Topology (Math 3281)

Homework Problem Set 1 10.10.14

This set of homeworks will be collected on Friday 24.10.14.

- 1. Let (M, d) be a metric space, and $A \subset M$. Define $d_A : A \times A \to [0, \infty)$ by $d_A(a, b) = d(a, b)$ for all $a, b \in A$.
 - (a) Show that (A, d_A) is a metric space.
 - (b) Show that the inclusion map $i: A \to M$ is continuous.
- 2. Let \mathbb{R}^2 be given the metrics

$$\begin{aligned} d_2(x,y) &= \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2} \\ d_1(x,y) &= |x_1 - y_1| + |x_2 - y_2| \end{aligned}$$

and let $B_i(x; r)$ the open ball around $x \in \mathbb{R}^2$ of radius r > 0 with respect to the metric d_i , i = 1, 2.

Find functions $R_1, R_2: (0, \infty) \to (0, \infty)$ such that

$$B_2(x; R_2(r)) \subset B_1(x; r), \ B_1(x; R_1(r)) \subset B_2(x; r)$$

for all $x \in \mathbb{R}^2$ and r > 0.

Use this to show that the identity on \mathbb{R}^2 is continuous both as

id: $(\mathbb{R}^2, d_1) \to (\mathbb{R}^2, d_2)$ and id: $(\mathbb{R}^2, d_2) \to (\mathbb{R}^2, d_1)$.

3. Define $d: \mathbb{R}^2 \times \mathbb{R}^2 \to [0, \infty)$ by

$$d(x,y) = \sqrt{|x_1 - y_1| + |x_2 - y_2|}.$$

- (a) Show that d is a metric on \mathbb{R}^2 .
- (b) Show that d(x, y) = d(x, z) + d(z, y) if and only if z = x or z = y.