Topology (Math 3281)

Solutions to Problem Set 3

1. Define $g: \mathbb{C}^{3} \rightarrow \mathbb{C}$ by $g\left(z_{1}, z_{2}, z_{3}\right)=z_{1}^{5}+z_{2}^{2}+z_{3}^{2}$, which is continuous. Therefore $Y=g^{-1}(\{0\})$ is closed. Note that Y is unbounded. However, $S^{5} \subset \mathbb{C}^{3}$ is bounded, and also closed. Therefore $X=Y \cap S^{5}$ is closed as an intersection of closed sets and also bounded. Since we can identify \mathbb{C}^{3} with \mathbb{R}^{6}, the Heine-Borel Theorem applies and we can conclude that X is compact.
2. To check continuity, let $C \subset Y$ be closed. Then

$$
\begin{aligned}
f^{-1}(C) & =\left(f^{-1}(C) \cap A\right) \cup\left(f^{-1}(C) \cap B\right) \\
& =\left(\left.f\right|_{A}\right)^{-1}(C) \cup\left(\left.f\right|_{B}\right)^{-1}(C),
\end{aligned}
$$

where $\left.f\right|_{A}$ and $\left.f\right|_{B}$ are the restrictions to A and B, respectively. By continuity of $\left.f\right|_{A}$ and $\left.f\right|_{B}$ we get that $\left(\left.f\right|_{A}\right)^{-1}(C)$ is closed in A and $\left(\left.f\right|_{B}\right)^{-1}(C)$ is closed in B. As A and B are closed, the sets $\left(\left.f\right|_{A}\right)^{-1}(C)$ and $\left(\left.f\right|_{B}\right)^{-1}(C)$ are closed in X, and so $f^{-1}(C)$ is closed as the union of two closed sets. Therefore f is continuous.
3. Assume that Z is not connected. Then there exists a continuous surjective map $f: Z \rightarrow\{0,1\}$. Now, as $Z \cap Y$ is connected, we get that $f(Z \cap Y)$ is only one point. Without loss of generality, we may assume the image is $\{0\}$. Now define $F: Z \cup Y \rightarrow\{0,1\}$ by

$$
F(x)=\left\{\begin{array}{cc}
0 & x \in Y \\
f(x) & x \in Z
\end{array}\right.
$$

Notice that F is a well defined function, because if $x \in Y \cap Z$, then $f(x)=0$, so both defining lines agree.
Now $\left.F\right|_{Y}$ is continuous, and $\left.F\right|_{Z}=f$ is continuous, so F is continuous by Question 2, as Z and Y are closed subsets of $Y \cup Z$. But if f is surjective, then so is F, contradicting the fact that $Z \cup Y$ is connected. Therefore Z has to be connected as well.
An entirely symmetrical argument shows that Y is connected.
4. (a) If $I \subset J$ are ideals, then $J \subset P$ implies $I \subset P$. So if $P \in Z(J)$, then $P \in Z(I)$ which means $Z(J) \subset Z(I)$.
(b) Recall that $I \cdot J$ are the finite sums of elements of the form $i \cdot j$ with $i \in I$ and $j \in J$. Hence $I \cdot J \subset I$ and $I \cdot J$, as I and J are ideals. By part (a) we get $Z(I) \subset Z(I \cdot J)$ and $Z(J) \subset Z(I \cdot J)$, that is, we have $Z(I) \cup Z(J) \subset Z(I \cdot J)$.

Now assume that $P \in Z(I \cdot J)$, but $P \notin Z(I)$. This means that there is an element $x \in I$ with $x \notin P$. As $I \cdot J \subset P$, we get that $x \cdot y \in P$ for all $y \in J$. By the prime ideal property of P, we have either $x \in P$ or $y \in P$. As $x \notin P$, this means $y \in P$ for all $y \in J$, or in other words, $J \subset P$. This means $P \in Z(J)$. Hence $Z(I \cdot J) \subset Z(I) \cup Z(J)$.
(c) Note that a prime ideal is never the full ring R, so $Z(R)=\emptyset$. Hence $\operatorname{Spec}(R)=\operatorname{Spec}(R)-Z(R) \in \tau$. Also, $Z(\{0\})=\operatorname{Spec}(R)$, so $\emptyset \in \tau$. To show that finite intersections of open sets are open, it is enough to show that finite unions of the $Z\left(I_{1}\right)$ are also of the form $Z(J)$. But this follows directly from part (b). Finally, if I_{j} is an ideal for all $j \in \mathfrak{J}$, we need to show that $\bigcap_{j \in \mathfrak{J}} Z\left(I_{j}\right)=Z(I)$ for some ideal I. For this, define

$$
I=\left\{\sum_{j \in \mathfrak{J}} x_{j} \mid x_{j} \in I_{j} \text { with only finitely many } x_{j} \neq 0\right\}
$$

which is easily seen to be an ideal, and $I_{j} \subset I$ for all $j \in \mathfrak{J}$. By part (a) we get

$$
Z(I) \subset \bigcap_{j \in \mathfrak{J}} Z\left(I_{j}\right)
$$

Now let $P \in \bigcap_{j \in \mathfrak{J}} Z\left(I_{j}\right)$, that is, $I_{j} \subset P$ for all $j \in \mathfrak{J}$. Then any finite sum of elements of the I_{j} is contained in P, which means that $I \subset P$, or $P \in Z(I)$. The proves the required other inclusion. Therefore arbitrary unions of open sets are open and τ is a topology.
(d) Note that the prime ideals of \mathbb{Z} are ideals $p \mathbb{Z}$ with p a prime number, and $\{0\}$. Arbitrary ideals are of the form $n \mathbb{Z}$ with $n \in \mathbb{Z}$, and we can assume $n \geq 0$. As any such n is the product of finitely many prime numbers, $Z(n \mathbb{Z})$ only contains $p \mathbb{Z}$ if p divides n. In particular, $Z(n \mathbb{Z})$ is finite for $n \geq 1$. So if we are given an open covering of $\operatorname{Spec}(\mathbb{Z})$, then one of these open sets $\operatorname{Spec}(\mathbb{Z})-Z(n \mathbb{Z})$ covers $2 \mathbb{Z}$, and the complement $Z(n \mathbb{Z})$ only has finitely many points left. Hence $\operatorname{Spec}(\mathbb{Z})$ is compact by the same argument that gave compactness in Example 5.2 (3).

