DIRK SCHÜTZ

1. Metric Spaces and continuous functions

Definition 1.1. A metric space is a pair (M, d) where M is a set and $d: M \times M \to [0, \infty)$ is a function satisfying the following:

(1) d(x, y) = 0 if and only if x = y. (2) d(x, y) = d(y, x) for all all $x, y \in M$. (3) $d(x, y) \le d(x, z) + d(z, y)$ for all $x, y, z \in M$.

We call $d \neq metric$ on M then.

Example 1.2.

(1) \mathbb{R}^n with the metric

$$d_2(x,y) = \sqrt{(x_1 - y_1)^2 + \dots + (x_n - y_n)^2} = \left(\sum_{i=1}^n (x_i - y_i)^2\right)^{\frac{1}{2}}$$

or the metric

$$d_1(x,y) = \sum_{i=1}^{n} |x_i - y_i|$$

or the metric

$$d_{\infty}(x,y) = \max\{|x_i - y_i| \mid i = 1, \dots, n\}.$$

(2) Let $C([a,b]) = \{f : [a,b] \to \mathbb{R} \mid f \text{ is continuous}\}$. Then

$$d(f,g) = \sup\{|f(x) - g(x)| \mid x \in [a,b]\}$$

is a metric on C([a, b]).

(3) Let M be any set. Then

$$d(x,y) = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y \end{cases}$$

is a metric, called the *discrete metric on* X.

Definition 1.3. Let (M, d) be a metric space.

(1) A sequence in M is a function $a: \mathbb{N} = \{0, 1, 2, 3, ...\} \to M$. We write $(a_n)_{n \in \mathbb{N}}$ for the sequence, where $a_n = a(n)$.

Date: December 12, 2014.

(2) Let $a \in M$. Then the sequence $(a_n)_{n \in \mathbb{N}}$ converges to a, if for all $\varepsilon > 0$ there is $n_0 \in \mathbb{N}$ with $d(a, a_n) < \varepsilon$ for all $n \ge n_0$. We write $\lim_{n \to \infty} a_n = a$ or $a_n \to a$.

Definition 1.4. Let (M, d_M) and (N, d_N) be metric spaces, and $a \in M$. A function $f: M \to N$ is called *continuous* at $a \in M$, if for all $\varepsilon > 0$ there is $\delta > 0$ such that for all $x \in M$ with $d_M(x, a) < \delta$ we have $d_N(f(x), f(a)) < \varepsilon$. The function is called *continuous*, if it is continuous for every $a \in M$.

Example 1.5.

(1) Any continuous function $f : \mathbb{R} \to \mathbb{R}$ that you have seen in Calculus. (2) Define $F : C[0,1] \to C[0,1]$ by

$$F(f)(x) = \int_{0}^{x} f(t)dt$$

This is continuous with the metric from Example 1.2 (2).

Lemma 1.6. Let M, N be metric spaces, $f: M \to N$ a function and $a \in M$. Then f is continuous at a if and only if for every sequence $(a_n)_{n \in \mathbb{N}}$ in M with $a_n \to a$ we have $f(a_n) \to f(a)$.

Example 1.7. Let X be a set with the discrete metric, and let $f: X \to \mathbb{R}$ be a function. Then f is continuous. On the other hand, id: $(\mathbb{R}, d_2) \to (\mathbb{R}, d)$ with d the discrete metric on \mathbb{R} is not continuous.

Definition 1.8. Let (M, d) be a metric space, r > 0 and $x \in M$. Then

$$B(x;r) = \{ y \in M \, | \, d(x,y) < r \}$$

is called the open ball of radius r around $x \in M$, and

$$D(x;r) = \{y \in M \mid d(x,y) \le r\}$$

is called the closed ball of radius r around $x \in M$.

Example 1.9. Let $M = \mathbb{R}^2$ with d_2 the euclidean metric. Then B(0; 1) is a round ball. With the metric d_1 it is shaped like a diamond and with d_{∞} it is shaped like a square.

