b, c ∈ K, while sending h to 0 recovers FKh.

Any base change from FMV is a system Ff = (Λ, A, ε,∆), with A = Λ[X]/(f(X))
for some f(X) as in (2). Given α ∈ Λ, define

f ′(X) = X3 − (a− 3α)X2 − (b+ 2aα− 3α2)X − (c+ bα+ aα2 − α3),

and A′ = Λ[X]/(f ′(X)).

Lemma 2.4. The Frobenius systems Ff and Ff ′ are isomorphic via the ring iso-
morphism Φα : A→ A′ given by Φα(X) = X + α.

Proof. The polynomial f ′(X) is chosen exactly so that the ring homomorphism
Φ: Λ[X]→ Λ[X] mapping X to X +α sends f(X) = X3− aX2− bX − c to f ′(X).
Hence Φα is a well defined ring homomorphism. It is also an isomorphism with
inverse X 7→ X − α. It remains to show that Φα commutes with co-units and
co-multiplication. For the co-unit we have

ε′(Φα(1)) = ε′(Φα(X)) = 0, ε′(Φα(X2)) = −1,

so ε′ ◦ Φα = ε. For the co-multiplication, we only need to check that

Φα ⊗ Φα ◦∆(1) = ∆′ ◦ Φα(1),
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since ∆ and ∆′ are bimodule maps. A straightforward calculation reveals that this
is indeed the case. �

The dual system of the Frobenius system F = (Λ, A, ε,∆) is the Frobenius system
F∗ = (Λ, A∗, ı∗,m∗), where A = HomΛ(A,Λ), m∗ is the dual map of the multipli-
cation map on A, and ı∗ is the dual of the inclusion Λ ⊂ A. If F is isomorphic to
F∗ as Frobenius systems, we call F self-dual.

Proposition 2.5. The Frobenius system FMV is self-dual.

Proof. Since FMV is a rank 3 system, we have that A∗ is a free Z[a,b, c]-module of
rank 3. Define X∗ ∈ A∗ by

X∗(1) = 0, X∗(X) = −1, X∗(X2) = 0.

It follows from (1) that

X∗ ⊗X∗ ◦∆(1) = −1, X∗ ⊗X∗ ◦∆(X) = a, X∗ ⊗X∗ ◦∆(X2) = −b.

Therefore ε,X∗, X∗ 2 is a basis of A∗, and F∗MV is a rank 3 system. Now consider
X∗ 3. We have

X∗ 3(1) = X∗ 2 ⊗X∗ ◦∆(1) = −X∗ 2(X)⊗X∗(X) + aX∗ 2(1)⊗X∗(X) = 2a,

X∗ 3(X) = −X∗ 2(X2)⊗X∗(X) + aX∗ 2(X)⊗X∗(X) = −b− a2,

X∗ 3(X2) = −bX∗ 2(X)⊗X∗(X)− cX∗ 2(1)⊗X∗(X) = ab− c.

We can express X∗ 3 in terms of the basis ε,X∗, X∗ 2 and get

X∗ 3 = −2aX∗ 2 + (b− a2)X∗ + (c + ab)ε.

In particular, A∗ ∼= Z[a,b, c, X]/(f(X)) with

f(X) = X3 + 2aX2 − (b− a2)X − (c + ab).

We also have that ı∗ vanishes on ε and X∗, while X∗ 2 is sent to −1. Hence ı can
be identified with ε from Ff . Now consider m∗(ε) = ε ◦ m : A ⊗ A → Z[a,b, c].
This vanishes on 1⊗ 1, 1⊗X, and X⊗ 1, while each of 1⊗X2, X⊗X, and X2⊗ 1
are sent to −1. Also, X ⊗X2 and X2 ⊗X are sent to −a, and X2 ⊗X2 is sent to
−b− a2. It is straightforward to check that

−ε⊗X∗ 2 −X∗ ⊗X∗ −X∗ 2 ⊗ ε− 2a(ε⊗X∗ +X∗ ⊗ ε) + (b− a2)ε⊗ ε
is the same map A⊗A→ Z[a,b, c]. Therefore F∗MV

∼= Ff . By Lemma 2.4 FMV is
self-dual via the isomorphism Φa. �

This means that all base changes of FMV are self-dual as well.

Let F = (Λ, A, ε,∆) be a Frobenius system and x ∈ A be a unit. Then Fx =
(Λ, A, εx,∆x) given by

εx(r) = ε(xr), ∆x(a) = ∆(x−1a) = x−1∆(a)

for r ∈ Λ and a ∈ A, is a Frobenius system, called the twisting of F by x.

Consider the Frobenius system Ff from Example 2.2, and let β ∈ Λ be a unit.
The ring isomorphism Ψβ : Λ[X] → Λ[X] induced by Ψβ(X) = βX induces a ring
isomorphism Ψβ : Λ[X]/(f(X))Λ[X]/(g(X)), where

g(X) = X3 − aβ−1X2 − bβ−2X − cβ−3.
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For this to induce an isomorphism on Frobenius systems, we need to twist one of
the systems by β−2.

Lemma 2.6. The ring isomorphism Ψβ : Λ[X]/(f(X))Λ[X]/(g(X)) induces an iso-

morphism Ff ∼= Fβ
−2

g .

Proof. It remains to show that εf (Xk) = εβ
−2

(Xk) for k = 0, 1, 2, and Ψβ ⊗
Ψβ(∆f (1)) = ∆β−2

g (1) = β2∆g(1). Both calculations are straightforward from the
definitions. �

3. Generalities on sl3-link homology

A closed web Γ is a finite trivalent oriented graph in R2, possibly with vertex-less
loops, such that at each vertex all edges are either incoming, or all are outgoing.

An oriented link diagram D with n crossings gives rise to 2n closed webs by resolving
each crossing in two different ways as in Figure 1.

1

0

0

1

Figure 1. The 0 and 1 resolutions of a positive (the lower dia-
gram) and negative (the upper diagram) crossing.

The Kuperberg bracket 〈Γ〉 of a web Γ is the Laurent polynomial in one variable q
determined by the relations

〈Γ t 〉 = (q2 + 1 + q−2)〈Γ〉,〈 〉
= (q + q−1)〈 〉,〈 〉
=

〈 〉
+

〈 〉
.

In [Kho04], Khovanov used foams and the rank 3 Frobenius system FKh to con-
struct graded free abelian groups FKh(Γ) for a web Γ such that the graded rank
of this abelian group is 〈Γ〉. Moreover, given an oriented link diagram D he used
these groups to construct a q-graded cochain complex Csl3(D;FKh), whose bigraded

homology groups, denoted here by Hi,j
sl3

(L;FKh) only depend on the underlying ori-
ented link L.

This construction was generalized by Mackaay and Vaz [MV07] to any base change
system F = (Λ, A, ε,∆) of FMV, so that F(Γ) is a graded free Λ-module of graded

rank 〈Γ〉, and the resulting homology groups Hi,j
sl3

(L;F) are link invariants.

To define F(Γ) and the sl3-homology groups, we need the notion of a foam. We refer
the reader to [Kho04] for a precise definition. Here we think of a foam as a surface
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that admits singular arcs, so that each point of a singular arc has a neighborhood
homeomorphic to the letter Y crossed with an interval. Removing the singular
set we get a surface which is oriented in a way that induces an orientation on the
singular arcs. We call the closures of the components of the non-singular set facets,
so that each singular arc has three adjacent facets.

In particular, we think of foams as cobordisms between webs Γ0, Γ1 embedded in
R2× [0, 1], where Γi is embedded in R2×{i} for i = 0, 1. The embedding of a foam
into R3 gives rise to a cyclic ordering of the facets around a singular arc using the
left-hand rule, see Figure 2.

Figure 2. The cyclic ordering of facets adjacent to an oriented
singular arc.

Finally, foams are allowed to have finitely many marked points away from the
singular arcs, called dots. A dot can move freely on its facet, but cannot cross
singular arcs.

A notable closed foam is the theta-foam

Θ = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1 or (z = 0 and x2 + y2 ≤ 1)},

which has one singular circle consisting of the equator x2 + y2 = 1. A compatible
orientation on Θ induces a cyclic ordering on the three facets. We assume the
standard orientation on Θ to be such that the facet {(x, y, 0) | x2 + y2 ≤ 1} is
followed by the facet {(x, y, z) | x2 + y2 + z2 = 1, z ≥ 0}.
As in [MV07] we define Foam to be the category whose objects are closed webs
and whose morphisms are Z[a,b, c]-linear combinations of isotopy classes of foams.

Also, we need the following relations from [MV07], which reflect the usual geometric
interpretation of Frobenius systems in terms of dotted surfaces, compare [Kho04,
§3.1].

