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Abstract. We describe an algorithm that can effectively calculate the s-

invariant of a link as defined by Beliakova and Wehrli. Our computations
show that this cannot be done by merely calculating the E∞-page of the Bar-

Natan–Lee–Turner spectral sequence. Our methods also work for s-invariants

coming from sl3-link homology.

1. Introduction

The s-invariant for knots was introduced by Rasmussen [Ras10] and has led to
major applications of Khovanov homology [Kho00] to 4-dimensional topology via
a lower bound of the slice genus. A generalization to links was given by Beliakova
and Wehrli [BW08] which is a weak-slice obstruction for links.

For knots, the s-invariant can be calculated using the Bar-Natan–Lee–Turner spec-
tral sequence whose E1-page is Khovanov homology and whose E∞-page resembles
the Khovanov homology of the unknot. This spectral sequence also exists for links,
but the E∞-page is a bit more complicated. It was shown by Pardon [Par12] that
the E∞-page is a link-concordance invariant. This spectral sequence is amenable to
fast calculations via Bar-Natan’s approach [BN07], but in the case of links it may
only give upper and lower bounds for the s-invariant.

As a result, computations of s-invariants for links are harder to come by. A striking
example was given by Ren [Ren24], who computed the s-invariants of torus links
with any orientation and used it to establish an adjunction type inequality conjec-
tured in [MMSW23]. The main purpose of this paper is to give a way to compute
the s-invariant of a link, sp(L), where p is the characteristic of a field, which is
comparable in complexity to calculating the s-invariant of a knot.

The aforementioned lower bound for sp(L) given through the E∞-page of the spec-
tral sequence is given by

spmin(L) = min{j ∈ Z | E0,j
∞ 6= 0}+ 1,

and the upper bound is given by

spmax(L) = max{j ∈ Z | E0,j
∞ 6= 0} − 1.

For a knot, spmin(L) = spmax(L), and this can also happen for links. But whenever
spmax(L) > spmin(L), the lower bound is usually the better approximation for sp(L).
Indeed, we have the following.

Proposition 1.1. Let L be an oriented link L and p a prime or 0. Then there is an
orientation on L such that for the resulting oriented link L̃ we have sp(L̃) = spmin(L).

Moreover, the total linking number of L̃ and L are the same.
1
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In many cases we have L̃ = L, for example if spmax(L) = spmin(L), or if L is a torus
link with arbitrary orientation [Ren24, Thm.1.2] (in which case often spmax(L) >
spmin(L)). Nevertheless, there are exceptions.

Theorem 1.2. There exists a 2-component link L with linking number 0 such that
sp(L) depends on the orientations on L.

We note that this is not the case for the signature by [Mur70, Thm.1].

Our algorithm carries over to s-invariants defined for sl3-link homology [Kho04].
Both algorithms have been implemented in a computer programme which is avail-
able from the author’s website.

2. Frobenius systems and Bar-Natan homology

Let F be a field. By a Frobenius system we mean a tuple F = (F, A, ε,∆) with A
an F-algebra with 1, ε : A → F a linear map, and ∆: A → A ⊗F A an A-bimodule
map that is co-associative and co-commutative, such that (ε⊗ idA) ◦∆ = idA.

As an example, let FBN = (F,F[X]/(X2 −X), ε,∆), where

∆(1) = X ⊗ 1 + 1⊗X − 1⊗ 1,

and

ε(1) = 0, ε(X) = 1.

Another example is given by FL = (F,F[X]/(X2 − 1), ε, ∆̄), where

∆̄(1) = X ⊗ 1 + 1⊗X,

and ε is as before.

If A is 2-dimensional, Khovanov [Kho06] showed that an oriented link diagram D
gives rise to a cochain complex C(D;F) over F whose homology is an oriented link
invariant. In the case of FBN we denote the corresponding complex by CBN(D;F)
and its homology by HBN(L;F), where L is the link represented by D. We call this
complex the Bar-Natan complex and the homology the Bar-Natan homology.

Bar-Natan [BN05] has given a tangle version of which we are going to describe a
simplified version that is sufficient to perform fast calculations of link homology
groups.

