
TOPOLOGY III

DIRK SCHÜTZ

1. Metric Spaces and continuous functions

Definition 1.1. A metric space is a pair (M,d) where M is a set and
d : M ×M → [0,∞) is a function satisfying the following:

(1) d(x, y) = 0 if and only if x = y.
(2) d(x, y) = d(y, x) for all all x, y ∈M .
(3) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈M .

We call d a metric on M then.

Example 1.2.

(1) Rn with the metric

d2(x, y) =
√

(x1 − y1)2 + · · ·+ (xn − yn)2 =

(
n∑

i=1

(xi − yi)2
) 1

2

or the metric

d1(x, y) =

n∑
i=1

|xi − yi|

or the metric

d∞(x, y) = max{|xi − yi| | i = 1, . . . , n}.

(2) Let C([a, b]) = {f : [a, b]→ R | f is continuous}. Then

d(f, g) = sup{|f(x)− g(x)| |x ∈ [a, b]}

is a metric on C([a, b]).
(3) Let M be any set. Then

d(x, y) =

{
0 if x = y
1 if x 6= y

is a metric, called the discrete metric on X.

Definition 1.3. Let (M,d) be a metric space.

(1) A sequence in M is a function a : N = {0, 1, 2, 3, . . .} →M . We write
(an)n∈N for the sequence, where an = a(n).
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(2) Let a ∈ M . Then the sequence (an)n∈N converges to a, if for all
ε > 0 there is n0 ∈ N with d(a, an) < ε for all n ≥ n0. We write
lim
n→∞

an = a or an → a.

Definition 1.4. Let (M,dM ) and (N, dN ) be metric spaces, and a ∈M . A
function f : M → N is called continuous at a ∈ M , if for all ε > 0 there is
δ > 0 such that for all x ∈M with dM (x, a) < δ we have dN (f(x), f(a)) < ε.

The function is called continuous, if it is continuous for every a ∈M .

Example 1.5.

(1) Any continuous function f : R→ R that you have seen in Calculus.
(2) Define F : C[0, 1]→ C[0, 1] by

F (f)(x) =

x∫
0

f(t)dt

This is continuous with the metric from Example 1.2 (2).

Lemma 1.6. Let M,N be metric spaces, f : M → N a function and a ∈M .
Then f is continuous at a if and only if for every sequence (an)n∈N in M
with an → a we have f(an)→ f(a).

Example 1.7. Let X be a set with the discrete metric, and let f : X → R
be a function. Then f is continuous. On the other hand, id : (R, d2)→ (R, d)
with d the discrete metric on R is not continuous.

Definition 1.8. Let (M,d) be a metric space, r > 0 and x ∈M . Then

B(x; r) = {y ∈M | d(x, y) < r}
is called the open ball of radius r around x ∈M , and

D(x; r) = {y ∈M | d(x, y) ≤ r}
is called the closed ball of radius r around x ∈M .

Example 1.9. Let M = R2 with d2 the euclidean metric. Then B(0; 1) is
a round ball. With the metric d1 it is shaped like a diamond and with d∞
it is shaped like a square.

With the discrete metric B(x; 1) = {x}, while D(x; 1) is the whole space.

Definition 1.10. Let M be a metric space. A subset U ⊂M is called open,
if for every x ∈ U there is ε > 0 such that B(x; ε) ⊂ U . A subset A ⊂M is
called closed, if M −A is open.

Lemma 1.11. Let M be a metric space.

(1) B(x; r) is open for all x ∈M , r > 0.
(2) D(x; r) is closed for all x ∈M , r > 0.
(3) M and ∅ are both open and closed.
(4) an arbitrary union of open sets is open.
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(5) a finite intersection of open sets is open.
(6) a finite union of closed sets is closed.
(7) an arbitrary intersection of closed sets is closed.

Example 1.12. Let M = R2 with the euclidean metric. Then {0} is closed,
but not open. Also,

{0} =

∞⋂
i=1

B(0;
1

i
)

so the arbitrary intersection of open sets need not be open.

D(0; 1) is closed, but not open.