With the discrete metric $B(x; 1) = \{x\}$, while D(x; 1) is the whole space.

Definition 1.10. Let M be a metric space. A subset $U \subset M$ is called *open*, if for every $x \in U$ there is $\varepsilon > 0$ such that $B(x; \varepsilon) \subset U$. A subset $A \subset M$ is called *closed*, if M - A is open.

Lemma 1.11. Let M be a metric space.

- (1) B(x;r) is open for all $x \in M$, r > 0.
- (2) D(x;r) is closed for all $x \in M$, r > 0.
- (3) M and \emptyset are both open and closed.
- (4) an arbitrary union of open sets is open.

 $\mathbf{2}$

- (5) a finite intersection of open sets is open.
- (6) a finite union of closed sets is closed.
- (7) an arbitrary intersection of closed sets is closed.

Example 1.12. Let $M = \mathbb{R}^2$ with the euclidean metric. Then $\{0\}$ is closed, but not open. Also,

$$\{0\} = \bigcap_{i=1}^{\infty} B(0; \frac{1}{i})$$

so the arbitrary intersection of open sets need not be open.

D(0;1) is closed, but not open.

If (X, d) is discrete, then any $A \subset X$ is open and closed.

Proposition 1.13. Let M, N be metric spaces and $f: M \to N$ a function.

- (1) Let $a \in M$. Then f is continuous at a if and only if for every open subset $V \subset N$ with $f(x) \in V$ there is an open subset $U \subset M$ with $a \in M$ and $f(U) \subset V$.
- (2) f is continuous if and only if $f^{-1}(U)$ is open in M for every open $U \subset N$.

2. TOPOLOGICAL SPACES

Definition 2.1. Let X be a set. A *topology* on X is a subset $\tau \subset \wp(X) = \{A \subset X\}$ which satisfy the following:

- (1) \emptyset and X are in τ .
- (2) If $U_i \in \tau$ for all $i \in I$, then $\bigcup_{i \in I} U_i \in \tau$.
- (3) If $U_1, U_2 \in \tau$, then $U_1 \cap U_2 \in \tau$.

The pair (X, τ) is called a *topological space*. The elements of τ are called then *open subsets* of X.

Example 2.2.

- (1) Let (M, d) be a metric space, and τ_d the collection of open sets in the sense of Definition 1.10. Then (M, τ_d) is a topological space.
- (2) Let X be any set, and $\tau = \wp(X)$. This is called the *discrete* topology.
- (3) Let X be any set, and $\tau = \{\emptyset, X\}$. This is called the *indiscrete* topology.
- (4) Let $X = \{0, 1, 2, 3, ...\}$ and $\tau = \{\emptyset\} \cup \{U \subset X \mid X U \text{ is finite}\}.$
- (5) Let (X, τ) be a topological space, $A \subset X$. Then

$$\tau_A = \{ A \cap U \, | \, U \in \tau \}$$

is a topology, called the *induced*, or *subspace* topology. Note that $\mathbb{Z} \subset \mathbb{R}$ is discrete in the subspace topology, and $\mathbb{Q} \subset \mathbb{R}$ is not discrete in the subspace topology.

(6) On \mathbb{R}^n we have metrics d_1, d_2, d_∞ . They all induce the same topology on \mathbb{R}^n . This is called the *standard* topology on \mathbb{R}^n .

Definition 2.3. Let (X, τ) be a topological space. A subset $A \subset X$ is called *closed*, if its complement X - A is open.

Example 2.4. If X is discrete, every $A \subset X$ is open and closed.

Lemma 2.5. Let X be a topological space. Then X and \emptyset are closed. Furthermore, any intersection of closed sets is closed, and finite unions of closed sets are closed.

Definition 2.6. A topological space X is called *Hausdorff*, if whenever $x, y \in X$ with $x \neq y$, there exist open sets $U, V \subset X$ with $x \in U, y \in V$ and $U \cap V = \emptyset$.

Lemma 2.7. Let M be a metric space. Then M is a Hausdorff space.

