TOPOLOGY III

DIRK SCHUTZ

1. METRIC SPACES AND CONTINUOUS FUNCTIONS

Definition 1.1. A metric space is a pair (M,d) where M is a set and
d: M x M — [0,00) is a function satisfying the following;:

(1) d(z,y) = 0 if and only if z = y.
(2) d(z,y) = d(y,z) for all all z,y € M.
(3) d(z,y) < d(x,z)+d(z,y) for all z,y,z € M.

We call d a metric on M then.

Example 1.2.
(1) R™ with the metric

da(z,y) = /(&1 —y1)? + - + (20 — yn)? = (Z(% - yi)2>
or the metric .
dl(xay) = Z |$Z - yl|
i=1
or the metric
doo(x,y) = max{|z; —yi| |t =1,...,n}.
(2) Let C([a,b]) = {f: [a,b] = R| f is continuous}. Then
d(f,9) = sup{|f(z) — g(z)[ |z € [a,b]}

is a metric on C([a, b]).
(3) Let M be any set. Then

_J 0 ifx=y
is a metric, called the discrete metric on X.

Definition 1.3. Let (M, d) be a metric space.

(1) A sequence in M is a function a: N = {0,1,2,3,...} — M. We write
(an)nen for the sequence, where a, = a(n).
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(2) Let a € M. Then the sequence (a,)nen converges to a, if for all
e > 0 there is ng € N with d(a,ay,) < € for all n > ng. We write

lim a, = a or a, — a.
n—oo

Definition 1.4. Let (M, dys) and (N, dy) be metric spaces, and a € M. A
function f: M — N is called continuous at a € M, if for all € > 0 there is
d > 0 such that for all z € M with dy(z,a) < § we have dy(f(z), f(a)) < e.

The function is called continuous, if it is continuous for every a € M.
Example 1.5.

(1) Any continuous function f: R — R that you have seen in Calculus.
(2) Define F': C[0,1] — C[0,1] by

F(f)(x) = / F(t)dt
0

This is continuous with the metric from Example 1.2 (2).

Lemma 1.6. Let M, N be metric spaces, f: M — N a function and a € M.
Then f is continuous at a if and only if for every sequence (an)nen in M
with a, — a we have f(a,) — f(a).

Example 1.7. Let X be a set with the discrete metric, and let f: X — R
be a function. Then f is continuous. On the other hand, id: (R, d2) — (R, d)
with d the discrete metric on R is not continuous.

Definition 1.8. Let (M, d) be a metric space, r > 0 and = € M. Then
B(z;r) ={y € M|d(z,y) <r}

is called the open ball of radius r around x € M, and
D(x;r) ={y € M|d(z,y) <r}

is called the closed ball of radius r around x € M.

Example 1.9. Let M = R? with dy the euclidean metric. Then B(0;1) is

a round ball. With the metric d; it is shaped like a diamond and with d,
it is shaped like a square.

With the discrete metric B(x;1) = {z}, while D(z;1) is the whole space.

Definition 1.10. Let M be a metric space. A subset U C M is called open,
if for every x € U there is € > 0 such that B(xz;e) C U. A subset A C M is
called closed, if M — A is open.

Lemma 1.11. Let M be a metric space.
(1) B(z;r) is open for all x € M, r > 0.
(2) D(x;r) is closed for allx € M, r > 0.
(3) M and () are both open and closed.
(4) an arbitrary union of open sets is open.
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(5) a finite intersection of open sets is open.
(6) a finite union of closed sets is closed.
(7) an arbitrary intersection of closed sets is closed.

Example 1.12. Let M = R? with the euclidean metric. Then {0} is closed,
but not open. Also,

Pay 1
{0} = BO:)
i=1
so the arbitrary intersection of open sets need not be open.
D(051) is closed, but not open.
If (X,d) is discrete, then any A C X is open and closed.

Proposition 1.13. Let M, N be metric spaces and f: M — N a function.

(1) Let a € M. Then f is continuous at a if and only if for every open
subset V. C N with f(x) € V there is an open subset U C M with
ae M and f(U)CV.

(2) f is continuous if and only if f~1(U) is open in M for every open
UcCN.

2. TOPOLOGICAL SPACES

Definition 2.1. Let X be a set. A topology on X is a subset 7 C p(X) =
{A C X'} which satisfy the following:

(1) 0 and X are in 7.
(2) IfU; € 7 for all i € I, then J,c; U; € 7.
(3) IfU,U; € 7, then Uy NU; € 7.