If (X, d) is discrete, then any A ⊂ X is open and closed.

Proposition 1.13. Let M , N be metric spaces and f : M → N a function.

(1) Let a ∈ M . Then f is continuous at a if and only if for every open
subset V ⊂ N with f(x) ∈ V there is an open subset U ⊂ M with
a ∈M and f(U) ⊂ V .

(2) f is continuous if and only if f−1(U) is open in M for every open
U ⊂ N .

2. Topological Spaces

Definition 2.1. Let X be a set. A topology on X is a subset τ ⊂ ℘(X) =
{A ⊂ X} which satisfy the following:

(1) ∅ and X are in τ .
(2) If Ui ∈ τ for all i ∈ I, then

⋃
i∈I Ui ∈ τ .

(3) If U1, U2 ∈ τ , then U1 ∩ U2 ∈ τ .

The pair (X, τ) is called a topological space. The elements of τ are called
then open subsets of X.

Example 2.2.

(1) Let (M,d) be a metric space, and τd the collection of open sets in
the sense of Definition 1.10. Then (M, τd) is a topological space.

(2) Let X be any set, and τ = ℘(X). This is called the discrete topology.
(3) Let X be any set, and τ = {∅, X}. This is called the indiscrete

topology.
(4) Let X = {0, 1, 2, 3, . . .} and τ = {∅} ∪ {U ⊂ X |X − U is finite}.
(5) Let (X, τ) be a topological space, A ⊂ X. Then

τA = {A ∩ U |U ∈ τ}
is a topology, called the induced, or subspace topology. Note that
Z ⊂ R is discrete in the subspace topology, and Q ⊂ R is not discrete
in the subspace topology.

(6) On Rn we have metrics d1, d2, d∞. They all induce the same topology
on Rn. This is called the standard topology on Rn.
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Definition 2.3. Let (X, τ) be a topological space. A subset A ⊂ X is called
closed, if its complement X −A is open.

Example 2.4. If X is discrete, every A ⊂ X is open and closed.

Lemma 2.5. Let X be a topological space. Then X and ∅ are closed. Fur-
thermore, any intersection of closed sets is closed, and finite unions of closed
sets are closed.

Definition 2.6. A topological space X is called Hausdorff, if whenever
x, y ∈ X with x 6= y, there exist open sets U, V ⊂ X with x ∈ U , y ∈ V and
U ∩ V = ∅.

Lemma 2.7. Let M be a metric space. Then M is a Hausdorff space.

Example 2.8. Let X be a set with more than one element, and give it the
indiscrete topology. Then X is not a Hausdorff space.

Definition 2.9. Let X,Y be topological spaces. A function f : X → Y is
called continuous, if for every open subset U ⊂ Y the inverse image f−1(U)
is open in X. Let x ∈ X. The function f is called continuous at x, if for
every open set U ⊂ Y with f(x) ∈ U there is an open set V ⊂ X with x ∈ V
such that f(V ) ⊂ U . A continuous function is also called a map.

Lemma 2.10. Composition of continuous functions is a continuous func-
tion.

Example 2.11. Let X be a topological space and A ⊂ X. The inclusion
i : A→ X is continuous, if A is given the subspace topology.

Lemma 2.12. Let f : X → Y be a function between topological spaces X
and Y . Then f is continuous if and only if f−1(A) is closed for every A ⊂ Y
closed.

Example 2.13. The n-sphere is defined as

Sn = {(x1, . . . , xn+1) ∈ Rn+1 |x21 + · · ·+ x2n+1 = 1}

and is a closed subset of Rn+1.

Denote by Mn,n(R) the set of n × n-matrices, topologized as Rn2
. Then

GLn(R), the set of invertible n × n-matrices is an open subset of Mn,n(R).
Also, SLn(R) = {A ∈ GLn(R) | detA = 1} is a closed subset of Mn,n(R).