• • • = a • • + b • + c (3D)

− =
• •

+
•

•

+

• •

− a

 •
+

•

− b (CN)

=
•

= 0,
• •

= −1 (S)

We also require a relation reflecting the evaluation on theta-foams. For non-negative
integers k, l,m let Θ(k, l,m) be the theta-foam with standard orientation, such that
the facet with positive z-coordinate is dotted k-times, the facet with negative z-
coordinate is dotted l-times, and the remaining facet is dotted m-times. If all
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k, l,m ∈ {0, 1, 2}, we set

Θ(k, l,m) =

 1 (k, l,m) = (1, 2, 0) or a cyclic permutation
−1 (k, l,m) = (2, 1, 0) or a cyclic permutation
0 else

(Θ)

compare Figure 3.

•

• •
= • •

•
=

• •
• = 1

Figure 3. Theta foams evaluated to 1.

If U is a closed foam, one can perform finitely many surgeries until it is a disjoint
union of spheres and theta-foams. In particular, we can use the relations (3D),
(CN), (S), and (Θ) to assign an element FMV(U) ∈ Z[a,b, c] which is well-defined
by [Kho04, MV07].

Definition 3.1. The category Foam` is the quotient of the category Foam by the
local relations (3D), (CN), (S), and (Θ). For webs Γ, Γ′ we get

HomFoam`
(Γ,Γ′) = HomFoam(Γ,Γ′)/∼,

where
∑
i ciUi ∼ 0 (with ci ∈ Z[a,b, c] and Ui foams from Γ to Γ′) if and only if∑

i

ciFMV(V ′ ◦ Ui ◦ V ) = 0

for all foams V from ∅ to Γ and V ′ from Γ′ to ∅. The Z[a,b, c]-module FMV(Γ) is
defined to be

FMV(Γ) = HomFoam`
(∅,Γ).

As in [Kho04, MV07], foams can be given a q-grading so that FMV(Γ) is a graded
Z[a,b, c]-module. This grading is given by

|U |q = −2χ(U) + χ(∂U) + 2d(U),

where χ is Euler characteristic of the underlying CW-complex, and d(U) is the
number of dots on U . As in [Kho04, MV07], we have

Proposition 3.2. Let Γ be a web. Then FMV(Γ) is a graded free Z[a,b, c]-module
of graded rank 〈Γ〉. �

If ψ : Z[a,b, c] → Λ is a ring homomorphism and F the base change system, we

get an analogous category Foamψ
` where the morphism sets are Λ-modules, and

a free Λ-module F(Γ) for every web. Furthermore, if Λ is graded and ψ-grading
preserving, the graded rank of F(Γ) is still 〈Γ〉.
Now let D be an oriented link diagram with n ordered crossings c1, . . . , cn. Let p+,
respectively p−, be the number of positive, respective negative, crossings. Each J ∈
{0, 1}n leads to a web DJ via the resolution rule in Figure 1. For J = (j1, . . . , jn)
let |J | =

∑
i ji. Given a grading preserving base change system F from FMV, we
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define a q-graded cochain complex Csl3(D;F) as follows. The cochain group in
homological degree1 i− p+ is

C
i−p+

sl3
(D;F) =

⊕
J,|J|=i

q3p+−2p−−iF(DJ).

The boundary map is induced by the unzip-foam for a positive crossing, and the
zip-foam for a negative crossing, see Figure 4.

Figure 4. The unzip-foam (left) associated to a positive crossing,
and the zip-foam (right) associated to a negative crossing.

By [MV07, Thm.2.4] the corresponding homology groups Hsl3(L;F) are invariants
of the underlying oriented link L.

If the base change ψ : Z[a,b, c] → Λ does not preserve the grading, we still get a
cochain complex Csl3(D;F) and link invariants Hsl3(L;F) from this construction,
but without q-grading.

Now, for a base change ψ : Z[a,b, c] → Λ write a = ψ(a), b = ψ(b), c = ψ(c) ∈ Λ
and let f(X) ∈ Λ[X] be given by

f(X) = X3 − aX2 − bX − c.
Also, for α ∈ Λ let

f ′(X) = X3 − (a− 3α)X2 − (b+ 2aα− 3α2)X − (c+ bα+ aα2 − α3) ∈ Λ[X].

We have already seen in Lemma 2.4 that the Frobenius systems Ff and Ff ′ are
isomorphic with the isomorphism induced by Φα : Λ[X]→ Λ[X] given by Φα(X) =
X + α. This isomorphism extends to the cochain complexes.

Proposition 3.3. Let D be an oriented link diagram. Then Φα induces an iso-
morphism of cochain complexes Csl3(D;Ff ) and Csl3(D;Ff ′). Moreover, if the base
change ψ : Z[a,b, c] → Λ is grading preserving and |α| = 2, this isomorphism is
grading preserving.

Proof. Denote by FoamΛ the category whose objects are closed webs and whose
morphisms are Λ-linear combinations of isotopy classes of foams. Let Γ, Γ′ be closed
webs, and let U be a foam from Γ to Γ′. Let TU be the set of dots on U and for
S ⊂ TU let US be the foam with dots given by TU − S. In particular, U = U∅.

Define ΦΓ,Γ′

α : HomFoamΛ(Γ,Γ′)→ HomFoamΛ(Γ,Γ′) by

ΦΓ,Γ′

α (U) =
∑
S⊂TU

α|S|US . (4)

1We note here that our convention for a positive crossing is the opposite as used by Khovanov
in [Kho04]. Nevertheless, the 0-resolution for what we call a positive crossing agrees with the

0-resolution of what Khovanov calls a negative crossing.
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First notice that that ΦΓ,Γ′

α sends the local relations using (a, b, c) to local relations
using (a − 3α, b + 2aα − 3α2, c + bα + aα2 − α3). For example, for (3D) this just
reflects the fact that Φα : A→ A′ is a well defined ring homomorphism, while (CN)
holds since this Φα preserves the co-multiplication.

In particular, we have

Ff (U) = Ff ′(Φ∅,∅α (U)) (5)

for all closed foams U .

Also, if V is a foam from Γ′ to the closed web Γ′′, then

ΦΓ′,Γ′′

α (V ) ◦ ΦΓ,Γ′

α (U) =
∑

S1⊂TV

α|S1|VS1
◦
∑

S2⊂TU

α|S2|US2

=
∑

S⊂TV ◦U

α|S|(V ◦ U)S = ΦΓ,Γ′′

α (V ◦ U).
(6)

Now assume that
∑
i ciUi ∈ HomFoamΛ(∅,Γ) satisfies

∑
i ciFf (V Ui) = 0 for any

foam V from Γ to ∅. We claim that
∑
i ciΦ

∅,Γ
α (U) represents 0 in the quotient

category corresponding to f ′(X), that is, we need
∑
i ciFf ′(V ◦ Φ∅,Γα (U)) = 0.

By (6), we have

V ◦ Φ∅,Γα (U) = Φ∅,∅α (V ◦ U)−
∑

∅6=S1⊂TV

α|S1|VS1
◦ Φ∅,Γα (U). (7)

We now get
∑
i ciFf ′(V ◦ Φ∅,Γα (U)) = 0 by an induction on the number of dots on

V , using (5) and (7).

This shows that Φ∅,Γα induces a Λ-linear map Ff (Γ) → Ff ′(Γ). Using this map
with −α shows that it is in fact an isomorphism. �

If β ∈ Λ is a unit, Lemma 2.6 describes an isomorphism between Ff and a twisting
of Fg, where g(X) = X3 − aβ−1X2 − bβ−2X − cβ−3, induced by Ψβ(X) = βX. In
the case of link-complexes we can compensate for the twisting.

Proposition 3.4. Let D be an oriented link diagram. Then Ψβ induces an iso-
morphism of cochain complexes Csl3(D;Ff ) and Csl3(D;Fg). Moreover, if the base
change ψ : Z[a,b, c] → Λ is grading preserving and |β| = 0, this isomorphism is
grading preserving.

Proof. Let Γ be a web and U a foam between ∅ and Γ. Define

ΨΓ
β(U) = βd(U)−χ(U)U.

It is straightforward to see that ΨΓ
β is compatible with the relations (3D), (CN),

(S), and (Θ) between Ff and Fg. Hence this induces an isomorphism ΨΓ
β : Ff (Γ)→

Fg(Γ).

Now notice that adding a zip-foam to a foam U decreases the Euler character-
istic by 1, while adding an unzip-foam does not change the Euler characteris-
tic. However, if J ∈ {0, 1}n, there is a well defined number z(J) which is the
number of negative crossings that have been resolved with 1. We then define
Ψβ : Csl3(D;Ff )→ Csl3(D;Fg) by using β−z(J)ΨDJ

β between the direct summands

Ff (DJ) and Fg(DJ), which because of the extra factor commutes with the bound-
ary. �



10 DIRK SCHÜTZ

4. Equivalence classes for polynomials

In this section we consider a field F and polynomials f(X) ∈ F[h,X] of the form

f(X) = X3 − ahX2 − bh2X − ch3, (8)

where a, b, c ∈ F. The corresponding Frobenius system over F[h] is, as before,
denoted by Ff .