The pair (X, 7) is called a topological space. The elements of 7 are called
then open subsets of X.

Example 2.2.

(1) Let (M,d) be a metric space, and 74 the collection of open sets in
the sense of Definition 1.10. Then (M, 74) is a topological space.

(2) Let X be any set, and 7 = p(X). This is called the discrete topology.

(3) Let X be any set, and 7 = {0, X}. This is called the indiscrete
topology.

(4) Let X ={0,1,2,3,...} and 7 = {0} U{U C X | X — U is finite}.

(5) Let (X, 7) be a topological space, A C X. Then

TA={ANU|U € 7}

is a topology, called the induced, or subspace topology. Note that
7 C R is discrete in the subspace topology, and Q C R is not discrete
in the subspace topology.

(6) On R™ we have metrics dy, da, ds. They all induce the same topology
on R™. This is called the standard topology on R".
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Definition 2.3. Let (X, 7) be a topological space. A subset A C X is called
closed, if its complement X — A is open.

Example 2.4. If X is discrete, every A C X is open and closed.

Lemma 2.5. Let X be a topological space. Then X and () are closed. Fur-
thermore, any intersection of closed sets is closed, and finite unions of closed
sets are closed.

Definition 2.6. A topological space X is called Hausdorff, if whenever
x,y € X with x # y, there exist open sets U,V C X withx € U, y € V and
unv =0.

Lemma 2.7. Let M be a metric space. Then M is a Hausdorff space.

Example 2.8. Let X be a set with more than one element, and give it the
indiscrete topology. Then X is not a Hausdorff space.

Definition 2.9. Let X, Y be topological spaces. A function f: X — Y is
called continuous, if for every open subset U C Y the inverse image f~1(U)
is open in X. Let £ € X. The function f is called continuous at x, if for
every open set U C Y with f(z) € U there is an open set V C X withz € V
such that f(V) C U. A continuous function is also called a map.

Lemma 2.10. Composition of continuous functions is a continuous func-
tion.

Example 2.11. Let X be a topological space and A C X. The inclusion
i: A — X is continuous, if A is given the subspace topology.

Lemma 2.12. Let f: X — Y be a function between topological spaces X
andY . Then f is continuous if and only if f~1(A) is closed for every A C'Y
closed.

Example 2.13. The n-sphere is defined as
Sn = {(xla”'uxn-i-l) € Rn+1 ‘x% + - +x727,+1 = 1}

and is a closed subset of R?t1,

Denote by M, »(R) the set of n x n-matrices, topologized as R™. Then
GL,,(R), the set of invertible n x n-matrices is an open subset of M, ,,(R).
Also, SL,(R) = {A € GL,(R) | det A = 1} is a closed subset of M, ,(R).

The orthogonal group is defined as
O(n) = {A € GL,(R) | AA" = T}
which is also a closed subset. The special orthogonal group is
SO(n) = O(n) N SL,(R)

and it is closed as an intersection of closed sets.
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Definition 2.14. Let X,Y be topological spaces. A map h: X — Y is
called a homeomorphism, if h is bijective and h~! is continuous. In that
case X and Y are called homeomorphic, and we write X ~ Y. Note that h
induces a bijection between 7x and 7y.

Example 2.15. The interval (0, 1) is homeomorphic to R. We will see later
that [0,1) is not homeomorphic to R.

R with the standard topology is not homeomorphic to R with the discrete
topology.

3. INTERIORS AND CLOSURES, LIMIT POINTS AND PRODUCT SPACES

Definition 3.1. Let X be a topological space and x € X, A C X.

(1) A neighborhood of = is a set N which contains an open set U C X
with x € U.

(2) A point z € X is called a limit point of A, if every neighborhood N
of x satisfies N — {x} N A # (.

Example 3.2.

(1) X =R, 0€ X, (—3,3) is a neighborhood of 0.
(2) If U C X is open, then U is a neighborhood for every z € U.
(3) Let A={L eR|ne€Z—{0}}. Then A has exactly one limit point

0, and 0 ¢ A.

Lemma 3.3. Let X be a Hausdorff space, A C X and x € X a point which
has a neighborhood N with N — {x} N A finite. Then x is not a limit point
of A.

Definition 3.4. Let X be a topological space, A C X. The interior of
A, denoted A°, is the largest open set contained in A. The closure of A,
denoted A, is the smallest closed set which contains A. More precisely,

A= J v 4= () ¢
UCA open C>oA closed
A subset A C X is called dense, if A = X.

Example 3.5. Let Q C R, then Q° = () and Q = R.
Lemma 3.6. Let A C X. Then A= AU limit points of A.