The orthogonal group is defined as

O(n) = {A ∈ GLn(R) |AAt = I}

which is also a closed subset. The special orthogonal group is

SO(n) = O(n) ∩ SLn(R)

and it is closed as an intersection of closed sets.
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Definition 2.14. Let X,Y be topological spaces. A map h : X → Y is
called a homeomorphism, if h is bijective and h−1 is continuous. In that
case X and Y are called homeomorphic, and we write X ≈ Y . Note that h
induces a bijection between τX and τY .

Example 2.15. The interval (0, 1) is homeomorphic to R. We will see later
that [0, 1) is not homeomorphic to R.

R with the standard topology is not homeomorphic to R with the discrete
topology.

3. Interiors and Closures, limit points and product spaces

Definition 3.1. Let X be a topological space and x ∈ X, A ⊂ X.

(1) A neighborhood of x is a set N which contains an open set U ⊂ X
with x ∈ U .

(2) A point x ∈ X is called a limit point of A, if every neighborhood N
of x satisfies N − {x} ∩A 6= ∅.

Example 3.2.

(1) X = R, 0 ∈ X, (−1
2 ,

1
2) is a neighborhood of 0.

(2) If U ⊂ X is open, then U is a neighborhood for every x ∈ U .
(3) Let A = { 1n ∈ R |n ∈ Z− {0}}. Then A has exactly one limit point

0, and 0 /∈ A.

Lemma 3.3. Let X be a Hausdorff space, A ⊂ X and x ∈ X a point which
has a neighborhood N with N − {x} ∩ A finite. Then x is not a limit point
of A.

Definition 3.4. Let X be a topological space, A ⊂ X. The interior of
A, denoted A◦, is the largest open set contained in A. The closure of A,
denoted Ā, is the smallest closed set which contains A. More precisely,

A◦ =
⋃

U⊂A open
U Ā =

⋂
C⊃A closed

C

A subset A ⊂ X is called dense, if Ā = X.

Example 3.5. Let Q ⊂ R, then Q◦ = ∅ and Q̄ = R.

Lemma 3.6. Let A ⊂ X. Then Ā = A ∪ limit points of A.

Lemma 3.7. Let M be a metric space, A ⊂ M and x a limit point of A.
Then there exists a sequence xn ∈ A such that limxn = x. Furthermore, if
x ∈M −A and there is a sequence xn ∈ A with limxn = x, then x is a limit
point of A.

Definition 3.8. Let X be a topological space. A basis B for the topology
of X is a collection of open sets such that every open set U is the union of
elements of B.
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Example 3.9.

(1) Let M be a metric space. The collection {B(x; r) |x ∈M,R > 0} is
a basis for the topology of M .

(2) Let X = Rn with the standard topology. The collection
{B(q; 1

m) | q ∈ Qn,m ≥ 1 integer} is a countable basis of the topol-
ogy.

Theorem 3.10. Let f : X → Y be a function between topological spaces.
The following are equivalent.

(1) f is continuous.
(2) If B is a basis for the topology of Y , then f−1(B) is open for every

B ∈ B.
(3) f(Ā) ⊂ f(A) for every subset A ⊂ X.

(4) f−1(B) ⊂ f−1(B̄) for every subset B ⊂ Y .
(5) f−1(B) is closed for every closed set B ⊂ Y .

Remark 3.11. A basis for a topology usually gives a collection of open sets
which are somewhat easy to handle. By 3.10(2) we see that continuity is
captured by a basis. Another situation is that one may have a set X and a
collection B of subsets that one would like to be open. Then one would like
a topology for which B is a basis.

Theorem 3.12. Let X be a set and B a collection of subsets of X such that

(1) For each x ∈ X there is a B ∈ B with x ∈ B.
(2) If x ∈ B1 ∩ B2, where B1, B2 ∈ B, then there is a B3 ∈ B with

x ∈ B3 ⊂ B1 ∩B2.

Then there is a unique topology τB on X of which B is a basis.

Definition 3.13. Let X, Y be topological spaces. The cartesian product of
X and Y is the set

X × Y = {(x, y) |x ∈ X, y ∈ Y }
and it is given the product topology, obtained through Theorem 3.12 by using

BX×Y = {U × V |U ⊂ X,V ⊂ Y }

Example 3.14.