Let B ⊂ R2 be a closed disc and Ḃ ⊂ ∂B an oriented 0-dimensional compact
manifold bordant to the empty set.

Let Cob•(B, Ḃ) be the category whose objects are compact smooth 1-dimensional

submanifolds S ⊂ B with ∂S = Ḃ and S intersects ∂B transversely. Morphisms
between objects S0 and S1 are isotopy classes of dotted cobordisms between S0×{0}
and S1 × {1} embedded in B × [0, 1] and which are a product cobordism near

Ḃ × [0, 1]. Here dotted means that there are finitely many specified points in the
interior of the cobordism, which can move freely there.

We denote by CobF•/l(B, Ḃ) the additive category whose objects are finite dimen-

sional based F-vector spaces where basis elements are objects qjS with S an object
of Cob•(B, Ḃ) and j ∈ Z. Here qj stands for a shift in the q-grading. Morphisms are
given by matrices (Mnm) with each matrix entry Mnm an element of the F-vector
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space generated by the morphism set between Sn and Sm in Cob•(B, Ḃ), modulo
the following local relations:

= 0,
•

= 1,
•
•

•= (1)

and

=

•

+

•

− (2)

If we think of a dot as multiplication by X, these relations resemble the Frobenius
system FBN.

Given a tangle T consisting of an oriented crossing in a disc B with 4 points Ḃ, we
can obtain a cochain complex CBN(T ;F) as in Figure 1.

: u0q1 S
u1q2

: u−1q−2 S
u0q−1

Figure 1. The complexes associated to a positive and a negative
crossing. Here S stands for the standard saddle cobordism. The
letters u and q indicate the homological and q-grading of the gen-
erators.

The main property from [BN05] that we need is that these tangle complexes can
be combined by a ’tensor product’. We will only describe a very basic version here.
Given an oriented link diagram D, we can always find a sequence of tangle diagrams

∅ = T0 ⊂ T1 ⊂ · · · ⊂ Tn = D, (3)

with Ti−Ti−1 being the diagram of a single crossing. Furthermore, we can assume

that each Ti ⊂ Bi with Bi a closed disc, Bi = Bi−1∪B̃i, Bi−1∩B̃i = Ji an interval,

and B̃i a closed disc containing Ti − Ti−1.

Given a cochain complex Ci−1 over CobF•/l(Bi−1, Ḃi−1) and C̃i over CobF•/l(B̃i,
˙̃Bi) we

can form the complex Ci−1⊗ C̃i over CobF•/l(Bi, Ḃi), and this construction behaves

well with respect to chain homotopy equivalences [BN05, Thm.2].

In particular, if we start with C1 = CBN(T1;F) and apply this construction induc-

tively to C̃i = CBN(Ti;F), the final complex Cn is a complex over CobF•/l(B, ∅),
where B is a disc containing the link diagram D. Moreover, by the delooping result
of Naot [Nao06, Prop.5.1] and the local relations we can identify CobF•/l(B, ∅) with



4 DIRK SCHÜTZ

the category of finite dimensional graded F-vector spaces, Vq
F. Denote this identi-

fication functor by G. On objects it satisfies G(qjS) = qjA⊗|S|, where |S| is the
number of components of the closed 1-manifold S, and A = F[X]/(X2 − X) the
graded F-vector space whose q-grading is determined by |1|q = −1 and |X|q = 1.
In particular, we have G(Cn) = CBN(D;F). At this stage it is worth pointing out
that we do not require linear maps in Vq

F to be grading preserving. In particular,
CBN(D;F) has bigraded cochain groups, but is not a bigraded cochain complex.

Since the Frobenius algebra F[X]/(X2−X) is diagonalizable in the sense of [Tur20],
the homology HBN(L;F) has total dimension 2|L|, where |L| denotes the number of
components, by [Tur20, Thm.1]. Furthermore, there is a canonical basis based on
the orientations of L.

Denote the orientation that comes with our oriented link diagram by O. There
exists a unique smoothing SO which preserves the orientations of the link diagram,
and from Figure 1 we see that this smoothing is in homological degree 0. Then

G(SO) = A⊗|SO|.