Lewark and Lobb [LL16] introduced the notion of KR-equivalence classes for such
polynomials to analyze the corresponding link homologies.

Definition 4.1. Two polynomials f, g of the form (8) are called KR-equivalent over
a link L, if Csl3(D;Ff ) and Csl3(D;Fg) are chain homotopy equivalent as graded
cochain complexes over F[h] for some link diagram D of L. The polynomials are
called KR-equivalent, if they are KR-equivalent for all links L.

Proposition 3.3 and Proposition 3.4 are simple criteria to determine KR-equivalence
between some polynomials, compare [LL16, Prop.3.3]. Furthermore, Lewark and
Lobb [LL16, Thm. 3.7, Cor. 3.8] show that over F = C for a fixed link L there
exist only finitely many KR-equivalence classes, and hence only countably many
KR-equivalence classes. Moreover, one of these classes is generic in that it is a
countable intersection of Zariski-open sets.

We note that [LL16] also considers sln-link homologies for all positive integers n.
In the case n = 3 we are now going to complement their results slightly and also
consider other characteristics for F.

Proposition 4.2. Let f be a polynomial of the form (8) and assume that F is
algebraically closed.

(1) Assume charF 6= 3. Then f is KR-equivalent to the polynomial
• g(X) = X3 − h2X − wh3 for some w ∈ F, or
• g(X) = X3 − h3, or
• g(X) = X3.

(2) Assume charF = 3. Then f is KR-equivalent to the polynomial
• g(X) = X3 − hX2 − wh3 for some w ∈ F (provided a 6= 0), or
• g(X) = X3 − h2X (provided a = 0 and b 6= 0), or
• g(X) = X3 (provided a = b = 0).

Proof. If charF 6= 3, we can use Proposition 3.3 to get the X2-coefficient equal
to 0. If after that the X-coefficient is non-zero, we can normalize it to −h2 using
Proposition 3.4. This leads to the first case.

If, after making the X2-coefficient equal to 0, the X-coefficient is also 0, we either
have the third coefficient 0 (leading to the third case) or we can normalize the third
coefficient to −h3 using Proposition 3.4.

If charF = 3, we cannot make the X2-coefficient equal to 0 with Proposition 3.3.
But if it is non-zero, we can normalize it to −h using Proposition 3.4. After that
we can use Proposition 3.3 to make the X-coefficient equal to 0. This leads to the
first case.

If the X2-coefficient is 0 to begin with, we cannot change the X-coefficient with
Proposition 3.3, but we can make the constant coefficient 0. After that we are
either in the third case, or use Proposition 3.4 to get to the second case. �



ON VARIATIONS OF S-INVARIANTS FROM sl3-LINK HOMOLOGY 11

Remark 4.3. Choosing the correct α or β for Propositions 3.3 and 3.4 may have
required us to solve a quadratic or cubic equation. Hence the assumption that F
is algebraically closed in Proposition 4.2. We now want to show that this is not a
serious restriction.

Since F is a field, the polynomial ring F[h] is Euclidean. In particular, we can use the
standard Smith-Normal-Form algorithm on the finitely generated and free cochain
complexes Csl3(D;Ff ) over F[h]. Since this can be done in a grading-preserving
fashion, Csl3(D;Ff ) is graded-chain homotopic to a direct sum of complexes of the
form

• CF = uiqjF[h], and

• CF(k) = uiqjF[h]
hk

−→ ui+1qj+2kF[h] with k ≥ 1.

Here uiqj indicates the bi-degree which the copy of F[h] has in the cochain complex.

So if ϕ : F → F is a ring homomorphism between two fields, we get another base
change Frobenius system that we denote Ff ⊗F F. Then Csl3(D;Ff ⊗F F) =

Csl3(D;Ff ) ⊗F F, and this has the exact same Smith-Normal-Form decomposi-
tion as Csl3(D;Ff ). Since the Smith-Normal-Form determines the graded chain
homotopy type, we get the next lemma.

Lemma 4.4. Let ϕ : F→ F be a ring homomorphism between fields and f, g poly-
nomials of the form (8). Then f is KR-equivalent to g if and only if ϕ(f) is
KR-equivalent to ϕ(g). �

Since every field includes into an algebraically closed field, we can drop this re-
quirement from Proposition 4.2. It will still be convenient to assume that a field is
algebraically closed. Indeed, let F be algebraically closed, let w ∈ F and f(X) =
X3−h2X−wh3. First observe that f is KR-equivalent to g(X) = X3−h2X+wh3,
as an application of Proposition 3.4 with β = −1. It is also KR-equivalent to
h(X) = X3−h2X±ϕ(w)h3 for every ring automorphism ϕ : F→ F by Lemma 4.4.

Now let F be the prime field contained in F. Then f can also be considered a
polynomial over F(w)[h], where F(w) ⊂ F is the simple extension of F by w. Galois
Theory provides us potentially with many ring homomorphisms ϕ : F(w)→ F such
that ϕ(w) 6= w. Although for some w we may only ever get ϕ(w) = w. Maybe the
neatest result we get is when F(w) is a transcendental extension of F. In that case
we can send w to any other transcendental w′.

Corollary 4.5. Let w,w′ ∈ F be transcendental. Then X3 − h2X − wh3 is KR-
equivalent to X3 − h2X − w′h3. �

In particular, for F = C we get that the Lewark–Lobb generic equivalence class from
[LL16, Cor.3.8] contains all polynomials X3−h2X−wh3 with w ∈ C transcendental.

5. sl3-homology for separable polynomials

The purpose of this section is to slightly generalize [MV07, §3.1]. There, Mackaay
and Vaz show that for Ff = (C,C[X]/(f(X)), ε,∆) with f(X) a separable (that
is, a polynomial with three distinct roots) polynomial of degree 3, the homology
Hsl3(L;Ff ) has C-dimension 3n, where n is the number of components of L, and is
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concentrated in even homological degrees with at least 3 generators in homological
degree 0.

The Frobenius system we want to look at here is going to be of the form Ff =
(Λ,Λ[X]/(f(X)), ε,∆), where Λ is a commutative ring with 1, and f(X) = (X −
r1)(X − r2)(X − r3) with r1, r2, r3 ∈ Λ. We also need to require the following
condition on the roots of f .

ri − rj is a unit in Λ for i 6= j. (9)

This condition forces the roots to be different, and if Λ is a field, the condition is
equivalent to f being separable. The purpose of this condition is to use a general
form of the Chinese Remainder Theorem, compare [Lan02, II.Thm.2.1].

We note that for Λ = K[h] and f(X) = (X − r1h)(X − r2h)(X − r3h), where
r1, r2, r3 ∈ K this condition cannot be satisfied, since (ri − rj)h is not going to be
a unit. However, the base change to h−1Λ = K[h, h−1] will often satisfy (9), in
particular when K is a field and all three roots are different. This ring carries a
q-grading respected by h−1Ff , and so Hsl3(L;h−1Ff ) is bigraded.

The analogue of [MV07, Thm.3.11] is

Theorem 5.1. Let L be a link and Ff = (Λ,Λ[X]/(f(X)), ε,∆) a Frobenius system
over a commutative ring Λ with f(X) = (X − r1)(X − r2)(X − r3) such that (9)
is satisfied. Then Hsl3(L;Ff ) is free over Λ of rank 3n, where n is the number of
components. Moreover, all homology is concentrated in even degrees, with at least
three copies of Λ in homological degree 0.

The proof mostly just follows [MV07, §3.1], but there are a few steps where Λ not
being a field requires a more involved argument. We will also have use later for
some of the constructions required.

As mentioned before, condition (9) ensures that the Chinese Remainder Theorem
applies, that is, we have an isomorphism of Λ-algebras

Λ[X]/(f(X)) ∼= Λ[X]/(X − r1)⊕ Λ[X]/(X − r2)⊕ Λ[X]/(X − r3).

Moreover, the ring homomorphisms χ : Λ[X]/(X−ri)→ Λ[X]/(f(X)) are given by

χ(1) = Iri(X) = (X − rj)(X − rk)(ri − rj)−1(ri − rk)−1,

where {i, j, k} = {1, 2, 3}.
Let Γ be a closed web and E(Γ) be the set of edges in Γ (this includes the loops).
Following [Kho04, §6] and [MV07, Def.3.3], we associate to this web the commuta-
tive Λ-algebra R(Γ) with generators Xi for each i ∈ E(Γ), modulo the relations

Xi +Xj +Xk = r1 + r2 + r3,

XiXj +XjXk +XiXk = r1r2 + r2r3 + r1r3,

XiXjXk = r1r2r3,

(10)

for any triple of edges i, j, k which share a trivalent vertex. If i is a closed loop, we
also require the relation

f(Xi) = (Xi − r1)(Xi − r2)(Xi − r3) = 0. (11)

If i is a non-closed edge, (11) follows from (10).