(1) Let X = R, Y = R. Then X × Y = R2, and the product topology
agrees with the standard topology.

(2) Let X = S1 = Y . Then T 2 = S1 × S1 is called the torus. We can
also form the n-torus by defining

Tn = S1 × Tn−1.

Proposition 3.15. Let X, Y be topological spaces, and X × Y given the
product topology. The projections pX : X×Y → X and pY : X×Y → Y are
both continuous and map open sets to open sets. Furthermore, the product
topology is the smallest topology so that both projections are continuous.
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Proposition 3.16. Let X,Y, Z be topological spaces. A function f : Z →
X × Y is continuous if and only if both pX ◦ f : Z → X and pY ◦ f : Z → Y
are continuous.

Example 3.17. Let f : X → Rn be a function. We then have n coordi-
nate functions f1, . . . , fn : X → R, and f is continuous if and only if these
coordinate functions are continuous.

Proposition 3.18. Let X, Y be non-empty topological spaces. Then X×Y
is a Hausdorff space if and only if X and Y are Hausdorff spaces.

4. Connectedness

Definition 4.1. A topological space is connected if whenever it is decom-
posed as a union X = A∪B of two non-empty sets A and B, then Ā∩B 6= ∅
or A ∪ B̄ 6= ∅.

Example 4.2.

(1) R is connected.
(2) Q is not connected.
(3) The connected subsets of R are the intervals.
(4) Let X = {0, 1} with the discrete topology. Then X is not connected.
(5) If the topology of X is given by τ = {∅, {1}, {0, 1}}, then X is

connected.

Theorem 4.3. Let X be a topological space. The following are equivalent.

(1) X is connected.
(2) The only subsets which are open and closed are X and the emptyset.
(3) X cannot be written as the union of two disjoint, non-empty open

sets.
(4) There is no continuous surjective function from X to a discrete space

with more than one point.

Theorem 4.4. The continuous image of a connected space is connected. In
particular, if h : X → Y is a homeomorphism with X connected, then Y is
connected.

Example 4.5.

(1) det : GLn(R)→ R− {0} is onto. Hence GLn(R) is not connected.
(2) O(n) is not connected.
(3) X = (0, 1) and Y = (0, 1] are not homeomorphic.

Proposition 4.6. Let X be a topological space and Z ⊂ X. If Z is connected
and Z̄ = X, then X is connected.

Corollary 4.7. Let X be a topological space, Z ⊂ X connected and Y ⊂ X
with Z ⊂ Y ⊂ Z̄. Then Y is connected. In particular, the closure of a
connected set is connected.
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Proposition 4.8. Let A = {Ai | i ∈ I} be a collection of subsets of X such
that

⋃
i∈I Ai = X. Assume that each Ai is connected and for each i, j ∈ I

we have Āi ∩ Āj 6= ∅. Then X is connected.

Theorem 4.9. If X and Y are connected, then X × Y is connected.

Example 4.10.

(1) Rn is connected.
(2) Bn is connected.
(3) Dn is connected.
(4) Sn is connected for n ≥ 1.
(5) Tn is connected for n ≥ 1.

Definition 4.11. A component of a topological space X is a maximal con-
nected subset of X.

Proposition 4.12. Each component of a topological space is a closed subset
and if C1 and C2 are different components, then C1 ∩ C2 = ∅. Also, a
topological space is the union of its components.

Example 4.13.

(1) If X is connected, there is only one component.
(2) If X is discrete, each point is a component.
(3) In Q every point is a component.

Definition 4.14. A path in a topological space X is a continuous function
γ : [0, 1]→ X, we say γ is a path from γ(0) to γ(1).

A topological space is called path connected, if for any two points x, y ∈ X
there is a path from x to y.

Proposition 4.15. A path connected space is connected.

Example 4.16. Let

Z = {(x, sin π
x

) ∈ R2 | 0 < x ≤ 1}.

Then Z̄ is connected, but not path connected.

5. Compactness

Definition 5.1. A topological space is compact, if every open cover of X
admits a finite subcover. An open cover of X is a collection of open sets
Ui ⊂ X such that

⋃
i∈I Ui = X.

