Topology (Math 3281)

Solutions to Problem Set 2 07.11.14

1. Note that all τ_i contain \emptyset and X. τ_3 is not closed under union and neither is τ_7 . All others satisfy the conditions of a topology.

A homeomorphism between two spaces induces a bijection between the topologies. Now notice that τ_1 has four elements, τ_2 and τ_4 have five elements, and τ_5 and τ_6 have three elements. τ_2 and τ_4 are homeomorphic, with a homeomorphism given by h(1) = 4, h(2) = 2 and h(4) = 1. τ_5 and τ_6 are not homeomorphic, as a homeomorphism would have to satisfy $h(\{2,4\}) = \{2\}$, but a bijection cannot satisfy this.

2. We can write $X_1 = f^{-1}((0,\infty) \times (0,\infty))$, where $f \colon \mathbb{R}^3 \to \mathbb{R}^2$ is given by

$$f(x, y, z) = (x - y, y - z).$$

As $(0, \infty) \times (0, \infty) \subset \mathbb{R}^2$ is open and f is continuous, we get X_1 is open. It is not closed, as (0, 0, 0) is a limit point not contained in X_1 . For X_2 use $X_2 = g^{-1}(\{0\})$ with $g \colon \mathbb{R}^4 \to \mathbb{R}$ given by

$$g(x, y, z, w) = x^4 + y^3 + z^2 - w.$$

This shows that X_2 is closed. It is not open, as $(0,0,0,0) \in X_1$, but for every $\varepsilon > 0$ we get that $(0,0,0,\varepsilon) \notin X_1$.

Now use $X_3 = h^{-1}([0,\infty))$ with $h \colon \mathbb{R}^2 \to \mathbb{R}$ given by

$$h(x_1, x_2) = x_1 - x_2^2$$

so that X_3 is closed. It is not open, as $(0,0) \in X_3$, but $(0,\varepsilon) \notin X_3$ for every $\varepsilon > 0$.

The set X_4 is neither open nor closed. To see that it is not open, not that $(0,0,5) \in X_4$, but $(0,0,5+\varepsilon) \notin X_4$ for every $\varepsilon > 0$. To see that it is not closed, note that $(0,0,0) \notin X_4$, but it is a limit point of X_4 because $(0,\varepsilon,0) \in X_4$ for every $\varepsilon > 0$.

3. As $A \subset Y$ is closed in Y, there is an open set U in X with $U \cap Y = Y - A$. Now $U \cup (X - Y) = X - A$ (check that if $x \notin A$, but $x \in Y$, then $x \in U$; and if $x \in U$, then $x \notin A$). This is a union of open sets, as Y is closed in X. Therefore A is closed in X. 4. (a) We claim the set of limit points is $\{0\} \cup \{\frac{1}{n} \mid n \ge 1\}$.

First note that these points are limit points. In any neighborhood of 0 there will be infinitely many points of the form $\frac{1}{n} + \frac{1}{n}$. In any neighborhood of $\frac{1}{n}$ we can find infinitely many points $\frac{1}{n} + \frac{1}{m}$, $m \ge 1$, so $\frac{1}{n}$ is a limit point.

It remains to show that these are all the limit points. The basic idea is that if an interval around a point x contains only finitely many points of A, then x is not a limit point.

It is clear that points x < 0 and x > 2 cannot be limit points. Now let x > 1. Let $\varepsilon = x - 1 > 0$. Then there exist only finitely many points $a = \frac{1}{m} + \frac{1}{n}$ with $a \ge x - \varepsilon/2$ (note that either n = 1 or m = 1 is necessary for that). Hence x cannot be a limit point.

Now let $x \in (\frac{1}{k}, \frac{1}{k-1})$ with $k \ge 2$. If n > k, then only finitely many n, m with $\frac{1}{n} + \frac{1}{m} \in (\frac{1}{k}, \frac{1}{k-1})$ exist. So we look at points of the form $\frac{1}{k} + \frac{1}{m}$ with $m \ge 1$. But only finitely many of those can be within an ε -neighborhood of x by the same argument as above, if $\varepsilon > 0$ is such that $[x - \varepsilon, x + \varepsilon] \subset (\frac{1}{k}, \frac{1}{k-1})$. Thus x cannot be a limit point.

(b) We note that $|\frac{1}{n}\sin n| < \frac{1}{n}$, so points $x \neq 0$ have neighborhoods containing only finitely many elements of B. Thus the only possible limit point is 0. Given $\varepsilon > 0$, choose n such that $\frac{1}{n} < \varepsilon$. Then $\frac{1}{n}\sin n$ is within the ε -neighborhood of 0. Since $\sin n \neq 0$ for all $n \geq 1$ (by the irrationality of π), we get that 0 is a limit point.