Example 2.8. Let X be a set with more than one element, and give it the indiscrete topology. Then X is not a Hausdorff space.

Definition 2.9. Let X, Y be topological spaces. A function $f: X \to Y$ is called *continuous*, if for every open subset $U \subset Y$ the inverse image $f^{-1}(U)$ is open in X. Let $x \in X$. The function f is called *continuous at* x, if for every open set $U \subset Y$ with $f(x) \in U$ there is an open set $V \subset X$ with $x \in V$ such that $f(V) \subset U$. A continuous function is also called a *map*.

Lemma 2.10. Composition of continuous functions is a continuous function.

Example 2.11. Let X be a topological space and $A \subset X$. The inclusion $i: A \to X$ is continuous, if A is given the subspace topology.

Lemma 2.12. Let $f: X \to Y$ be a function between topological spaces X and Y. Then f is continuous if and only if $f^{-1}(A)$ is closed for every $A \subset Y$ closed.

Example 2.13. The *n*-sphere is defined as

$$S^{n} = \{(x_{1}, \dots, x_{n+1}) \in \mathbb{R}^{n+1} \mid x_{1}^{2} + \dots + x_{n+1}^{2} = 1\}$$

and is a closed subset of \mathbb{R}^{n+1} .

Denote by $M_{n,n}(\mathbb{R})$ the set of $n \times n$ -matrices, topologized as \mathbb{R}^{n^2} . Then $\operatorname{GL}_n(\mathbb{R})$, the set of invertible $n \times n$ -matrices is an open subset of $M_{n,n}(\mathbb{R})$. Also, $\operatorname{SL}_n(\mathbb{R}) = \{A \in \operatorname{GL}_n(\mathbb{R}) \mid \det A = 1\}$ is a closed subset of $M_{n,n}(\mathbb{R})$. The orthogonal group is defined as

$$O(n) = \{A \in \operatorname{GL}_n(\mathbb{R}) \mid AA^t = I\}$$

which is also a closed subset. The special orthogonal group is

$$\mathrm{SO}(n) = \mathrm{O}(n) \cap \mathrm{SL}_n(\mathbb{R})$$

and it is closed as an intersection of closed sets.

Definition 2.14. Let X, Y be topological spaces. A map $h: X \to Y$ is called a *homeomorphism*, if h is bijective and h^{-1} is continuous. In that case X and Y are called *homeomorphic*, and we write $X \approx Y$. Note that h induces a bijection between τ_X and τ_Y .

Example 2.15. The interval (0, 1) is homeomorphic to \mathbb{R} . We will see later that [0, 1) is not homeomorphic to \mathbb{R} .

 $\mathbb R$ with the standard topology is not homeomorphic to $\mathbb R$ with the discrete topology.

3. INTERIORS AND CLOSURES, LIMIT POINTS AND PRODUCT SPACES

Definition 3.1. Let X be a topological space and $x \in X$, $A \subset X$.

- (1) A neighborhood of x is a set N which contains an open set $U \subset X$ with $x \in U$.
- (2) A point $x \in X$ is called a *limit point of A*, if every neighborhood N of x satisfies $N \{x\} \cap A \neq \emptyset$.

Example 3.2.

- (1) $X = \mathbb{R}, 0 \in X, (-\frac{1}{2}, \frac{1}{2})$ is a neighborhood of 0.
- (2) If $U \subset X$ is open, then U is a neighborhood for every $x \in U$.
- (3) Let $A = \{\frac{1}{n} \in \mathbb{R} \mid n \in \mathbb{Z} \{0\}\}$. Then A has exactly one limit point 0, and $0 \notin A$.

Lemma 3.3. Let X be a Hausdorff space, $A \subset X$ and $x \in X$ a point which has a neighborhood N with $N - \{x\} \cap A$ finite. Then x is not a limit point of A.