The orientation O gives rise to an element sO ∈ qn+(D)−n−(D)G(SO) ⊂ CBN(D;F),
where n+(D) is the number of positive crossings in D and n−(D) the number of
negative crossings in D. To define this element, first put a checkerboard coloring on
the discs bounded by the link diagram. This coloring induces a coloring of SO ⊂ R2

as in Figure 2.

Figure 2. The checkerboard coloring on D and the induced col-
oring of SO.

Each component C of SO has an orientation, and separates a black region from a
white region. We define IC = X, if the white region is to the right of the orientation,
and IC = 1 − X, if the white region is to the left of the orientation. Then sO is
defined as

sO = IC1 ⊗ IC2 ⊗ · · · ⊗ IC|SO| ∈ q
n+(D)−n−(D)A⊗|SO|,

Note that if Ci and Cj are separated by a crossing, then ICi
· ICj

= X · (1−X) = 0,
and so sO represents a cocycle in CBN(D;F). This cocycle represents the basis
element of HBN(L;F) corresponding to the orientation O [Tur20]. Since O is the
orientation of L, its homological degree is 0. We also denote this element by sO ∈
H0

BN(L;F).

As we already mentioned, the complex CBN(D;F) is not graded, but the individual
chain groups are. Let us denote the subspace of CBN(D;F) consisting of elements

of q-grading j by C∗,jBN(D;F). Then let

Fj = Fj(D;F) =
⊕
i≥j

C∗,iBN(D;F)
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Notice that C∗,jBN(D;F) = 0 for j ∈ 1 + |L| + 2Z so we only need to consider
j ∈ |L|+ 2Z. Then each Fj is a subcomplex of CBN(D;F) with

0 ⊂ · · · ⊂ Fj ⊂ Fj−2 ⊂ · · · ⊂ CBN(D;F).

Furthermore, Fj is equal to 0 for large j and equal to CBN(D;F) for small j. This
filtration now induces a filtration on HBN(L;F) by

HBN(L;F)j = im(H(Fj)→ HBN(L;F)) ⊂ HBN(L;F),

and we define the q-grading on HBN(L;F) by

HBN(L;F)(j) = HBN(L;F)j/HBN(L;F)j+2.

For a non-zero element x ∈ HBN(L;F) we define the q-grading of x as

|x|q = max{j ∈ |L|+ 2Z | x ∈ HBN(L;F)j}.

Definition 2.1. Let L be an oriented link and F a field of characteristic p. The
s-invariant of L is defined as

sp(L) = |sO|q + 1,

with sO ∈ H0
BN(L;F) as above.

That the s-invariant only depends on the characteristic of F follows from the uni-
versal coefficient theorem. In particular, we may always choose F as a prime field.

But that this definition agrees with the definition of Beliakova–Wehrli [BW08, §7] is
not immediately obvious. Firstly, Beliakova and Wehrli use the Lee complex, which
uses the Frobenius system FL, and secondly they use the average of two q-gradings
corresponding to elements s̄O ± s̄Ō of Lee homology, where Ō is the orientation
obtained by reversing the directions on all components of L.

To see that these definitions agree, first note that if charF 6= 2 the ring isomorphism
η : F[X]/(X2−X)→ F[X]/(X2−1) sending X to 1

2 (X+1) induces an isomorphism
η̄ : CBN(D;F) → C(D;FL) by [Kho06], which sends sO to s̄O. There is also an
involution I : CBN(D;F)→ CBN(D;F) with I(sO) = ±sŌ, see [Sch25a, §2].

Lemma 2.2. Let L be a link and F a field of characteristic p 6= 2. Then

sp(L) =
|sO + sŌ|q + |sO − sŌ|q

2
.

Proof. Let j = |sO|q, so that sp(L) = j + 1. Since I preserves the filtration on
CBN(D;F), we have j = |sŌ|q. Furthermore, sO + sŌ, sO − sŌ ∈ Fj . By [Sch25a,
Lm.2.1], one of sO + sŌ and sO − sŌ is in Fj+2. Assume that sO + sŌ ∈ Fj+2.