Example 5.2.

(1) If X is a finite set, then X is compact.
(2) R is not compact.
(3) Let X be an infinite set with the topology τ = {U ⊂ X |X −

U is finite.} ∪ {∅}. Then X is compact.
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(4) The closed interval [0, 1] is compact.

Proposition 5.3. The continuous image of a compact space is compact. In
particular, if X ≈ Y and X is compact, then Y is compact.

Proposition 5.4. A closed subset of a compact space is compact.

Theorem 5.5. A compact subset of a Hausdorff space X is closed in X.

Corollary 5.6. A bijective continuous function from a compact space to a
Hausdorff space is a homeomorphism.

Example 5.7. Let X be an infinite set with the topology τ = {U ⊂ X |X−
U is finite.} ∪ {∅}. Every subset of X is compact, not just the closed ones.
But X is not Hausdorff.

Theorem 5.8. Let X,Y be compact spaces. Then X × Y is compact.

Theorem 5.9 (Heine-Borel). A subset of Rn is compact if and only if it is
closed and bounded.

Example 5.10.

(1) Sn is compact.
(2) The torus Tn = S1 × · · · × S1 is compact.
(3) X = {x ∈ R3 |x21 + x22 + x33 = 1} is not compact.

Remark 5.11. In a metric space the equivalence between compact sets and
closed and bounded sets usually does not work.

Corollary 5.12. Let f : X → R be a map from a compact space to the reals.
Then f attains its maximum and minimum.

Theorem 5.13 (Bolzano-Weierstrass). An infinite subset of a compact space
must have a limit point.

Theorem 5.14 (Lebesgue’s Lemma). Let X be a compact metric space and
let U be an open cover of X. Then there exists a δ > 0 (called a Lebesgue
number of U) such that any subset of X of diameter less than δ is contained
in some member of U .

If A ⊂M with M a metric space, the diameter is defined by

diam(A) = sup{d(a, b) | a, b ∈ A}.

6. Quotient Spaces

Definition 6.1. Let X be a topological space, Y a set and p : X → Y a
function which is surjective. Define a topology on Y as follows: we say
U ⊂ Y is open if and only if p−1(U) is open in X. This topology on Y is
called the quotient topology on Y , and Y is called a quotient space of X,
with p : X → Y a quotient map.
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Example 6.2. Let X be a topological space, and ∼ an equivalence relation.
For x ∈ X, the equivalence class [x] = {y ∈ X |x ∼ y}, and let

X/ ∼= {[x] |x ∈ X

the set of equivalence classes.

Then we have a surjection p : X → X/ ∼ with p(x) = [x] and we can give
X/ ∼ the quotient topology.

If X = R, define x ∼ y if and only if x− y ∈ Z. We will see that R/ ∼≈ S1.

On X = Dn define ∼ by x ∼ y if and only if x = y, or both x, y ∈ Sn−1.
Then Dn/ ∼≈ Sn, as we shall see.

Remark 6.3. An equivalence relation on X is the same as a partition P of
X, which is a collection of disjoint subsets (the equivalence classes) which
cover the whole of X. Every surjective function between sets f : X → Y
produces a partition of X via f−1({y}), y ∈ Y .

Proposition 6.4. Let p : X → Y be a quotient map, and Z a topological
space. A function f : Y → Z is continuous if and only if f ◦ p : X → Z is
continuous.

Definition 6.5. Let X, Y be topological spaces, and f : X → Y a map
which is onto. Then f is called an identification map, if U ⊂ Y is open if
and only if f−1(U) ⊂ X is open.

Remark 6.6. Let f : X → Y be an identification map. Then f is an onto
function and we can give Y the quotient topology. But this is the same
topology on Y that it had before. An identification map is pretty much the
same as a quotient map. The only difference is that in the case of a quotient
map Y was a set while in the case of an identification map Y already has a
topology.

If an identification map is injective, it is a homeomorphism.

Example 6.7. Let id: (R, τdisc) → (R, τstd) be the identity between the
discrete and the standard topology. This is not an identification map: U ⊂ R
open in the standard topology is not equivalent to U open in the discrete
topology.

