Topology (Math 3281)

Solutions to Problem Set 1

1. (a) We have to check that d_{A} satisfies all three conditions of the definition of a metric. But this is the case because we have $d_{A}(a, b)=d(a, b)$ where we interpret $a, b \in A$ as elements of M. Since the conditions hold for d, they also have to hold for d_{A}. Or more formally for the first condition:

$$
d_{a}(a, b)=d(a, b) \geq 0
$$

with equality if and only if $a=b$.
(b) Let $a \in A$. We want to show that the inclusion $i: A \rightarrow X$ is continuous at a. So let $\varepsilon>0$. Choose $\delta=\varepsilon$. Then if $d_{A}(a, b)<\delta$, we get $d(i(a), i(b))=$ $d(a, b)=d_{A}(a, b)<\delta=\varepsilon$, so i is continuous at a. As this holds for all $a \in A$, we get that inclusion is continuous.
2. First note that

$$
d_{1}(x, y) \geq d_{2}(x, y)
$$

To see this, write $a=\left|x_{1}-y_{1}\right|$ and $b=\left|x_{2}-y_{2}\right|$, so that $d_{1}(x, y)=a+b$ and $d_{2}(x, y)=\sqrt{a^{2}+b^{2}}$. Since

$$
(a+b)^{2} \geq a^{2}+b^{2}
$$

the previous inequality follows by taking the square-root.
Now $(a-b)^{2} \geq 0$, so $a^{2}+b^{2} \geq 2 a b$. Therefore

$$
\begin{aligned}
d_{1}(x, y)^{2} & =a^{2}+2 a b+b^{2} \\
& \leq 2\left(a^{2}+b^{2}\right) \\
& =2 d_{2}(x, y)^{2}
\end{aligned}
$$

so

$$
d_{1}(x, y) \leq \sqrt{2} d_{2}(x, y)
$$

Now choose $R_{1}(x)=x$ and $R_{2}(x)=x / \sqrt{2}$. If $y \in B_{1}\left(x ; R_{1}(r)\right)$, then $d_{1}(x, y)<r$, so $d_{2}(x, y)<r$ and $y \in B_{2}(x ; r)$. Also, if $y \in B_{2}\left(x ; R_{2}(r)\right)$, then $d_{1}(x, y) \leq \sqrt{2} d_{2}(x, y)<r$, so $y \in B_{1}(x, r)$.

Consider id: $\left(\mathbb{R}^{2}, d_{1}\right) \rightarrow\left(\mathbb{R}^{2}, d_{2}\right)$, so let $\varepsilon>0$. Choose $\delta=\varepsilon$. Let $a \in \mathbb{R}^{2}$. Then if $d_{1}(a, x)<\delta$, we get $d_{2}(\operatorname{id}(a), \operatorname{id}(x)) \leq d_{1}(\operatorname{id}(a), \operatorname{id}(x))=d_{1}(a, x)<$ $\delta=\varepsilon$, which means the function is continuous at a.
Consider id: $\left(\mathbb{R}^{2}, d_{2}\right) \rightarrow\left(\mathbb{R}^{2}, d_{1}\right)$, so let $\varepsilon>0$. Choose $\delta=\varepsilon / \sqrt{2}$. Let $a \in \mathbb{R}^{2}$. Then if $d_{2}(a, x)<\delta$, we get $d_{1}(\operatorname{id}(a), \operatorname{id}(x)) \leq \sqrt{2} d_{2}(\operatorname{id}(a), \operatorname{id}(x))=$ $d_{2}(a, x)<\sqrt{2} \delta=\varepsilon$, which means the function is continuous at a.
3. (a) Note that $d(x, y)=\sqrt{d_{1}(x, y)}$, so symmetry follows, and so does $d(x, y) \geq 0$ with equality if and only if $x=y$. For the triangle inequality, note that $\sqrt{a+b} \leq \sqrt{a}+\sqrt{b}$, so

$$
\begin{aligned}
d(x, y) & =\sqrt{d_{1}(x, y)} \\
& \leq \sqrt{d_{1}(x, z)+d_{1}(z, y)} \\
& \leq \sqrt{d_{1}(x, z)}+\sqrt{d_{1}(z, y)} \\
& =d(x, z)+d(z, y) .
\end{aligned}
$$

(b) Note that

$$
(\sqrt{a}+\sqrt{b})^{2}=a+b+2 \sqrt{a} \sqrt{b}
$$

which is bigger than $a+b$ unless a or b are 0 . Therefore we get

$$
d(x, y)<d(x, z)+d(z, y)
$$

unless $z=x$ or $z=y$.