We now define colorings of closed webs, following [MV07, Def.3.4]. In [Gor08], these
were called states.
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Definition 5.2. Let Γ be a closed web. A coloring of Γ is defined to be a function
ϕ : E(Γ)→ {r1, r2, r3}. The coloring is called admissible, if

r1 + r2 + r3 = ϕ(i) + ϕ(j) + ϕ(k),

r1r2 + r2r3 + r1r3 = ϕ(i)ϕ(j) + ϕ(j)ϕ(k) + ϕ(i)ϕ(k),

r1r2r3 = ϕ(i)ϕ(j)ϕ(k),

(12)

for any edges i, j, k incident to the same trivalent vertex. The set of all colorings is
denoted C(Γ), with AC(Γ) the subset of admissible colorings.

Since (11) holds for all edges i ∈ E(Γ), we have a homomorphism of Λ-algebras
ηi : Λ[X]/(f(X))→ R(Γ) for each i ∈ E(Γ) sending X to Xi, and we define

Iϕ(Γ) =
∏

i∈E(Γ)

ηi(Iϕ(i)(X)) ∈ R(Γ)

for each coloring ϕ ∈ C(Γ). As in [MV07, Cor.3.6], we have∑
ϕ∈C(Γ)

Iϕ(Γ) = 1 ∈ R(Γ), (13)

and

Iϕ(Γ)Iψ(Γ) =

{
Iϕ(Γ) ϕ = ψ,

0 ϕ 6= ψ.

The next result is slightly more involved for general Λ than the field version in
[MV07, Lm.3.7].

Proposition 5.3. Let Γ be a closed web. Then there is an isomorphism of Λ-
algebras

R(Γ) ∼=
⊕

ϕ∈AC(Γ)

Λ,

with the copy of Λ corresponding to an admissible coloring ϕ generated by Iϕ(Γ).

Proof. We first show that if the coloring ϕ is not admissible, then Iϕ(Γ) = 0. Note
that XiIϕ(Γ) = ϕ(i)Iϕ(Γ) for any coloring by the definition of Iϕ(Γ). Together
with (10) this leads to

(r1 + r2 + r3)Iϕ(Γ) = (ϕ(i) + ϕ(j) + ϕ(k))Iϕ(Γ), (14)

(r1r2 + r2r3 + r1r3)Iϕ(Γ) = (ϕ(i)ϕ(j) + ϕ(j)ϕ(k) + ϕ(i)ϕ(k))Iϕ(Γ), (15)

whenever the edges i, j, k have a trivalent vertex in common. If ϕ is not admissible,
then there exists such a triple i, j, k with Φ = {ϕ(i), ϕ(j), ϕ(k)} 6= {r1, r2, r3}.
Assume first that Φ contains two elements, say r1 and r2, with r1 being hit twice.
Then (14) is ((r1 + r2 + r3)Iϕ(Γ) = (2r1 + r2)Iϕ(Γ), that is,

(r3 − r1)Iϕ(Γ) = 0.

But since (r3 − r1) is a unit, we have Iϕ(Γ) = 0.

If Φ only contains one element, say r1, then (14) reads

(r2 + r3)Iϕ(Γ) = 2r1Iϕ(Γ), (16)

while (15) together with (16) implies

r2r3Iϕ(Γ) = r2
1Iϕ(Γ). (17)
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For the unit r = (r2 − r1)(r3 − r1) we get

rIϕ(Γ) = (r2r3 − r1(r2 + r3) + r2
1)Iϕ(Γ)

= (r2
1 − 2r2

1 + r2
1)Iϕ(Γ) = 0,

by using (16) and (17). Hence Iϕ(Γ) = 0 also in this case. In particular, the sum
in (13) need only be done over admissible colorings.

The rest of the proof works as in [MV07, Lm.3.7]. �

As in [Kho04] and [MV07], R(Γ) acts on Ff (Γ): if U is a foam, Xi · U puts a dot
on the facet of U that bounds the edge i. This action now leads to a decomposition
as Λ-modules

Ff (Γ) ∼=
⊕

ϕ∈AC(Γ)

Ff (Γ)ϕ,

where Ff (Γ)ϕ = Iϕ(Γ) · Ff (Γ). Furthermore, the proof of [MV07, Lm.3.10] carries
over to show that for an admissible coloring ϕ

Ff (Γ)ϕ ∼= Λ

as a Λ-module.

If D is an oriented link diagram, let E(D) be the set of edges in the graph obtained
from D by using crossings as vertices and forgetting whether the arcs in the diagram
are overpasses or underpasses. A coloring of D is then a function ϕ : E(D) →
{r1, r2, r3}. Such a coloring may or may not give rise to colorings of resolutions Γ
of D, compare Figure 5.

ri

rj
rl

rk
ri

rj
rl

rk

ri

rj

rl

rk

Figure 5. To get a coloring of the right resolution, we require
ri = rj and rk = rl. To get an admissible coloring on the left
resolution, we need {ri, rl} = {rj , rk} to be a two-element set.

As in Section 3 we write DJ for J ⊂ {0, 1}n for the resolutions of D, depending on
an ordering of the crossings.

Definition 5.4. A coloring ϕ of D is called admissible, if it admits an admissible
coloring of at least one resolution DJ . An admissible coloring ϕ of D is called
canonical, if the edges belonging to the same component of the underlying link
have the same value. We denote the set of canonical colorings of D by Cc(D), and
the set of admissible colorings by AC(D).

Remark 5.5.

(1) If the coloring of D is admissible, the admissible coloring of any DJ is
uniquely determined. Also, if ϕ is a coloring of the web DJ , there is a
unique coloring of D corresponding to ϕ.

(2) If the link has n components, there are 3n colorings ϕ : E(D)→ {r1, r2, r3}
which are constant on components. Each of these colorings has exactly one
resolution DJ where it admits an admissible coloring of the web: in Figure
5 we have ri = rk and rl = rj . If ri = rj we have to resolve to the right
to get an admissible coloring, and if ri 6= rj , we have to resolve to the left.
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In particular, all of these colorings are canonical. Furthermore, we have
to resolve to the left an even number of times, so that the resolution DJ

is in even homological degree. A more precise statement can be obtained
using linking numbers of components with different color, compare [MV07,
Thm.3.11].

Given an admissible coloring ϕ ∈ AC(D), we can form

Csl3(D;Ff )ϕ =
⊕
J

q3p+−2p−−|J|Ff (DJ)ϕ,

where the sum is over all J such that DJ admits an admissible coloring coming
from ϕ. As in [MV07, §3.1], this is a subcomplex of Csl3(D;Ff ), and

Csl3(D;Ff ) ∼=
⊕

ϕ∈AC(D)

Csl3(D;Ff )ϕ,

as a direct sum of cochain complexes. To show Theorem 5.1 it remains to show
that Csl3(D;Ff )ϕ is contractible for ϕ ∈ AC(D) − Cc(D) and isomorphic to one
copy of Λ for ϕ ∈ Cc(D). But this follows as in the proof of [MV07, Thm.3.9].

6. Concordance invariants from sl3-homology

In this section we assume that F is a field, f(X) = X3 − ahX2 − bh2X − ch3 a
polynomial with a, b, c ∈ F which has three different roots when viewed over F[h],
where F is the algebraic closure of F. Let Ff = (F[h],F[h,X]/(f(X)), ε,∆) be the
corresponding Frobenius system, and h−1Ff the base change system corresponding
to the inclusion F[h] ⊂ F[h, h−1].

Let K be a knot. By Theorem 5.1 H0
sl3

(K;h−1Ff ) ∼= (F[h, h−1])3 as a graded
module. Since localization is flat, F[h] is a Euclidean ring, and the inclusion F[h] ⊂
F[h] is also flat, we get an isomorphism of graded F[h]-modules

H0
sl3(K;Ff ) ∼= qs

′
F[h]⊕ qs

′′
F[h]⊕ qs

′′′
F[h]⊕ T, (18)

where s′ ≤ s′′ ≤ s′′′ are even integers, and T is a torsion module. In particular, the
s′, s′′, s′′′ do not change if we pass to a field inclusion F ⊂ F.

Observe that H0,j
sl3

(K;h−1Ff ) ∼= F3 for every even integer j. Now define

s′f (K) = min{j ∈ 2Z | dimF(im(H0,j
sl3

(K;Ff )→ H0,j
sl3

(K;h−1Ff ))) ≥ 1}+ 2,

s′′f (K) = min{j ∈ 2Z | dimF(im(H0,j
sl3

(K;Ff )→ H0,j
sl3

(K;h−1Ff ))) ≥ 2},

s′′′f (K) = min{j ∈ 2Z | dimF(im(H0,j
sl3

(K;Ff )→ H0,j
sl3

(K;h−1Ff ))) ≥ 3} − 2.

From (18) we get s′f (K) = s′ + 2, s′′f (K) = s′′, and s′′′f (K) = s′′′ − 2. We note that

the shifts in the definition of s′f (K) and s′′′f (K) are there to ensure that all three
numbers vanish for the unknot. In analogy with the s-invariant from Khovanov
homology one may expect that for a given knot these three numbers agree, but
Lewark–Lobb [LL16] have given examples where this is not the case, the smallest
one being 10125 from Rolfsen’s table.