Now pick a basepoint on D so that CBN(D;F) has the structure of a F[X]/(X2−X)-
complex. We can pick the basepoint so that XsO = sO and XsŌ = 0. That is,
we put the basepoint on a component C with IC = X. If we had sO + sŌ ∈ Fi

with i > j + 2, then sO = X(sO + sŌ) ∈ Fi−2 ⊂ Fj+2, a contradiction. Therefore
|sO + sŌ|q = j + 2. We also have |sO − sŌ|q = j, for if sO − sŌ ∈ Fj+2, we get
2sO ∈ Fj+2. Since 2 ∈ F is invertible by assumption, this would imply sO ∈ Fj+2.
The desired result follows. �

Because of the isomorphism η between the Bar-Natan complex and the Lee complex,
our definition agrees with the definition in [BW08]. Note that Lemma 2.2 does not
hold in characteristic 2.
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The basic properties of [BW08, §7] carry over to our setting, including the case of
characteristic 2. The next lemma collects these results.

Lemma 2.3. Let F be a field of characteristic p. Then

(1) We have sp(On) = 1− n, where On is the unlink with n components.
(2) We have

sp(L1 t L2) = sp(L1) + sp(L2)− 1,

where t denotes the split union between links L1 and L2.
(3) We have

sp(L1) + sp(L2)− 2 ≤ sp(L1#L2) ≤ sp(L1) + sp(L2),

where # denotes connected sum between links L1 and L2.
(4) We have

−2|L|+ 2 ≤ sp(L) + sp(L) ≤ 2,

where L is the mirror of the link L.
(5) We have

|sp(L2)− sp(L1)| ≤ −χ(S),

where S is a smooth oriented cobordism from L1 to L2 such that every
connected component of S has boundary in L1. �

The last point leads to a slice obstruction as follows. An oriented link L is slice
in the weak sense, if there exists an oriented smooth connected surface P ⊂ B4 of
genus 0 such that ∂P = L.

Lemma 2.4 ([BW08, Lm.7.2]). Let L be slice in the weak sense. Then

|sp(L)| ≤ |L| − 1. �

Proof of Proposition 1.1. Let O be the orientation on L. The elements sO′ with
varying orientations O′ generate all of the homology HBN(L;F), and those orienta-
tions with the same total linking number as O generate H0

BN(L;F). In particular,
one of them must satisfy |sO′ |q + 1 = spmin(L). �

3. Computing s-invariants

To compute the s-invariant of a link L, note that the filtered complex CBN(D;F)
gives rise to a spectral sequence (Ei,j

n ) whose E1-page is Khovanov homology of L
with F-coefficients and whose E∞ page recovers HBN(L;F). Since F is a field, the
Ei+1-page is obtained from the Ei page by Gaussian elimination of the boundary
parts that change q-degree by 2i. This starts with E0 = CBN(D;F) and each subse-
quent Ei-page can be thought of as a cochain complex chain homotopy equivalent
to CBN(D;F).

Since the cocycle sO represents a non-zero generator of H0
BN(L;F), we only need

to keep track of it during the Gaussian eliminations until we get its representa-
tive in E0,∗

∞ . Note that E0,j
∞ = H0

BN(L;F)(j), so we can read off sp(L) from the
representative.

In the case of a knot K we do not keep track of sO, since the final page E∞ only
has two non-zero vector spaces E0,s±1

∞ with s being sp(K). Bar-Natan’s algorithm
for fast Khovanov homology calculations [BN07] can be adapted to obtain fast
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computations for the E∞ page, compare for example [Sch21]. However, for a link
L simply knowing E∞ does not have to determine sp(L).

In order to keep track of sO, note that we can think of this cocycle as the image of
a cochain map ϕ : C → CBN(D;F), where C is a cochain complex concentrated in
homological degree 0 and with C0 = F, and ϕ(1) = sO. This idea was applied to
tangles by Sano [San25] in order to use Bar-Natan’s algorithm for fast computations.
We now describe a slightly modified version of [San25].

If T+ ⊂ B is the tangle consisting of a positive crossing only, with Ḃ four points, let

CT+
be the cochain complex over CobF•/l(B, Ḃ) concentrated in homological degree

0, generated by one object consisting of the oriented resolution of T+. Similarly, let
CT− be the analogous cochain complex for a negative crossing T− ⊂ B. We want to
describe cochain maps ϕ± : CT± → CBN(T±;F). Pictorially, this looks as in Figure
3.

