Topology (Math 3281)

Solutions to Problem Set 2

1. Note that all τ_{i} contain \emptyset and $X . \tau_{3}$ is not closed under union and neither is τ_{7}. All others satisfy the conditions of a topology.
A homeomorphism between two spaces induces a bijection between the topologies. Now notice that τ_{1} has four elements, τ_{2} and τ_{4} have five elements, and τ_{5} and τ_{6} have three elements. τ_{2} and τ_{4} are homeomorphic, with a homeomorphism given by $h(1)=4, h(2)=2$ and $h(4)=1 . \tau_{5}$ and τ_{6} are not homeomorphic, as a homeomorphism would have to satisfy $h(\{2,4\})=\{2\}$, but a bijection cannot satisfy this.
2. We can write $X_{1}=f^{-1}((0, \infty) \times(0, \infty))$, where $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ is given by

$$
f(x, y, z)=(x-y, y-z)
$$

As $(0, \infty) \times(0, \infty) \subset \mathbb{R}^{2}$ is open and f is continuous, we get X_{1} is open. It is not closed, as $(0,0,0)$ is a limit point not contained in X_{1}.
For X_{2} use $X_{2}=g^{-1}(\{0\})$ with $g: \mathbb{R}^{4} \rightarrow \mathbb{R}$ given by

$$
g(x, y, z, w)=x^{4}+y^{3}+z^{2}-w
$$

This shows that X_{2} is closed. It is not open, as $(0,0,0,0) \in X_{1}$, but for every $\varepsilon>0$ we get that $(0,0,0, \varepsilon) \notin X_{1}$.
Now use $X_{3}=h^{-1}([0, \infty))$ with $h: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by

$$
h\left(x_{1}, x_{2}\right)=x_{1}-x_{2}^{2}
$$

so that X_{3} is closed. It is not open, as $(0,0) \in X_{3}$, but $(0, \varepsilon) \notin X_{3}$ for every $\varepsilon>0$.
The set X_{4} is neither open nor closed. To see that it is not open, not that $(0,0,5) \in X_{4}$, but $(0,0,5+\varepsilon) \notin X_{4}$ for every $\varepsilon>0$. To see that it is not closed, note that $(0,0,0) \notin X_{4}$, but it is a limit point of X_{4} because $(0, \varepsilon, 0) \in X_{4}$ for every $\varepsilon>0$.
3. As $A \subset Y$ is closed in Y, there is an open set U in X with $U \cap Y=Y-A$. Now $U \cup(X-Y)=X-A$ (check that if $x \notin A$, but $x \in Y$, then $x \in U$; and if $x \in U$, then $x \notin A$). This is a union of open sets, as Y is closed in X. Therefore A is closed in X.
4. (a) We claim the set of limit points is $\{0\} \cup\left\{\left.\frac{1}{n} \right\rvert\, n \geq 1\right\}$.

First note that these points are limit points. In any neighborhood of 0 there will be infinitely many points of the form $\frac{1}{n}+\frac{1}{n}$. In any neighborhood of $\frac{1}{n}$ we can find infinitely many points $\frac{1}{n}+\frac{1}{m}, m \geq 1$, so $\frac{1}{n}$ is a limit point.
It remains to show that these are all the limit points. The basic idea is that if an interval around a point x contains only finitely many points of A, then x is not a limit point.

It is clear that points $x<0$ and $x>2$ cannot be limit points. Now let $x>1$. Let $\varepsilon=x-1>0$. Then there exist only finitely many points $a=\frac{1}{m}+\frac{1}{n}$ with $a \geq x-\varepsilon / 2$ (note that either $n=1$ or $m=1$ is necessary for that). Hence x cannot be a limit point.
Now let $x \in\left(\frac{1}{k}, \frac{1}{k-1}\right)$ with $k \geq 2$. If $n>k$, then only finitely many n, m with $\frac{1}{n}+\frac{1}{m} \in\left(\frac{1}{k}, \frac{1}{k-1}\right)$ exist. So we look at points of the form $\frac{1}{k}+\frac{1}{m}$ with $m \geq 1$. But only finitely many of those can be within an ε-neighborhood of x by the same argument as above, if $\varepsilon>0$ is such that $[x-\varepsilon, x+\varepsilon] \subset\left(\frac{1}{k}, \frac{1}{k-1}\right)$. Thus x cannot be a limit point.
(b) We note that $\left|\frac{1}{n} \sin n\right|<\frac{1}{n}$, so points $x \neq 0$ have neighborhoods containing only finitely many elements of B. Thus the only possible limit point is 0 . Given $\varepsilon>0$, choose n such that $\frac{1}{n}<\varepsilon$. Then $\frac{1}{n} \sin n$ is within the ε-neighborhood of 0 . Since $\sin n \neq 0$ for all $n \geq 1$ (by the irrationality of π), we get that 0 is a limit point.