These numbers are concordance invariants of K and give lower bounds to the slice
genus via

|s∗f (K)/4| ≤ g4(K),
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see [Lob09, Wu09]. Both papers work for general sln-link homology over C. A
proof along the line of Rasmussen’s original argument [Ras10] can be done using
the functoriality statement of [MV07, §2.3] while keeping track of the canonical
generators along the cobordism.

As we already mentioned, the three numbers s′f (K), s′′f (K), and s′′′f (K) need not
agree. We will see later that they often do not agree for all K except for one f .
But in each characteristic there is a polynomial for which they do agree.

Let charF 6= 3 and let f(X) = X3 − h3 = (X − h)(X2 + hX + h2). For the
polynomial g(X) = (X2 + hX + h2) we have g(h) = 3h2 6= 0, so h is a simple root
of f . Moreover, g(X) = (X − ah)2 = X2 − 2ahX + a2h2 for some a ∈ F requires
a2 = 1, that is a = ±1. Since we ruled out characteristic 3, this is not possible.

Hence f(X) is separable over any algebraically closed field F of characteristic differ-
ent from 3. While f(X) is defined over any prime field, we will assume that there
is ρ ∈ F with

ρ2 + ρ+ 1 = 0.

By the discussion above, this will not change the invariant. Recall the idempotents
in F[h,X]/(X3 − h3)

I1(X) = (X − ρh)(X − ρ2h)(h− ρh)−1(h− ρ2h)−1 =
h−2

3
(X − ρh)(X − ρ2h),

Iρ(X) = (X − h)(X − ρ2h)(ρh− h)−1(ρh− ρ2h)−1 =
ρh−2

3
(X − h)(X − ρ2h),

Iρ2(X) = (X − h)(X − ρh)(ρ2h− h)−1(ρ2h− ρh)−1 =
ρ2h−2

3
(X − h)(X − ρh).

Then H0(D;h−1FX3−h3) is freely generated by the elements

I1 = I1(DO) = I1(X1) · · · I1(Xk),

Iρ = Iρ(DO) = Iρ(X1) · · · Iρ(Xk),

Iρ2 = Iρ2(DO) = Iρ2(X1) · · · Iρ2(Xk),

where DO is the resolution of D consisting of loops only, with k loops. Note that
h−1FX3−h3(DO) ∼= (F[h, h−1, X]/(X3 − h3))k, so I1, Iρ, Iρ2 are cochains, which by
Section 5 are cocycles that generate H0

sl3
(K;h−1FX3−h3).

Recall the ring automorphism Ψρ : F[h,X]/(X3 − h3) → F[h,X]/(X3 − h3) with
Ψρ(X) = ρX. By Proposition 3.4 this induces a grading preserving automorphism
of the cochain complexes Csl3(D;FX3−h3) and Csl3(D;h−1FX3−h3), which we also
denote by Ψρ. A quick computation shows

Ψρ(I1(X)) = Iρ2(X),Ψρ(Iρ(X)) = I1,Ψρ(Iρ2) = Iρ,

and therefore Ψρ permutes the generators I1, Iρ and Iρ2 in the same way. Further-
more, Ψρ : H0

sl3
(K;h−1FX3−h3)→ H0

sl3
(K;h−1FX3−h3) has three eigenvectors

E1 = I1 + Iρ + Iρ2 , Ψρ(E1) = E1,

Eρ = I1 + ρIρ + ρ2Iρ2 , Ψρ(Eρ) = ρEρ,

Eρ2 = I1 + ρ2Iρ + ρIρ2 , Ψρ(Eρ2) = ρ2Eρ2 .

Notice that there is a free F[h3]-cochain complex C ⊂ Csl3(D;FX3−h3) with

Csl3(D;FX3−h3) ∼= C ⊕ hC ⊕ h2C
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as F[h3]-cochain complexes, where hC = {h⊗c ∈ F[h]⊗F[h3]C | c ∈ C} and similarly

for h2C. In particular, C ∼= hC ∼= h2C as F[h3]-cochain complexes. Furthermore,
we get the analogous decomposition

Csl3(D;h−1FX3−h3) ∼= C ⊕ hC ⊕ h2C,

as F[h3, h−3]-cochain complexes, with C = C ⊗F[h3] F[h3, h−3]. The automorphism

Ψρ keeps C, and therefore also C invariant. Now

H0,2j
sl3

(K;h−1FX3−h3) ∼= F3 ∼= H0,2j(C)⊕H0,2j(hC)⊕H0,2j(h2C)

and the latter three cohomology groups are all F. Since Ψρ preserves H0,2j(C), and

we have this is an eigenspace. In particular, hkEρi ∈ H0,2j(C) for some integer k

and i ∈ {0, 1, 2}. Similarly, H0,2j(hC) and H0,2j(h2C) are also eigenspaces of Ψρ.

Consider the diagram

H0,j
sl3

(K;F) H0,j(C)⊕H0,j(hC)⊕H0,j(h2C) H0,j(C)⊕H0,j−2(C)⊕H0,j−4(C)∼= ∼=

H0,j
sl3

(K;h−1F) H0,j(C)⊕H0,j(hC)⊕H0,j(h2C) H0,j(C)⊕H0,j−2(C)⊕H0,j−4(C)∼= ∼=

i

There exists a minimal j such that i : H0,j(C) → H0,j(C) ∼= F is surjective. The
diagram shows that this minimal j = s′ from (18), and

im i : H0,j
sl3

(K;FX3−h3)→ H0,j
sl3

(K;h−1FX3−h3)

is 1-dimensional for j = s′, and at most 2-dimensional for j = s′+ 2. In particular,

there exists a ∈ H0,s′

sl3
(K;FX3−h3) with i(a) = hkEρm with k ∈ Z and m ∈ {0, 1, 2}

(the purpose of k is to move the eigenvector into the correct q-degree).

Choosing a basepoint on the knot diagram D gives an action of F[h,X]/(X3 − h3)
on Csl3(D;FX3−h3), where X acts on a foam by placing a dot on the facet that
bounds the arc with the basepoint. This action carries over to the localized version
and commutes with the base change.

Then
0 = (X − h)I1, 0 = (X − ρh)Iρ, 0 = (X − ρ2h)Iρ2 .

From this it follows that

XE1 = hEρ, XEρ = hEρ2 XEρ2 = hE1,

and therefore i(Xa) = hk+1Eρm+1 and i(X2a) = hk+2Eρm−1 . Hence s′′ = s′ + 2
and s′′′ = s′ + 4. We therefore define the sl3-s-invariant as

spsl3(K) = s′X3−h3(K)/2 = s′′X3−h3(K)/2 = s′′′X3−h3(K)/2,

where p = charF 6= 3. We divide by 2 to get the invariant closer to Rasmussen’s
original s-invariant.

Now assume that charF = 3. We focus on the polynomial f(X) = X3 − h2X =
X(X − h)(X + h), which already factors over the prime field F3. The relevant
idempotents are

I0(X) = −h−2(X2 − h2),

I1(X) = −h−2(X2 + hX),

I−1(X) = −h−2(X2 − hX),
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giving rise to the generators I0, I1, I−1 of H0
sl3

(K;h−1F), where we drop the poly-
nomial from the Frobenius system F .

By Proposition 3.3 there is a grading preserving automorphism

Φh : Csl3(D;F)→ Csl3(D;F),

which, after localization, permutes the generators

Φh(I0) = I−1, Φh(I1) = I0, Φh(I−1) = I1.

This time, there is only one eigenvector E1 = I0 + I1 + I−1, but together with
J1 = I1 − I−1 and J2 = I−1 we get a basis in Jordan Normal Form

Φh(J2) = J2 + J1, Φh(J1) = J1 + E1, Φh(E1) = E1.

In particular, the only 1-dimensional subspace of H0,j
sl3

(K;h−1F) invariant under
Φh is the eigenspace of E1, while the only 2-dimensional Φh-invariant subspace is
generated by E1 and J1.

The definition of Φh given in (4) shows that

Φh(x)− x = hT (x), (19)

for all x ∈ Csl3(D;F), and some T : Csl3(D;F) → Csl3(D;F) lowering q-degree
by 2. Since multiplication by h is injective and Φh − id is a cochain map, T also
commutes with the boundary.

Let s′ = j be the minimal q-degree for which i : H0,j
sl3

(K;F) → H0,j
sl3

(K;h−1F) is

non-zero, and let a ∈ H0,s′

sl3
(K;F) be such that i(a) 6= 0. Then i(a) is an eigenvector,

for otherwise i(T (a)) ∈ H0,s′−2
sl3

(K;h−1F) satisfies

i(T (a)) = h−1(Φ(i(a))− i(a)) 6= 0,

by (19), contradicting the minimality of s′. In particular, the image of i in this
q-degree is 1-dimensional. Now note that X acts on Csl3(D;F) and Csl3(D;h−1F)
as before, and

XI0 = 0, XI1 = hI1, XI−1 = −hI−1,

so that

XE1 = hJ1 and X(E1 − J1) = hJ2.