Definition 3.4. Let X be a topological space, $A \subset X$. The *interior of* A, denoted A° , is the largest open set contained in A. The *closure of* A, denoted \overline{A} , is the smallest closed set which contains A. More precisely,

$$A^{\circ} = \bigcup_{U \subset A \text{ open}} U \qquad \bar{A} = \bigcap_{C \supset A \text{ closed}} C$$

A subset $A \subset X$ is called *dense*, if $\overline{A} = X$.

Example 3.5. Let $\mathbb{Q} \subset \mathbb{R}$, then $\mathbb{Q}^{\circ} = \emptyset$ and $\overline{\mathbb{Q}} = \mathbb{R}$.

Lemma 3.6. Let $A \subset X$. Then $\overline{A} = A \cup limit$ points of A.

Lemma 3.7. Let M be a metric space, $A \subset M$ and x a limit point of A. Then there exists a sequence $x_n \in A$ such that $\lim x_n = x$. Furthermore, if $x \in M - A$ and there is a sequence $x_n \in A$ with $\lim x_n = x$, then x is a limit point of A.

Definition 3.8. Let X be a topological space. A basis \mathcal{B} for the topology of X is a collection of open sets such that every open set U is the union of elements of \mathcal{B} .

Example 3.9.

- (1) Let M be a metric space. The collection $\{B(x;r) | x \in M, R > 0\}$ is a basis for the topology of M.
- (2) Let $X = \mathbb{R}^n$ with the standard topology. The collection $\{B(q; \frac{1}{m}) \mid q \in \mathbb{Q}^n, m \ge 1 \text{ integer}\}$ is a countable basis of the topology.

Theorem 3.10. Let $f: X \to Y$ be a function between topological spaces. The following are equivalent.

- (1) f is continuous.
- (2) If \mathcal{B} is a basis for the topology of Y, then $f^{-1}(B)$ is open for every $B \in \mathcal{B}$.
- (3) $f(\overline{A}) \subset \overline{f(A)}$ for every subset $A \subset X$.
- (4) $\overline{f^{-1}(B)} \subset f^{-1}(\overline{B})$ for every subset $B \subset Y$.
- (5) $f^{-1}(B)$ is closed for every closed set $B \subset Y$.

Remark 3.11. A basis for a topology usually gives a collection of open sets which are somewhat easy to handle. By 3.10(2) we see that continuity is captured by a basis. Another situation is that one may have a set X and a collection \mathcal{B} of subsets that one would like to be open. Then one would like a topology for which \mathcal{B} is a basis.

Theorem 3.12. Let X be a set and \mathcal{B} a collection of subsets of X such that

- (1) For each $x \in X$ there is a $B \in \mathcal{B}$ with $x \in B$.
- (2) If $x \in B_1 \cap B_2$, where $B_1, B_2 \in \mathcal{B}$, then there is a $B_3 \in \mathcal{B}$ with $x \in B_3 \subset B_1 \cap B_2$.

Then there is a unique topology $\tau_{\mathcal{B}}$ on X of which \mathcal{B} is a basis.

Definition 3.13. Let X, Y be topological spaces. The *cartesian product* of X and Y is the set

$$X \times Y = \{(x, y) \mid x \in X, y \in Y\}$$

and it is given the *product topology*, obtained through Theorem 3.12 by using

$$\mathcal{B}_{X \times Y} = \{ U \times V \, | \, U \subset X, V \subset Y \}$$

Example 3.14.

- (1) Let $X = \mathbb{R}$, $Y = \mathbb{R}$. Then $X \times Y = \mathbb{R}^2$, and the product topology agrees with the standard topology.
- (2) Let $X = S^1 = Y$. Then $T^2 = S^1 \times S^1$ is called the torus. We can also form the *n*-torus by defining

$$T^n = S^1 \times T^{n-1}.$$

Proposition 3.15. Let X, Y be topological spaces, and $X \times Y$ given the product topology. The projections $p_X : X \times Y \to X$ and $p_Y : X \times Y \to Y$ are both continuous and map open sets to open sets. Furthermore, the product topology is the smallest topology so that both projections are continuous.