S S

ϕ+ ϕ−

Figure 3. The cochain maps for a single crossing.

If the tangle is part of an oriented link diagram, the two arcs of the oriented
smoothing belong to different components C1 and C2 with IC1 6= IC2 , compare
Figure 2. The cochain map ϕ± mimics IC1

⊗ IC2
by

ϕ± = −• • •

if the left arc is part of a component with I(C) = 1−X, and

ϕ± = −• • •

otherwise. Each summand stands for a product cobordism with dots as indicated.

Now if the oriented link diagram is a sequence of tangles as in (3), we can form
tensor products with the cochain maps ϕ± and obtain a cochain map

ϕ : C = CT1 ⊗ CT2−T1 ⊗ · · · ⊗ CTn−Tn−1 → CBN(D;F),

where C can be identified with the Bar-Natan complex CBN(SO;F). Notice that the
orientation smoothing SO is an unlink diagram without crossings. This complex is
concentrated in homological degree 0 with C0 = (F[X]/(X2 −X))⊗|SO|. Further-
more, ϕ(1⊗ 1⊗ · · · ⊗ 1) = sO. This is because X ·X = X and (1−X)2 = 1−X
in F[X]/(X2 −X) and the related dot-relations.

Instead of only doing the tensor products, we can also apply the delooping and
Gaussian elimination operations of the Bar-Natan algorithm, which results in a
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cochain map

ϕ : C = CT1 ⊗ CT2−T1 ⊗ · · · ⊗ CTn−Tn−1 → D,

where D is chain homotopy equivalent to CBN(D;F) as a filtered complex. We
can also deloop in the complexes CT1 ⊗ CT2−T1 ⊗ · · · ⊗ CTi−Ti−1 as we go through
the crossings. Since we are only interested in ϕ(1⊗ · · · ⊗ 1), rather than resolving
each circle with F[X]/(X2 −X) ∼= F2, we only need to keep track of the generator
1 ∈ F[X]/(X2 −X).

So delooping each circle in CT1
⊗CT2−T1

⊗· · ·⊗CTi−Ti−1
to only the +1-generator re-

sults in a cochain map ϕ : u0F→ D withD chain homotopy equivalent to CBN(D;F)
as a filtered complex, and ϕ(1) represents the homology class of sO. Here unF stands
for a cochain complex concentrated in homological degree n, with this n-th group
being F.

3.1. Omitting generators of positive homological degree. In [Sch21, Rm.3.3],
it was observed that one can increase the efficiency of calculating the s-invariant
by ignoring objects in homological degrees bigger than 1. This can also be done in
our situation, and in fact, we can further ignore generators in positive homological
degree.

To see that this works, let D be a cochain complex over F with a filtration

0 ⊂ · · · ⊂ Fj(D) ⊂ Fj−2(D) ⊂ · · · ⊂ D,
and let D+ be the subcomplex of all elements of positive homological degree. Then
both D+ and D/D+ admit a filtration and we have that H0(D) is a subspace of
H0(D/D+). Furthermore, q-gradings are defined as before for the vector spaces
H0(D) and H0(D/D+).

Lemma 3.1. Let x ∈ H0(D), and denote p : H0(D)→ H0(D/D+) the map induced
by projection. Then |x|q = |p(x)|q, that is, the q-gradings of x and p(x) agree.

Proof. Notice that F 0
j (D) = F 0

j (D/D+), and F 1
j (D/D+) = 0 = (D/D+)1. Hence

|x|q ≤ |p(x)|q. Now if c ∈ F 0
j (D/D+) represents p(x) ∈ H0(D/D+), and d ∈ D0

represents x ∈ H0(D), then c − d ∈ (D/D+)0 = D0 is a coboundary. Hence
c−d = ∂(e) for some e ∈ (D/D+)−1 = D−1. Since d is a cocycle in D0, we get that
c is also a cocycle in D0, and therefore c ∈ F 0

j (D) represents x ∈ H0(D). Hence
|p(x)|q ≤ |x|q. �

As in [Sch21, §7.2], we can throw away generators of positive homological degree,
thus enabling us to calculate the q-degree of sO as an element of H0(D/D+).