Hence the image of i : H0,j
sl3

(K;F) → H0,j
sl3

(K;h−1F) is at least 2-dimensional for

j = s′ + 2, and 3-dimensional for j = s′ + 4. If i was also surjective for j = s′ + 2,
we would use that T (hkJ−1) = J1, showing that the image for j = s′ would also be
at least 2-dimensional. Hence s′X3−h2X(K) = s′′X3−h2X(K) = s′′′X3−h2X(K) and we
define

s3
sl3(K) = s′X3−h2X(K)/2.

Remark 6.1. The proof that s′f (K) = s′′f (K) = s′′′f (K) for f(X) = X3 − h3 is

mainly along the lines of Rasmussen’s argument [Ras10, §3], compare also [Lob12,
Thm.1.3], while the argument for f(X) = X3 − h2X in characteristic 3 is similar
to the one used in [LS14, §2] in characteristic 2.

It is shown in [Lob12, Thm.1.7] that s0
sl3

induces a homomorphism from the knot-
concordance group to the integers. We show that this also works in other charac-
teristics.



ON VARIATIONS OF S-INVARIANTS FROM sl3-LINK HOMOLOGY 19

Theorem 6.2. Let p be a prime number or 0. Then the sl3-s-invariant induces a
homomorphism spsl3 : C→ Z from the knot-concordance group C to the integers.

Proof. Let K1 and K2 be knots, si = spsl3(Ki) for i = 1, 2, and f(X) be the

polynomial X3 − h3, if p 6= 3, and X3 − h2X, if p = 3.

If we denote the split union by K1 tK2, we have an isomorphism of cochain com-
plexes

Csl3(D1 tD2;Ff ) ∼= Csl3(D1;Ff )⊗F[h] Csl3(D2;Ff ),

and surgery implies a commutative diagram

H0,j1
sl3

(K1;Ff )⊗H0,j2
sl3

(K2;Ff )

H0,j1
sl3

(K1;h−1Ff )⊗H0,j2
sl3

(K2;h−1Ff )

H0,j1+j2+2
sl3

(K1#K2;Ff )

H0,j1+j2+2
sl3

(K1#K2;h−1Ff )

S

S

In the bottom row, applying S to the generators Ir for r a root of f gives S(Ir⊗Ir) =
Ir, and S(Ir⊗ Ir′) = 0 for r 6= r′, as surgery is just multiplication on the Frobenius
system for these generators. Hence eigenvectors are mapped to eigenvectors, and
the vertical map on the right is therefore non-zero for j1 = s1 − 2 and j2 = s2 − 2,
that is, for j1 + j2 + 2 = s1 + s2 − 2. This shows that

spsl3(K1#K2) ≤ spsl3(K1) + spsl3(K1). (20)

By Proposition 2.5 and (18) we have spsl3(−K) = −spsl3(K) for any knot K with
−K the mirror knot. Hence (20) is actually an equality. �

In [Lob09, Wu09] the s-invariants are defined via a filtered complex rather than a
graded complex. We can obtain the filtered version as follows. Consider the base
change η : F[h] → F sending h to 1. This factors through F[h, h−1] and we get
a Frobenius system as in Example 2.2 that we denote here as Ff . The natural
projection

η : Csl3(D;Ff )→ Csl3(D;Ff )

becomes injective, if we restrict to a particular grading, that is, to C∗,jsl3
(D;Ff ).

This leads to the filtration

· · ·Fj ⊂ Fj+2 ⊂ · · · ⊂ Csl3(D;Ff ),

for even j with Fj = η(C∗,jsl3
(D;Ff )). In particular, Fj/Fj−2

∼= Csl3(D;F), the sl3-

link homology corresponding to the polynomial X3. This gives rise to a spectral
sequence (Ei,jn ) starting with Ei,j1 = Hi,j

sl3
(L;F) converging to Hsl3(L;Ff ).

If charF 6= 3, we have Ei,j2 = Ei,j1 by Proposition 4.2. Furthermore, for f(X) =
X3 − 1 the relevant pages are E1+3k, while for f(X) = X3 −X the relevant pages
are E1+2k. In the case of X3 −X this is because the cochain complex Csl3(D;Ff )
splits into a direct sum

Csl3(D;FX3−X) ∼= C0 ⊕ C2

of cochain complexes, where C0 is generated by the generators whose q-degree is
0 mod 4, and C2 by those with q-degree 2 mod 4. We note that this holds in any
characteristic.
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Given a link diagram D denote the cocycle arising from the canonical coloring
of D using the constant function 0, and giving rise to I0 ∈ H0(L;FX3−X), by
I0(D) ∈ Csl3(D;FX3−X).

Lemma 6.3. Let D be a diagram for the link L. Then I0(D) ∈ C2·c, where c is
the number of components of L mod 2.

Proof. This is true for the standard diagram O of the unknot, since then I0(O) =
−(X2−1) ∈ F[X]/(X3−X), and both X2 and 1 are generators of q-degree 2 mod 4.

Now if D is an arbitrary link diagram, we can turn it into the standard unknot
diagram in a finite sequence of Morse and Reidemeister moves. So, if the statement
being true for a diagram D′ implies the statement being true for any D obtained
from D′ by a Morse or a Reidemeister move, we get the result.

If D′ is obtained from D by a birth, I0(D′) = −I0(D)⊗ (X2 − 1) and the q-degree
changes by 2 mod 4, but we also have an extra component. A symmetric argument
works if D′ is obtained from D by a death.

If D′ is obtained from D by an orientation-preserving surgery, again I0(D′) differs
from I0(D) in that one has an extra tensor factor of −(X2 − 1). Since the number
of components also changes by 1, the correct statement for D′ implies the correct
statement for D.

If D′ is obtained from D by a Reidemeister I move, one of I0(D′) and I0(D) has an
extra factor −(X2 − 1) without producing a new component. However, the extra
crossing results in a global shif in q-degree by ±2 on the cochain complex, which
compensates for this.

If D′ is obtained from D by a Reidemeister II move, we have to distinguish two
cases, namely whether the two arcs point in the same direction or not. If they
point in the same direction, I0(D′) = I0(D). If they point in opposite directions,
we get a small extra circle in one of the smoothings, but the rest also differs by
an orientation-preserving surgery. Then either I0(D) = I0(D′), or they differ by a
factor of (X2 − 1) ⊗ (X2 − 1). The two extra crossings have opposite sign, so do
not contribute to a global shift in q-degree. In particular, the correct statement for
D′ implies the correct statement for D.

If D′ is obtained from D by a Reidemeister III move, have again two cases to
distinguish. One case leads to identical smoothings, while in the other case the two
smoothings differ by two orientation-preserving surgeries. As the crossing signs are
the same, we again obtain the correct statement for D from the correct statement
for D′. �

Proof of Theorem 1.1. The first two properties follow from the usual arguments.
For the third property, note that since I0(D) ∈ C2 for a knot diagram, we get
s′′′X3−X(K) ∈ 4Z, and therefore s3

sl3
(K) ∈ 2Z. Since s3

sl3
(T (2, 3)) = 2, the result

follows. �

7. A tangle version

In order to perform effective computations, a tangle version for the sl3-cochain
complexes is needed. In [MN08] such a tangle version is developed, but only after
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inverting 3. Lewark [Lew13] describes a tangle version that allows for computa-
tions over Z, albeit only for f(X) = X3. From these two papers one can readily
interpolate how to get the right setting for the correct tangle version over Z[a,b, c],
and we will only describe certain properties useful for computations.

Given a link diagram D, we can always find a sequence of tangle diagrams

∅ = T0 ⊂ T1 ⊂ · · · ⊂ Tn = D,

with Ti−Ti−1 being the diagram of a single crossing. Furthermore, we can assume
that each Ti ⊂ Bi with Bi a closed disc, Bi = Bi−1∪Ci, Bi−1∩Ci = Ji an interval,
and Ci a closed disc containing Ti − Ti−1.

Since we are mostly interested in applying the scanning technique for fast calcula-
tions developed by Bar-Natan [BN07] using the sequence of tangles above, we will
restrict ourselves to tangles contained in discs B. Given a closed disc B ⊂ R2, let
Ḃ ⊂ ∂B be an oriented 0-dimensional compact manifold bordant to the empty set.

A web Γ in (B, Ḃ) is a finite oriented graph in B which intersects ∂B transversely

in Ḃ, possibly with vertex-less loops, such that its vertices are either of degree 3 or
of degree 1. At vertices of degree 3 all edges are either incoming, or all are outgoing.
The vertices of degree 1 agree with Ḃ, and the induced orientation from the edge
agrees with the orientation at the point in Ḃ.

