Topology (Math 3281)

Homework Problem Set 1

This set of homeworks will be collected on Friday 24.10.14.

1. Let (M, d) be a metric space, and $A \subset M$. Define $d_{A}: A \times A \rightarrow[0, \infty)$ by $d_{A}(a, b)=d(a, b)$ for all $a, b \in A$.
(a) Show that $\left(A, d_{A}\right)$ is a metric space.
(b) Show that the inclusion map $i: A \rightarrow M$ is continuous.
2. Let \mathbb{R}^{2} be given the metrics

$$
\begin{aligned}
& d_{2}(x, y)=\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}} \\
& d_{1}(x, y)=\left|x_{1}-y_{1}\right|+\left|x_{2}-y_{2}\right|
\end{aligned}
$$

and let $B_{i}(x ; r)$ the open ball around $x \in \mathbb{R}^{2}$ of radius $r>0$ with respect to the metric $d_{i}, i=1,2$.

Find functions $R_{1}, R_{2}:(0, \infty) \rightarrow(0, \infty)$ such that

$$
\begin{aligned}
& B_{2}\left(x ; R_{2}(r)\right) \\
& B_{1}\left(x ; R_{1}(r)\right)
\end{aligned} \subset B_{1}(x ; r), B_{2}(x ; r), ~ l
$$

for all $x \in \mathbb{R}^{2}$ and $r>0$.
Use this to show that the identity on \mathbb{R}^{2} is continuous both as

$$
\mathrm{id}:\left(\mathbb{R}^{2}, d_{1}\right) \rightarrow\left(\mathbb{R}^{2}, d_{2}\right) \text { and id: }\left(\mathbb{R}^{2}, d_{2}\right) \rightarrow\left(\mathbb{R}^{2}, d_{1}\right)
$$

3. Define $d: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow[0, \infty)$ by

$$
d(x, y)=\sqrt{\left|x_{1}-y_{1}\right|+\left|x_{2}-y_{2}\right|}
$$

(a) Show that d is a metric on \mathbb{R}^{2}.
(b) Show that $d(x, y)=d(x, z)+d(z, y)$ if and only if $z=x$ or $z=y$.