4. Computing sl3-s-invariants

Khovanov’s sl3-link homology [Kho04] gives rise to another family of s-invariants
that can be computed with a Bar-Natan-style fast algorithm, see [Lew13, Sch25b].

The definition requires a rank 3-Frobenius system, which in the case of Fp, the
prime field of characteristic p 6= 3 is given by

Fp = (Fp,Fp[X]/(X3 − 1), ε,∆),

where

∆(1) = −X2 ⊗ 1−X ⊗X − 1⊗X2,
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and
ε(1) = 0, ε(X) = −1.

For the prime field F3 of characteristic 3, it is given by

F3 = (F3,F3[X]/(X3 −X), ε,∆3),

where
∆3(1) = −X2 ⊗ 1−X ⊗X − 1⊗X2 + 1⊗ 1,

and ε as in Fp.

Unlike in Section 2, rather than using smoothings of tangles, we need to resolve
tangles into webs, and the role of dotted cobordisms is played by dotted foams.
We will not give precise definitions for webs and foams, the details can be found in
[Kho04, MV07, Lew13, Sch25b].

The analogue of CobF•/l(B, Ḃ) is the category FoamF
•/l(B, Ḃ), where we use the

following local relations on foams:

• • • = ∗ (3D)

− =
• •

+
•

•

+

• •

 −
 (CN)

=
•

= 0,
• •

= −1 (S)

Here the ∗ in (3D) is a dot if we work in characteristic 3, and it is empty if not.
Also, the term in brackets in (CN) is only present in characteristic 3.

With these relations any closed foam can be reduced to a disjoint union of theta
foams, which are evaluated as in Figure 4.

•

• •
= • •

•
=

• •
• = 1

•

• •
=

• •
• = • •

•
= −1

Figure 4. The evaluation of theta foams. Any other combination
of dots with at most two dots on any disc evaluates as 0.

If B = ∅, this set of relations is sufficient, otherwise a few more local relations are
needed, compare [Sch25b, §7].

Given a tangle T consisting of an oriented crossing in a disc B with 4 points Ḃ, we
can obtain a cochain complex Cf(X)(T ;F) as in Figure 5, where f(X) is either the

polynomial X3 − X or X3 − 1, depending on whether the characteristic of F is 3
or not.
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: u−1q3 U
u0q2

: u0q−2 Z
u1q−3

Figure 5. The complexes associated to a positive and a negative
crossing. Here U and Z stand for the unzip and zip foams.

Figure 6. The unzip and zip foams.

For an oriented link diagram D representing L, we also get a cochain complex
Cf(X)(D;F), whose total homology is of dimension 3|L|, since the polynomials X3−
X and X3 − 1 are separable after passing to an algebraic closure, see [MV07, §3],
where explicit generators are given.

Furthermore, H0
f(X)(L;F) is at least 3-dimensional, and the generators playing the

role of sO from Section 2 can be described as follows: By using the smoothing in
homological degree 0 for each crossing, compare Figure 5, we get a web S which
simply consists of k oriented circles. This web spans a subspace of C0

f(X)(D;F) of

the form (F[X]/(f(X)))⊗k.

Each root r gives rise to an idempotent element Ir ∈ F[X]/(f(X)), and the element

Ir(L) = Ir ⊗ Ir ⊗ · · · ⊗ Ir ∈ (F[X]/(f(X)))⊗k

is a cocycle which is a generator of H0
f(X)(L;F), see [MV07, §3].

We have that 1 is a root of both X3 −X and X3 − 1, and the element I1 is given
as

I1 =

{
1
3

(
X2 +X + 1

)
charF 6= 3,

−X2 −X charF = 3.

Notice that I1 is defined over the prime field, even if f(X) does not factor over the
prime field.

The complex Cf(X)(D;F) admits a filtration, which is due to a change in convention
in [Kho04] increasing:

0 ⊂ · · · ⊂ Fj ⊂ Fj+2 ⊂ · · · ⊂ Cf(X)(D;F)

In particular, non-zero elements of Hf(X)(L;F) have a q-grading, and the analogue
of Definition 2.1 is given as follows.
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Definition 4.1. Let L be an oriented link and F a field of characteristic p. The
sl3-s-invariant of L is defined as

spsl3(L) = −
(
|I1(L)|q − 2

2

)
,

with L the mirror of L.