Foams between webs in (B, Ḃ) are defined similarly, with the condition that near

Ḃ they are the product foam. Then Foam(B, Ḃ) is defined as the category whose

objects are webs in (B, Ḃ) and whose morphisms are Z[a,b, c]-linear combinations
of isotopy classes of foams.

As before, we want to consider Foam(B, Ḃ) modulo the relations (3D), (CN), (S)
and (Θ), but we will also need a few relations that are automatically true over
Foam`.

First we need the following relations, which revolve dots around a singular arc with
either orientation.

•
+
•

+ • = a (RA)

•

•
+
• • +

•
• = −b (RB)

•

• • = c (RC)

If the arc is part of a circle, these relations can be shown to hold using (CN) and
(Θ), so we really only need them for a singular arc which is not a circle.
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We also need the digon removal relation

=

•

−
•

(DR)

and the square removal relation, compare [MV07, Lm.2.3].

= − − (SR)

Define Foam`(B, Ḃ) to be the quotient of Foam(B, Ḃ) modulo the relations (3D),
(CN), (S), (Θ), (RA), (RB), (RC), (DR), and (SR).

We can now define the cochain complex Csl3(T ;FMV ) of a tangle diagram T ⊂ B

over Foam`(B, Ḃ) as before, and get it to be invariant under Reidemeister moves
as in [MV07, §2.2]. Furthermore, we can remove digons and squares inside webs as
in [Lew13, (Dc), (Sc)]. We can also remove loops, but the isomorphism is slightly
more complicated than in [Lew13] because of the more complicated (CN) relation.
It is given by

− •• + a • + b

− • + a

−




q−2 ∅
⊕
∅
⊕
q2 ∅

• • •

( )

To run the usual scanning algorithm of [BN07] effectively, the only thing missing
is a good way to simplify foams. In particular, we need the singular circle removal
relation described in [Lew13, Fig.5]. To see that we get the same relation, let usup to sign, ask Lukas

about that first derive the bursting bubbles relation of [Kho04, Fig.18].

Lemma 7.1. The following relations hold in Foam`(B, Ḃ).

= 0 =
•

•

•
=

• •
= − • + a

Proof. We have a cylinder just outside the singular circle. Performing the surgery
leads to the plane and a Θ-foam. The result follows from (CN) and (Θ). Note
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that [Kho04, Fig.18] uses a different orientation on the singular circle, hence the
difference in signs. �

Lemma 7.2. The following relation holds in Foam`(B, Ḃ).

=

• •

•

+ • •

•

+

• •

•

−

••

• −

••

•

− ••

•

Proof. By (CN) we have

= −

••

−

•

• − •• + a

•

+ a • + b

= −

••

+

•

• +

•

•

+ •
• + •

•

+ b

= −

••

+

•

• +

•

•

− •

•

where for the second equation we used (RA) twice, and for the third (RB). Using
(CN) below the singular circle gives

=

• •

• •
+

• •

•

•

− a

• •

•
−

•

•
• •

−

•

•
•

•

+ a

•

•
•

−

•

•

• •
−

•

••

•
+ a

•

•

•
+ •

•

• •
+ •

• •

•
− a •

•

•

where we already use Lemma 7.1 on the bubbles having no dots. Using the other
relations of Lemma 7.1 gives

= −
••

• +

• •

•

+ • •

•

− •

•

•

+ •

•

•

−
•

••

−
•

•• + •

• •

and this is the statement we need. �
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8. Computations

The author has developed a computer programme, knotjob, which can perform
computations of the s-invariants and various spectral sequences, and which is avail-
able from his website. Memory consumption and speed are noticeably worse when
compared to ordinary Khovanov homology. While the (5, 6)-torus knot works fairly
well, the (6, 7)-torus knot represents a challenge for a 32GB desktop PC.

8.1. S-invariants. We calculated spsl3(K) for p = 0, 2, 3, 5, 7 for all prime knots

with up to 14 crossings, and found 372 knots for which spsl3(K) 6= sp(K) for at least

one p ∈ {0, 2, 3, 5, 7}, and where sp(K) denotes the s-invariant from Khovanov
homology in characteristic p. In fact, for all of these knots we have spsl3(K) =

sp
′

sl3
(K) for p, p′ ∈ {0, 2, 5, 7}, and s0

sl3
(K) 6= s3

sl3
(K). Furthermore, for all of these

knots we have s3
sl3

(K) ∈ 2Z, and spsl3(K) /∈ 2Z for all p ∈ {0, 2, 5, 7}.
There are two knots with up to 14 crossings for which s0

sl3
(K) 6= s2

sl3
(K), but

these are the same two knots for which s0(K) 6= s2(K). One of these knots is the
Whitehead double D+(T (2, 3), 3). Another interesting Whitehead double in this
vein is D+(T (3, 4), 8), the first observed example [LZ21] where sp(K) = 0 for all
p 6= 3, and 2 = s3(K). We get a similar behaviour for the sl3-s-invariant.

spsl3(D+(T (3, 4), 8)) =

{
0 p ∈ {0, 2, 5},
2 p = 3.

For prime knots with 15 and 16 crossings we only computed spsl3(K) for p ∈ {2, 3, 7}.
We found 17, 901 knots (2, 490 with 15 crossings, 15, 411 with 16 crossings) where
at least one of spsl3(K) differs from s0(K). Table 1 lists the number of knots with

spsl3(K) > sp(K) for various values of p.

c
p

2 3 7 Total

12 1 1 1 1
13 7 4 7 7
14 55 45 55 55
15 57 397 448 459
16 3327 2689 3306 3342

Table 1. The number of knots with c crossings where spsl3(K) > sp(K).

For prime knots with 17 crossings we restricted ourselves to those hyperbolic knots
whose Alexander polynomial satisfies the Fox-Milnor condition, the signature and
s0(K) equal 0. Of the remaining 120, 890 knots, 239 have a non-zero spsl3(K) with
p = 2, 3 or 7. Of these, 238 are non-zero for p = 2 and 7, with 224 are non-zero for
p = 3.

For 18 crossing prime knots we restricted ourselves even further, additionally re-
quiring that the complete invariant of [DLS24] has to vanish as well. Among the
first 15 million non-alternating hyperbolic knots (these knots, taken from [Bur20],
are ordered by increasing hyperbolic volume) we found 283, 158 such knots, and
for 534 of them we computed spsl3(K) 6= 0 for at least one p ∈ {2, 3, 5}. Again, for
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p = 3 we have the most knots with vanishing s-invariant, only 466 knots have a
non-zero invariant. For p = 2, resp. p = 5, the invariant is non-zero for 531, resp.
532, knots. Finally, we calculated s0

sl3
for these 534 knots and found that it agrees

with s5
sl3

there.

Among these knots, the knot K = 18nh1478167 stands out in that it has the property
that s2

sl3
(K) = 1, while for all other p ≤ 19 we have spsl3(K) = 0, and all the

slice obstructions from the spectral sequences below also vanish. Together with
18nh272257, where spsl3 vanishes for p = 2, but not for p = 0, 3, and 18nh5561369, where

spsl3 vanishes for p = 0, 2, but not for p = 3, we see that spsl3 are linearly independent
homomorphisms for p = 0, 2, 3, even when restricted to the kernel of all the s-
invariants from Khovanov homology.

In almost all examples of prime knots K with spsl3(K) 6= sp(K) and p 6= 3 we

calculated, we have spsl3(K) /∈ 2Z. By Theorem 1.1 this cannot happen for p = 3. It

would be interesting to know whether spsl3(K) being odd has other consequences for

K. One observation we made is that for such K the numbers s′X3−X(K), s′′X3−X(K)

and s′′′X3−X(K) tend to not all agree. Indeed, this happens for all knots with up to

14 crossings and s0
sl3

(K) odd.

8.2. Spectral Sequences in characteristic 0. Let f(X) = X3 − X − w with
w ∈ C. Lewark–Lobb [LL16] initiated the study of KR-equivalence and showed
that there are knots where the polynomial with w = 0 is not KR-equivalent to the
one with w = 1. By the results from Section 4 we can assume that real-part and
imaginary-part of w are non-negative.

A necessary and sufficient criterion for two polynomials to be KR-equivalent for
a link is that the associated spectral sequences are identical [LL16, Prp.3.9]. We

use the notation wE
i,j
k for the spectral sequence to indicate the dependence on

w ∈ C, noting that wE
i,j
1 = wE

i,j
2 = Hi,j

sl3
(L;C), and wE

i,j
3 = 0E

i,j
3 = 0E

i,j
4 for

all w ∈ C. We are therefore particularly interested in bi-gradings (i, j) and w ∈ C
with wE

i,j
3 6= wE

i,j
4 .

The first such examples were observed in [LL16, Tb.3], and include 10125#10125 for
w = 1. Indeed, a good recipe for getting such knots is to look at K#K, where K
is a knot with s0

sl3
(K) /∈ 2Z. However, we do not know if this holds in general.

knotjob can calculate wE
i,j
k for various values of w, including w = n,

√
n for small

non-negative integers, w =
√
−1, and for transcendental w. However, we have not

observed much variation when varying w, due to the following result and the fact
that our calculations are limited to fairly small knots due to memory restrictions.