Proposition 6.8. Let f : X → Y be an onto map. If f maps closed sets to
closed sets (or open sets to open sets), then f is an identification map.

Corollary 6.9. Let f : X → Y be an onto map. If X is compact and Y
Hausdorff, then f is an identification map.

Example 6.10. Let X be a topological space, and A ⊂ X. Then define an
equivalence relation ∼ by x ∼ y if and only if x = y or both x, y ∈ A. Then
A is one equivalence class, and all other equivalence classes consist of one
point. The resulting quotient space is denoted X/A.
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7. Topological Groups

Definition 7.1. A topological group G is a Hausdorff space G which is also
a group, such that multiplication · : G×G→ G and inversion i : G→ G are
continuous.

Example 7.2.

(1) Rn with addition.
(2) C− {0} with multiplication. Then S1 ⊂ C is a subgroup.
(3) The set of invertible n × n matrices GLn(R), with subgroups O(n)

and SO(n).
(4) Any subgroup H of a topological group G is a topological group.
(5) Let H = C× C, the set of quaternions, with topology from R4. We

can define a multiplication by

(z1, z2) · (w1, w2) = (z1w1 − w̄2z2, w2z1 + z2w̄1).

This turns H − {0} into a multiplicative group, and S3 forms a
subgroup.

(6) Any group G with the discrete topology is a topological group.

Remark 7.3. Let G be a topological group. For x ∈ G define Lx : G→ G
by Lx(g) = xg, called left translation by x. This is continuous, and has an
inverse, namely Lx−1 . In particular left translation is a homeomorphism.
Similarly, right translation Rx is a homeomorphism.

Proposition 7.4. Let G be a topological group and K the connected compo-
nent of G which contains the identity element. Then K is a closed normal
subgroup of G.

Remark 7.5. We know that O(n) is not connected, but we will see that
SO(n) is connected. In particular, SO(n) is the K in the case of G = O(n).

Theorem 7.6. O(n) and SO(n) are compact.

Definition 7.7. An action of a topological group G on a topological space
X is a map • : G×X → X such that

(1) (hg) • x = h • (g • x) for all h, g ∈ G and x ∈ X.
(2) 1 • x = x for all x ∈ X.

Note that for g ∈ G the map x 7→ g • x is a homeomorphism with inverse
coming from g−1.

Example 7.8.

(1) Trivial action : g · x = x for all g ∈ G and x ∈ X.
(2) G = GLn(R), X = Rn, the action given by matrix multiplication

A · x = Ax. This induces O(n) and SO(n) acting on Sn−1.
(3) Let G be a topological group and H a subgroup. Then H acts on G

via H ×G→ G given by h • g = hg.
(4) If N is a normal subgroup of G, then G acts on N by g •n = gng−1.
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(5) S3 acts on R4 by quaternion multiplication. This induces an injec-
tion T : S3 → SO(4).

(6) S3 acts on R3 by considering elements of R3 as imaginary quaternions
ai+ bj + ck and using

x • (ai+ bj + ck) = x(ai+ bj + ck)x̄.

This induces a group homomorphism C : S3 → SO(3) which is onto
and has kernel given by {1,−1}.

Definition 7.9. If G acts on X, we can define an equivalence relation ∼
on X by saying x ∼ y if there is g ∈ G with gx = y. An equivalence class
is called an orbit, and denoted by Gx. The corresponding quotient space is
called the orbit space, denoted by X/G. If X/G is just a point, the action
is called transitive.

Example 7.10.

(1) If G acts trivially, every orbit is a point and X/G = X.
(2) The action of O(n) on Sn−1 is transitive. The action of SO(n) on

Sn−1 is transitive, provided that n ≥ 2.
(3) Rn/GLn(R) consists of two points, the orbit of 0, and a non-zero

orbit. The topology on the quotient is neither discrete nor indiscrete.

Theorem 7.11. Let G be a connected topological group that acts on a topo-
logical space X such that X/G is connected. Then X is connected.

Corollary 7.12. SO(n) is connected for n ≥ 1.