Lemma 3.7. Let M be a metric space, A C M and x a limit point of A.
Then there ezists a sequence x, € A such that limx,, = x. Furthermore, if
x € M — A and there is a sequence x, € A with limx, = x, then x is a limit
point of A.

Definition 3.8. Let X be a topological space. A basis B for the topology
of X is a collection of open sets such that every open set U is the union of
elements of B.
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Example 3.9.

(1) Let M be a metric space. The collection {B(z;r) |z € M,R > 0} is
a basis for the topology of M.

(2) Let X = R" with the standard topology. The collection
{B(q; L) |q € Q",m > 1 integer} is a countable basis of the topol-
ogy.

Theorem 3.10. Let f: X — Y be a function between topological spaces.
The following are equivalent.

(1) f is continuous.

(2) If B is a basis for the topology of Y, then f~(B) is open for every
BeB.

(3) f(A) C f(A) for every subset A C X.

(4) f~1(B) C f~Y(B) for every subset B C Y.

(5) f~Y(B) is closed for every closed set B CY.

Remark 3.11. A basis for a topology usually gives a collection of open sets
which are somewhat easy to handle. By 3.10(2) we see that continuity is
captured by a basis. Another situation is that one may have a set X and a
collection B of subsets that one would like to be open. Then one would like
a topology for which B is a basis.

Theorem 3.12. Let X be a set and B a collection of subsets of X such that

(1) For each x € X there is a B € B with © € B.
(2) If x € By N By, where By, By € B, then there is a By € B with
xr € B3 C B1N Bs.

Then there is a unique topology 73 on X of which B is a basis.

Definition 3.13. Let X, Y be topological spaces. The cartesian product of
X and Y is the set

XxY=A{(z,y)|lre X,y Y}

and it is given the product topology, obtained through Theorem 3.12 by using
Bxxy ={UxV|UCX,VCY}

Example 3.14.

(1) Let X =R, Y =R. Then X x Y = R? and the product topology
agrees with the standard topology.

(2) Let X = S' =Y. Then T? = S! x St is called the torus. We can
also form the n-torus by defining

T =8"x 1"
Proposition 3.15. Let X, Y be topological spaces, and X XY given the
product topology. The projections px: X XY — X andpy: X XY =Y are

both continuous and map open sets to open sets. Furthermore, the product
topology is the smallest topology so that both projections are continuous.
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Proposition 3.16. Let X,Y,Z be topological spaces. A function f: Z —
X XY is continuous if and only if bothpxof: Z — X andpyo f: Z =Y
are continuous.

Example 3.17. Let f: X — R" be a function. We then have n coordi-
nate functions fi,..., f,: X — R, and f is continuous if and only if these
coordinate functions are continuous.

Proposition 3.18. Let X, Y be non-empty topological spaces. Then X XY
is a Hausdorff space if and only if X and Y are Hausdorff spaces.

4. CONNECTEDNESS

Definition 4.1. A topological space is connected if whenever it is decom-
posed as a union X = AU B of two non-empty sets A and B, then ANB # 0
or AUB # .

Example 4.2.

1) R is connected.

2) Q is not connected.

3) The connected subsets of R are the intervals.

4) Let X = {0,1} with the discrete topology. Then X is not connected.

5) If the topology of X is given by 7 = {0,{1},{0,1}}, then X is
connected.

(
(
(
(
(

Theorem 4.3. Let X be a topological space. The following are equivalent.

(1) X is connected.

(2) The only subsets which are open and closed are X and the emptyset.

(3) X cannot be written as the union of two disjoint, non-empty open
sets.

(4) There is no continuous surjective function from X to a discrete space
with more than one point.

Theorem 4.4. The continuous image of a connected space is connected. In
particular, if h: X — Y is a homeomorphism with X connected, then Y is
connected.

Example 4.5.

(1) det: GL,(R) — R — {0} is onto. Hence GL,(R) is not connected.
(2) O(n) is not connected.
(3) X =(0,1) and Y = (0, 1] are not homeomorphic.

Proposition 4.6. Let X be a topological space and Z C X. If Z is connected
and Z = X, then X is connected.

Corollary 4.7. Let X be a topological space, Z C X connected and' Y C X
with Z CY C Z. Then Y 1is connected. In particular, the closure of a
connected set is connected.
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Proposition 4.8. Let A= {A;|i € I} be a collection of subsets of X such
that Uie[fAi = X. Assume that each A; is connected and for each i,j € 1
we have A; N Aj # 0. Then X is connected.

