
Topology (Math 3281)

Solutions to Problem Set 3 21.11.14

1. Define g : C3 → C by g(z1, z2, z3) = z51 + z22 + z23 , which is continuous.
Therefore Y = g−1({0}) is closed. Note that Y is unbounded. However,
S5 ⊂ C3 is bounded, and also closed. Therefore X = Y ∩ S5 is closed as
an intersection of closed sets and also bounded. Since we can identify C3

with R6, the Heine-Borel Theorem applies and we can conclude that X is
compact.

2. To check continuity, let C ⊂ Y be closed. Then

f−1(C) = (f−1(C) ∩A) ∪ (f−1(C) ∩B)

= (f |A)−1(C) ∪ (f |B)−1(C),

where f |A and f |B are the restrictions to A and B, respectively. By conti-
nuity of f |A and f |B we get that (f |A)−1(C) is closed in A and (f |B)−1(C)
is closed in B. As A and B are closed, the sets (f |A)−1(C) and (f |B)−1(C)
are closed in X, and so f−1(C) is closed as the union of two closed sets.
Therefore f is continuous.

3. Assume that Z is not connected. Then there exists a continuous surjective
map f : Z → {0, 1}. Now, as Z ∩ Y is connected, we get that f(Z ∩ Y ) is
only one point. Without loss of generality, we may assume the image is {0}.
Now define F : Z ∪ Y → {0, 1} by

F (x) =

{
0 x ∈ Y

f(x) x ∈ Z

Notice that F is a well defined function, because if x ∈ Y ∩Z, then f(x) = 0,
so both defining lines agree.

Now F |Y is continuous, and F |Z = f is continuous, so F is continuous by
Question 2, as Z and Y are closed subsets of Y ∪ Z. But if f is surjective,
then so is F , contradicting the fact that Z ∪ Y is connected. Therefore Z
has to be connected as well.

An entirely symmetrical argument shows that Y is connected.

4. (a) If I ⊂ J are ideals, then J ⊂ P implies I ⊂ P . So if P ∈ Z(J), then
P ∈ Z(I) which means Z(J) ⊂ Z(I).

(b) Recall that I ·J are the finite sums of elements of the form i ·j with i ∈ I
and j ∈ J . Hence I ·J ⊂ I and I ·J , as I and J are ideals. By part (a) we get
Z(I) ⊂ Z(I ·J) and Z(J) ⊂ Z(I ·J), that is, we have Z(I)∪Z(J) ⊂ Z(I ·J).



Now assume that P ∈ Z(I · J), but P /∈ Z(I). This means that there is
an element x ∈ I with x /∈ P . As I · J ⊂ P , we get that x · y ∈ P for all
y ∈ J . By the prime ideal property of P , we have either x ∈ P or y ∈ P .
As x /∈ P , this means y ∈ P for all y ∈ J , or in other words, J ⊂ P . This
means P ∈ Z(J). Hence Z(I · J) ⊂ Z(I) ∪ Z(J).

(c) Note that a prime ideal is never the full ring R, so Z(R) = ∅. Hence
Spec(R) = Spec(R) − Z(R) ∈ τ . Also, Z({0}) = Spec(R), so ∅ ∈ τ . To
show that finite intersections of open sets are open, it is enough to show
that finite unions of the Z(I1) are also of the form Z(J). But this follows
directly from part (b). Finally, if Ij is an ideal for all j ∈ J, we need to show
that

⋂
j∈J Z(Ij) = Z(I) for some ideal I. For this, define

I =

∑
j∈J

xj

∣∣∣∣∣∣ xj ∈ Ij with only finitely many xj 6= 0

 ,

which is easily seen to be an ideal, and Ij ⊂ I for all j ∈ J. By part (a) we
get

Z(I) ⊂
⋂
j∈J

Z(Ij).

Now let P ∈
⋂

j∈J Z(Ij), that is, Ij ⊂ P for all j ∈ J. Then any finite sum of
elements of the Ij is contained in P , which means that I ⊂ P , or P ∈ Z(I).
The proves the required other inclusion. Therefore arbitrary unions of open
sets are open and τ is a topology.

(d) Note that the prime ideals of Z are ideals pZ with p a prime number,
and {0}. Arbitrary ideals are of the form nZ with n ∈ Z, and we can assume
n ≥ 0. As any such n is the product of finitely many prime numbers, Z(nZ)
only contains pZ if p divides n. In particular, Z(nZ) is finite for n ≥ 1.
So if we are given an open covering of Spec(Z), then one of these open sets
Spec(Z) − Z(nZ) covers 2Z, and the complement Z(nZ) only has finitely
many points left. Hence Spec(Z) is compact by the same argument that
gave compactness in Example 5.2 (3).