Proposition 3.16. Let X, Y, Z be topological spaces. A function $f: Z \to X \times Y$ is continuous if and only if both $p_X \circ f: Z \to X$ and $p_Y \circ f: Z \to Y$ are continuous.

Example 3.17. Let $f: X \to \mathbb{R}^n$ be a function. We then have *n* coordinate functions $f_1, \ldots, f_n: X \to \mathbb{R}$, and *f* is continuous if and only if these coordinate functions are continuous.

Proposition 3.18. Let X, Y be non-empty topological spaces. Then $X \times Y$ is a Hausdorff space if and only if X and Y are Hausdorff spaces.

4. Connectedness

Definition 4.1. A topological space is connected if whenever it is decomposed as a union $X = A \cup B$ of two non-empty sets A and B, then $\overline{A} \cap B \neq \emptyset$ or $A \cup \overline{B} \neq \emptyset$.

Example 4.2.

- (1) \mathbb{R} is connected.
- (2) \mathbb{Q} is not connected.
- (3) The connected subsets of \mathbb{R} are the intervals.
- (4) Let $X = \{0, 1\}$ with the discrete topology. Then X is not connected.
- (5) If the topology of X is given by $\tau = \{\emptyset, \{1\}, \{0, 1\}\}\)$, then X is connected.

Theorem 4.3. Let X be a topological space. The following are equivalent.

- (1) X is connected.
- (2) The only subsets which are open and closed are X and the emptyset.
- (3) X cannot be written as the union of two disjoint, non-empty open sets.
- (4) There is no continuous surjective function from X to a discrete space with more than one point.

Theorem 4.4. The continuous image of a connected space is connected. In particular, if $h: X \to Y$ is a homeomorphism with X connected, then Y is connected.

Example 4.5.

- (1) det: $GL_n(\mathbb{R}) \to \mathbb{R} \{0\}$ is onto. Hence $GL_n(\mathbb{R})$ is not connected.
- (2) O(n) is not connected.
- (3) X = (0, 1) and Y = (0, 1] are not homeomorphic.

Proposition 4.6. Let X be a topological space and $Z \subset X$. If Z is connected and $\overline{Z} = X$, then X is connected.

Corollary 4.7. Let X be a topological space, $Z \subset X$ connected and $Y \subset X$ with $Z \subset Y \subset \overline{Z}$. Then Y is connected. In particular, the closure of a connected set is connected.

Proposition 4.8. Let $\mathcal{A} = \{A_i \mid i \in I\}$ be a collection of subsets of X such that $\bigcup_{i \in I} A_i = X$. Assume that each A_i is connected and for each $i, j \in I$ we have $\overline{A}_i \cap \overline{A}_j \neq \emptyset$. Then X is connected.

Theorem 4.9. If X and Y are connected, then $X \times Y$ is connected.

Example 4.10.

- (1) \mathbb{R}^n is connected.
- (2) B^n is connected.
- (3) D^n is connected.
- (4) S^n is connected for $n \ge 1$.
- (5) T^n is connected for $n \ge 1$.

Definition 4.11. A *component* of a topological space X is a maximal connected subset of X.

Proposition 4.12. Each component of a topological space is a closed subset and if C_1 and C_2 are different components, then $C_1 \cap C_2 = \emptyset$. Also, a topological space is the union of its components.

Example 4.13.

- (1) If X is connected, there is only one component.
- (2) If X is discrete, each point is a component.
- (3) In \mathbb{Q} every point is a component.

Definition 4.14. A *path* in a topological space X is a continuous function $\gamma: [0,1] \to X$, we say γ is a path from $\gamma(0)$ to $\gamma(1)$.

A topological space is called *path connected*, if for any two points $x, y \in X$ there is a path from x to y.

Proposition 4.15. A path connected space is connected.

Example 4.16. Let

$$Z = \{ (x, \sin \frac{\pi}{x}) \in \mathbb{R}^2 \, | \, 0 < x \le 1 \}.$$

Then \overline{Z} is connected, but not path connected.