Theorem 4.9. If X and Y are connected, then X XY is connected.
Example 4.10.

1) R™ is connected.
) B™ is connected.
) D™ is connected.
) S™ is connected for n > 1.
(5) T™ is connected for n > 1.

(

(2
(3
(4

Definition 4.11. A component of a topological space X is a maximal con-
nected subset of X.

Proposition 4.12. Fach component of a topological space is a closed subset
and if Cy and Cy are different components, then C1 N Cy = 0. Also, a
topological space is the union of its components.

Example 4.13.

(1) If X is connected, there is only one component.
(2) If X is discrete, each point is a component.
(3) In Q every point is a component.

Definition 4.14. A path in a topological space X is a continuous function
v:[0,1] — X, we say v is a path from v(0) to v(1).

A topological space is called path connected, if for any two points x,y € X
there is a path from z to y.

Proposition 4.15. A path connected space is connected.

Example 4.16. Let
Z = {(z,sin=-) e R2[0 < z < 1}.
X

Then Z is connected, but not path connected.

5. COMPACTNESS

Definition 5.1. A topological space is compact, if every open cover of X
admits a finite subcover. An open cover of X is a collection of open sets

U; C X such that (J;c; U; = X.

Example 5.2.
(1) If X is a finite set, then X is compact.
(2) R is not compact.
(3) Let X be an infinite set with the topology 7 = {U C X |X —
U is finite.} U {0}. Then X is compact.
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(4) The closed interval [0, 1] is compact.

Proposition 5.3. The continuous image of a compact space is compact. In
particular, if X =Y and X is compact, then Y is compact.

Proposition 5.4. A closed subset of a compact space is compact.
Theorem 5.5. A compact subset of a Hausdorff space X is closed in X.

Corollary 5.6. A bijective continuous function from a compact space to a
Hausdorff space is a homeomorphism.

Example 5.7. Let X be an infinite set with the topology 7 = {U C X | X —
U is finite.} U {0}. Every subset of X is compact, not just the closed ones.
But X is not Hausdorff.

Theorem 5.8. Let X,Y be compact spaces. Then X XY is compact.

Theorem 5.9 (Heine-Borel). A subset of R™ is compact if and only if it is
closed and bounded.

Example 5.10.

(1) S™ is compact.
(2) The torus T" = S! x --- x S' is compact.
(3) X = {z € R®|2? + 2% + 23 = 1} is not compact.

Remark 5.11. In a metric space the equivalence between compact sets and
closed and bounded sets usually does not work.

Corollary 5.12. Let f: X — R be a map from a compact space to the reals.
Then f attains its mazimum and minimum.

Theorem 5.13 (Bolzano-Weierstrass). An infinite subset of a compact space
must have a limit point.

Theorem 5.14 (Lebesgue’s Lemma). Let X be a compact metric space and
let U be an open cover of X. Then there exists a 0 > 0 (called a Lebesgue
number of U ) such that any subset of X of diameter less than ¢ is contained
in some member of U.

If AC M with M a metric space, the diameter is defined by
diam(A) = sup{d(a,b)|a,b € A}.

6. QUOTIENT SPACES

Definition 6.1. Let X be a topological space, ¥ a set and p: X — Y a
function which is surjective. Define a topology on Y as follows: we say
U C Y is open if and only if p~!(U) is open in X. This topology on Y is
called the quotient topology on Y, and Y is called a quotient space of X,
with p: X — Y a quotient map.
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Example 6.2. Let X be a topological space, and ~ an equivalence relation.
For z € X, the equivalence class [z] = {y € X |z ~ y}, and let

X/ ~={la]|a € X

the set of equivalence classes.

Then we have a surjection p: X — X/ ~ with p(z) = [z] and we can give
X/ ~ the quotient topology.

If X =R, define x ~ y if and only if  —y € Z. We will see that R/ ~~ S!.
On X = D" define ~ by z ~ y if and only if = y, or both z,y € S* 1.
Then D"/ ~~ S™, as we shall see.

Remark 6.3. An equivalence relation on X is the same as a partition P of
X, which is a collection of disjoint subsets (the equivalence classes) which
cover the whole of X. Every surjective function between sets f: X — Y
produces a partition of X via f~!({y}), y € Y.

Proposition 6.4. Let p: X — Y be a quotient map, and Z a topological
space. A function f:Y — Z is continuous if and only if fop: X — Z is
continuous.