This slightly cumbersome definition involving the mirror of L and the minus sign
is because of the aforementioned convention change. This definition ensures that
spsl3(L) = sp(L) for L an unlink or a Hopf link. It also agrees with the definition
for a knot, which follows from [Sch25b, §6].

Lemma 2.3 and 2.4 carry over to spsl3(L). In particular, we also get a weak-slice
obstruction.

The filtered complex Cf(X)(D;F) admits a fast scanning approach, see [Sch25b],
and the method to compute sp(L) from Section 3 carries over to spsl3(L). For a
positive or negative crossing T± we need to describe the cochain maps ϕ± : CT± →
Cf(X)(T±;F). It has to mimic I1 ⊗ I1, so it is of the form

ϕ± =
1

9

(
•
•

•
• + •

• • + •
•

+ • •
• + • • + •

+ •
• + • +

)
if the characteristic is different from 3, and

ϕ± = − •• •
• − •

• • − • •
• − • •

if the characteristic is 3. Since I1 is an idempotent, tensoring the ϕ± combines to

a cochain map ϕ : (Z[X]/(f(X)))3k → Cf(X)(D;F) for an oriented link diagram D
which smoothes to a web consisting of k circles, and so that ϕ(1⊗ · · ·⊗ 1) = I1(L).

We can mimic the scanning algorithm from Section 3 to get a cochain map ϕ : u0F→
D where D is filtered chain homotopic to Cf(X)(D;F) and ϕ(1) representing I1(L).

5. Computations

Both sp and spsl3 are slice-torus link invariants in the sense of [CC20] (up to a

factor), so by [Col21, Rm.2.6] they agree with the signature for non-split alternating
links. For sp this already follows from [MO08], but the E∞-page of the sl3-spectral
sequence can have more than three non-trivial groups E0,j

∞ for alternating links
(the Borromean rings being an example). We will therefore restrict our attention
to non-alternating knots and links.

The algorithms to compute sp and spsl3 have been implemented in knotjob, which is
available on the author’s website at https://www.maths.dur.ac.uk/users/dirk.
schuetz/knotjob.html.

The 2-component link Lε in Figure 7 has linking number 0, but the s-invariant
changes if we change the orientation on a component. We have s(L+) = 1 and

https://www.maths.dur.ac.uk/users/dirk.schuetz/knotjob.html
https://www.maths.dur.ac.uk/users/dirk.schuetz/knotjob.html
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s(L−) = 3, independent of characteristic and also if we consider ssl3 . The signature
of this link is 3, independent of the orientation. This implies Theorem 1.2.

+

+

+

+

−ε
−ε

−ε

−ε ε
ε

ε

ε

Figure 7. The 2-component link Lε with ε ∈ {±1} and oriented
so to give the indicated crossing signs.

In particular, the s-invariant is not simply given by spmin(L) in general. The link
in Figure 7 has 12 crossings. We did not find any 2-component links with up
to 11 crossings with this property. A list with these links can be found on the
Knot Atlas, see https://katlas.org/wiki/Main_Page. We did find links with 11
crossings and more than 2 components, where sp(L) > spmin(L). Since we did not
check every possible orientation for links with more than two components, there
may indeed be more.

During the Bar-Natan algorithm we have to keep track of one extra generator
and how it maps to the cochain complex. This does not affect the computational
complexity or computation time significantly. Also, recall that to calculate the s-
invariant of a knot, we can ignore all generators of homological degree bigger than
1. By keeping track of the cochain map, we can ignore all generators of positive
homological degree. When applied to knots, we observed a slight improvement in
performance.

Despite these slight improvements, our computer programme still uses the old
method when calculating s-invariants of knots. When applying the new method to
knots, the 0-th homology group need not be of dimension 2, compare Lemma 3.1.
This removes one check for bugs in computer programmes. We have compared both
methods for knots with up to 15 crossings to check both give the same results. Our
programme also checks that the image ϕ : F → E0,∗

i represents a cocycle at every
stage of the spectral sequence.
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