5. Compactness

Definition 5.1. A topological space is *compact*, if every open cover of X admits a finite subcover. An open cover of X is a collection of open sets $U_i \subset X$ such that $\bigcup_{i \in I} U_i = X$.

Example 5.2.

- (1) If X is a finite set, then X is compact.
- (2) \mathbb{R} is not compact.
- (3) Let X be an infinite set with the topology $\tau = \{U \subset X | X U \text{ is finite.}\} \cup \{\emptyset\}$. Then X is compact.

(4) The closed interval [0,1] is compact.

Proposition 5.3. The continuous image of a compact space is compact. In particular, if $X \approx Y$ and X is compact, then Y is compact.

Proposition 5.4. A closed subset of a compact space is compact.

Theorem 5.5. A compact subset of a Hausdorff space X is closed in X.

Corollary 5.6. A bijective continuous function from a compact space to a Hausdorff space is a homeomorphism.

Example 5.7. Let X be an infinite set with the topology $\tau = \{U \subset X | X - U \text{ is finite.}\} \cup \{\emptyset\}$. Every subset of X is compact, not just the closed ones. But X is not Hausdorff.

Theorem 5.8. Let X, Y be compact spaces. Then $X \times Y$ is compact.

Theorem 5.9 (Heine-Borel). A subset of \mathbb{R}^n is compact if and only if it is closed and bounded.

Example 5.10.

- (1) S^n is compact.
- (2) The torus $T^n = S^1 \times \cdots \times S^1$ is compact.
- (3) $X = \{x \in \mathbb{R}^3 \mid x_1^2 + x_2^2 + x_3^3 = 1\}$ is not compact.

Remark 5.11. In a metric space the equivalence between compact sets and closed and bounded sets usually does not work.

Corollary 5.12. Let $f: X \to \mathbb{R}$ be a map from a compact space to the reals. Then f attains its maximum and minimum.

Theorem 5.13 (Bolzano-Weierstrass). An infinite subset of a compact space must have a limit point.

Theorem 5.14 (Lebesgue's Lemma). Let X be a compact metric space and let \mathcal{U} be an open cover of X. Then there exists a $\delta > 0$ (called a Lebesgue number of \mathcal{U}) such that any subset of X of diameter less than δ is contained in some member of \mathcal{U} .

If $A \subset M$ with M a metric space, the diameter is defined by

 $\operatorname{diam}(A) = \sup\{d(a, b) \mid a, b \in A\}.$

6. QUOTIENT SPACES

Definition 6.1. Let X be a topological space, Y a set and $p: X \to Y$ a function which is surjective. Define a topology on Y as follows: we say $U \subset Y$ is open if and only if $p^{-1}(U)$ is open in X. This topology on Y is called the *quotient topology* on Y, and Y is called a *quotient space* of X, with $p: X \to Y$ a *quotient map*.

Example 6.2. Let X be a topological space, and \sim an equivalence relation. For $x \in X$, the equivalence class $[x] = \{y \in X \mid x \sim y\}$, and let

$$X/ \sim = \{ [x] \mid x \in X \}$$

the set of equivalence classes.

Then we have a surjection $p: X \to X/ \sim$ with p(x) = [x] and we can give X/ \sim the quotient topology.

If $X = \mathbb{R}$, define $x \sim y$ if and only if $x - y \in \mathbb{Z}$. We will see that $\mathbb{R}/\sim \approx S^1$. On $X = D^n$ define \sim by $x \sim y$ if and only if x = y, or both $x, y \in S^{n-1}$. Then $D^n/\sim \approx S^n$, as we shall see.

Remark 6.3. An equivalence relation on X is the same as a partition \mathcal{P} of X, which is a collection of disjoint subsets (the equivalence classes) which cover the whole of X. Every surjective function between sets $f: X \to Y$ produces a partition of X via $f^{-1}(\{y\}), y \in Y$.

Proposition 6.4. Let $p: X \to Y$ be a quotient map, and Z a topological space. A function $f: Y \to Z$ is continuous if and only if $f \circ p: X \to Z$ is continuous.