Definition 6.5. Let X, Y be topological spaces, and f: X — Y a map
which is onto. Then f is called an identification map, if U C Y is open if
and only if f~}(U) C X is open.

Remark 6.6. Let f: X — Y be an identification map. Then f is an onto
function and we can give Y the quotient topology. But this is the same
topology on Y that it had before. An identification map is pretty much the
same as a quotient map. The only difference is that in the case of a quotient
map Y was a set while in the case of an identification map Y already has a
topology.

If an identification map is injective, it is a homeomorphism.

Example 6.7. Let id: (R, 74sc) — (R, 7gq) be the identity between the
discrete and the standard topology. This is not an identification map: U C R
open in the standard topology is not equivalent to U open in the discrete
topology.

Proposition 6.8. Let f: X — Y be an onto map. If f maps closed sets to
closed sets (or open sets to open sets), then f is an identification map.

Corollary 6.9. Let f: X — Y be an onto map. If X is compact and Y
Hausdorff, then f is an identification map.

Example 6.10. Let X be a topological space, and A C X. Then define an
equivalence relation ~ by x ~ y if and only if x = y or both z,y € A. Then
A is one equivalence class, and all other equivalence classes consist of one
point. The resulting quotient space is denoted X/A.
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7. TorPOLOGICAL GROUPS

Definition 7.1. A topological group G is a Hausdorff space G which is also
a group, such that multiplication -: G x G — G and inversion ¢: G — G are
continuous.

Example 7.2.

(1) R™ with addition.

(2) C — {0} with multiplication. Then S! C C is a subgroup.

(3) The set of invertible n x n matrices GL,(R), with subgroups O(n)
and SO(n).

(4) Any subgroup H of a topological group G is a topological group.

(5) Let H = C x C, the set of quaternions, with topology from R*. We
can define a multiplication by

(21, 22) - (w1, w2) = (Zrw1 — Waz2, Woz] + 2211 ).

This turns H — {0} into a multiplicative group, and S forms a
subgroup.
(6) Any group G with the discrete topology is a topological group.

Remark 7.3. Let G be a topological group. For z € G define L,: G — G
by L;(g) = xg, called left translation by x. This is continuous, and has an
inverse, namely L,-1. In particular left translation is a homeomorphism.
Similarly, right translation R, is a homeomorphism.

Proposition 7.4. Let G be a topological group and K the connected compo-
nent of G which contains the identity element. Then K is a closed normal
subgroup of G.

Remark 7.5. We know that O(n) is not connected, but we will see that
SO(n) is connected. In particular, SO(n) is the K in the case of G = O(n).

Theorem 7.6. O(n) and SO(n) are compact.

Definition 7.7. An action of a topological group GG on a topological space
X is amap e: G Xx X — X such that

(1) (hg)ex=he(gex) for all h,g € G and z € X.
(2) lex =z forall x € X.

Note that for ¢ € G the map = — ¢ e x is a homeomorphism with inverse

coming from ¢g1.

Example 7.8.

(1) Trivial action : g-xz ==z for all g € G and = € X.

(2) G = GL,(R), X = R", the action given by matrix multiplication
Az = Azx. This induces O(n) and SO(n) acting on S™~ 1,

(3) Let G be a topological group and H a subgroup. Then H acts on G
via H x G — G given by h e g = hg.

(4) If N is a normal subgroup of G, then G acts on N by gen = gng~!.
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(5) S3 acts on R* by quaternion multiplication. This induces an injec-
tion T: S% — SO(4).

(6) S3 acts on R? by considering elements of R? as imaginary quaternions
at + bj + ck and using

z o (ai+bj+ ck) = x(ai + bj + ck)z.

This induces a group homomorphism C: $% — SO(3) which is onto
and has kernel given by {1, —1}.

Definition 7.9. If G acts on X, we can define an equivalence relation ~
on X by saying x ~ y if there is g € G with gr = y. An equivalence class
is called an orbit, and denoted by Gz. The corresponding quotient space is
called the orbit space, denoted by X/G. If X/G is just a point, the action
is called transitive.

Example 7.10.

(1) If G acts trivially, every orbit is a point and X/G = X.

(2) The action of O(n) on S™~! is transitive. The action of SO(n) on
S™—1 is transitive, provided that n > 2.

(3) R"/GL,,(R) consists of two points, the orbit of 0, and a non-zero
orbit. The topology on the quotient is neither discrete nor indiscrete.

Theorem 7.11. Let G be a connected topological group that acts on a topo-
logical space X such that X/G is connected. Then X is connected.

Corollary 7.12. SO(n) is connected for n > 1.