Proposition 8.1. Let L be a link. Then wE
i,j
4 = w′E

i,j
4 for all w,w′ ∈ C − {0}.

Additionally, assume that the spectral sequence corresponding to the polynomial
X3 − X2 collapses at the E3-page, and the spectral sequence corresponding to the

polynomial X3 − X collapses at the E5-page. Then all w,w′ ∈ C − {± 2
√

3
9 } give

rise to KR-equivalent polynomials over L.

Proof. Consider the polynomial ring in two variables R = Q[h, t], which is graded
by |h|q = 2 and |t|q = 0 = |1|q. Consider the polynomial f(X) = X3 − h2X −
h3t ∈ R[X] and let D be a diagram for the link L. Then Csl3(D;Ff ) is a free
graded R-cochain complex which has a basis of homogeneous elements. The units
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of R agree with the units of the subring Q, and we can do Gaussian elimination
on Csl3(D;Ff ) until we obtain a free graded R-cochain complex C with a basis
c1, . . . , cl of homogeneous elements such that

Ci,j ⊗R Q ∼= Hi,j
sl3

(L;Q),

for the base change η : R → Q sending h, t to 0. This means for a basis element c
that

∂c = ∂4c+ ∂6c+ · · · ,
where ∂`c is a linear combination of basis elements ci1 , . . . , ci` with |cij |q = |c|q− `.
Furthermore, for ` = 4, 8 we have

∂`c = h`/2
(∑

ai`ci`

)
with ai` ∈ Q, (21)

and

∂6c = h3t
(∑

ai6ci6

)
with ai6 ∈ Q. (22)

Now consider the base change χ : R → Q[t] sending h to 1. The basis elements of

C̃ = C ⊗RQ[t] still have a well-defined q-degree, although the complex is now only

filtered. But we still have a spectral sequence (Ek) over Q[t], with Ei,j1 = Ei,j2 =

C̃i,j . Moreover, E3 is obtained from C̃ using ∂̃4 and Gaussian elimination, and by
(21) we get that Ei,j3 is a free Q[t]-module in every bi-degree. The boundary map

d3 : Ei,j3 → Ei+1,j−6 is induced by ∂6 and summands coming from the zig-zags
of Gaussian elimination. But these zig-zags involve either ∂6| ◦ (∂4|)−1 ◦ ∂4| or
∂4| ◦ (∂4|)−1 ◦ ∂6|. Either way, because of (22) we get that d3 is of the form

d3(c) = t
(∑

bi6ci6

)
with bi6 ∈ Q.

Now consider the base change σ : Q[t] → C sending t → w ∈ C − {0}. Then

wE
i,j
3 = Ei,j3 ⊗Q[t] C and wd3 = d3 ⊗ id. In particular, the wd3 for varying w only

differ by an invertible factor. Hence the E4 page does not depend on w 6= 0.

If we additionally assume that the spectral sequence for the polynomial X3 −X2

collapses at the E3-page, we get that d3 above needs to be the 0-homomorphism.

This is because X3−X2 is KR-equivalent to X3−X ± 2
√

3
9 , and therefore covered

by the argument above.

Recall how E3 was obtained from C̃ using Gaussian elimination. Since we now have
d3 = 0, we get E4 = E3, and d4 : Ei,j4 → Ei+1,j−8

4 is induced by ∂8 and zig-zags
from the Gaussian elimination. These zig-zags can involve ∂8| ◦ (∂4|)−1 ◦ ∂4| or
∂4| ◦ (∂4|)−1 ◦ ∂8|, but also ∂6| ◦ (∂4|)−1 ◦ ∂6|. By (21) and (22) we get that

d4(c) =
∑

(ai8 + t2bi8)ci8 with ai8 , bi8 ∈ Q.

Again, we can do the base change σ : Q[t] → C sending t to w, this time even

allowing w = 0. As before, for w = ± 2
√

3
9 we need to get wd4 = 0. This means that

±w is a root for all the quadratic polynomials ai8 + bi8t
2 appearing in d4.

If the spectral sequence for X2−X collapses at the E3-page, these quadratic poly-
nomial also need w = 0 as a root, making all of d4 = 0. Since the total rank of the
E3 page is minimal, all other spectral sequences wE3 also collapse.

If the spectral sequence for X2 − X collapses at the E5-page, but not sooner, we
need 0d4 6= 0, and so at least one of these polynomials ai8 + bi8t

2 is non-zero. But

then no other w 6= ± 2
√

3
9 can be a root of any of these polynomials, and so wd4
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is also just 0d4 up to an invertible factor. It follows that wE
i,j
5 = 0E

i,j
5 for all

w 6= ± 2
√

3
9 . Since 0E5 has minimal rank, so do all the other wE5. �

Computations show that the spectral sequence for X3−X2 collapses at the E3-page,
and for X3 −X at the E5-page for all prime knots with up to 14 crossings.

Corollary 8.2. Let K be a prime knot with less than 15 crossings. Then X3−X−w
is KR-equivalent to X3 −X for all w ∈ C− {± 2

√
3

9 }. �

If the spectral sequence for X3 −X2 satisfies E4 6= E3, we get that X3 −X is not
equivalent to X3 −X − w for any w by Proposition 8.1. In particular, this gives a
strategy for finding knots with different spectral sequences.

The smallest knot example with this property is the (4, 5)-torus knot, and we also
observed this for other torus knots with 4 and 5 strands, and also for the (6, 7)-
torus knot. For torus links we observed this for (4, 8) and (5, 5), but not for (4, 4)
or (4, 6).

Table 2 shows the E3 page for the (4, 5)-torus knot for the spectral sequence corre-
sponding to X3−X−w. The two arrows indicate the boundary map d3 : E3 → E3

for w 6= 0. If w 6= ± 2
√

3
9 , the d4 map will kill all the remaining generators in

non-zero homological degree, as otherwise any survivors remain for the E∞-page.

In particular, for w,w′ ∈ C−{0,± 2
√

3
9 } we have X3−X −w and X3−X −w′ are

KR-equivalent over the (4, 5)-torus knot.

q
h −12 −11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0

52 1
50
48
46 1
44 1
42 1
40 1
38 1 1 1
36 1
34 1 1
32 1
30 1 1
28 1
26 1 1
24 1
22 1

Table 2. The E3-page of the (4, 5)-torus knot for the polynomial
X3 −X − w. The boundary d3 for w 6= 0 is indicated by arrows.
Notice that the spectral sequence has to collapse at the E5-page,

so that all polynomials with w 6= 0,± 2
√

3
9 are KR-equivalent.
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Most of the examples that we found where X3 − X − w for w 6= 0 is not KR-
equivalent to X3 − X have the property that the spectral sequence with respect
to X3 − X2 does not collapse at the E3-page, but at the E4-page. The spectral
sequence with respect to X3 −X still collapses at the E5-page. For such knots we

do not expect different KR-equivalence classes for different w ∈ C− {0,± 2
√

3
9 }.

Interestingly, for the (6, 7)-torus knot the spectral sequence with respect to X3−X2

collapses at the E5-page rather than the E4-page. The spectral sequence for X3−X
also collapses at the E5-page.

Question 8.3. Do there exist knots or links such that X3−X−w and X3−X−w′
are not KR-equivalent for w,w′ ∈ C− {0,± 2

√
3

9 }?

We expect the answer to this question to be yes, but we may require that the
spectral sequence for X3 − X collapses only after the E5-page. There exist 4-
component links with 12 crossings and 3-component links with 13 crossings where
the spectral sequence collapses at the E7-page, but since their spectral sequence
for X3 −X2 collapses at E3, we do not expect them to be candidates. The (6, 6)-
torus link has the property that the spectral sequence for X3 −X collapses at the
E7-page, and the spectral sequence for X3 −X2 collapses at E4.

8.3. Spectral Sequences in characteristic 3. Let f(X) = X3 − X2 − w with
w ∈ {±1} ⊂ F3. Unlike in characteristic 0, it is not clear whether 1 and −1 give
rise to the same results, although we have not found a knot where the spectral
sequences are different for these two values. Nevertheless, the spectral sequence is
very different from the case X3 − X. We usually have E2 6= E1, and we found
examples where it collapses at E6. The three numbers s′f (K), s′′f (K), s′′′f (K) can be
different, although this happens much less frequently than in characteristic 0.

As a slice obstruction, the numbers s′f (K), s′′f (K), s′′′f (K) in characteristic 3 appear

more efficient than s3
sl3

. Recall from our computations in Section 8.1 that the s-
invariant for p = 3 was less efficient than other characteristics. In nearly all cases
of 17 and 18 crossing knots with one spsl3(K) 6= 0 and s3

sl3
(K) = 0 we get a non-zero

entry from the polynomial X3 −X2 − 1.
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