Definition 6.5. Let X, Y be topological spaces, and $f: X \to Y$ a map which is onto. Then f is called an *identification map*, if $U \subset Y$ is open if and only if $f^{-1}(U) \subset X$ is open.

Remark 6.6. Let $f: X \to Y$ be an identification map. Then f is an onto function and we can give Y the quotient topology. But this is the same topology on Y that it had before. An identification map is pretty much the same as a quotient map. The only difference is that in the case of a quotient map Y was a set while in the case of an identification map Y already has a topology.

If an identification map is injective, it is a homeomorphism.

Example 6.7. Let id: $(\mathbb{R}, \tau_{disc}) \to (\mathbb{R}, \tau_{std})$ be the identity between the discrete and the standard topology. This is *not* an identification map: $U \subset \mathbb{R}$ open in the standard topology is not equivalent to U open in the discrete topology.

Proposition 6.8. Let $f: X \to Y$ be an onto map. If f maps closed sets to closed sets (or open sets to open sets), then f is an identification map.

Corollary 6.9. Let $f: X \to Y$ be an onto map. If X is compact and Y Hausdorff, then f is an identification map.

Example 6.10. Let X be a topological space, and $A \subset X$. Then define an equivalence relation \sim by $x \sim y$ if and only if x = y or both $x, y \in A$. Then A is one equivalence class, and all other equivalence classes consist of one point. The resulting quotient space is denoted X/A.

7. TOPOLOGICAL GROUPS

Definition 7.1. A topological group G is a Hausdorff space G which is also a group, such that multiplication $: G \times G \to G$ and inversion $i: G \to G$ are continuous.

Example 7.2.

- (1) \mathbb{R}^n with addition.
- (2) $\mathbb{C} \{0\}$ with multiplication. Then $S^1 \subset \mathbb{C}$ is a subgroup.
- (3) The set of invertible $n \times n$ matrices $\operatorname{GL}_n(\mathbb{R})$, with subgroups O(n) and $\operatorname{SO}(n)$.
- (4) Any subgroup H of a topological group G is a topological group.
- (5) Let $\mathbb{H} = \mathbb{C} \times \mathbb{C}$, the set of quaternions, with topology from \mathbb{R}^4 . We can define a multiplication by

 $(z_1, z_2) \cdot (w_1, w_2) = (z_1 w_1 - \bar{w}_2 z_2, w_2 z_1 + z_2 \bar{w}_1).$

This turns $\mathbb{H} - \{0\}$ into a multiplicative group, and S^3 forms a subgroup.

(6) Any group G with the discrete topology is a topological group.

Remark 7.3. Let G be a topological group. For $x \in G$ define $L_x: G \to G$ by $L_x(g) = xg$, called *left translation* by x. This is continuous, and has an inverse, namely $L_{x^{-1}}$. In particular left translation is a homeomorphism. Similarly, right translation R_x is a homeomorphism.

Proposition 7.4. Let G be a topological group and K the connected component of G which contains the identity element. Then K is a closed normal subgroup of G.

Remark 7.5. We know that O(n) is not connected, but we will see that SO(n) is connected. In particular, SO(n) is the K in the case of G = O(n).

Theorem 7.6. O(n) and SO(n) are compact.

Definition 7.7. An *action* of a topological group G on a topological space X is a map $\bullet: G \times X \to X$ such that

- (1) $(hg) \bullet x = h \bullet (g \bullet x)$ for all $h, g \in G$ and $x \in X$.
- (2) $1 \bullet x = x$ for all $x \in X$.

Note that for $g \in G$ the map $x \mapsto g \bullet x$ is a homeomorphism with inverse coming from g^{-1} .

Example 7.8.

- (1) Trivial action : $g \cdot x = x$ for all $g \in G$ and $x \in X$.
- (2) $G = \operatorname{GL}_n(\mathbb{R}), X = \mathbb{R}^n$, the action given by matrix multiplication $A \cdot x = Ax$. This induces O(n) and SO(n) acting on S^{n-1} .
- (3) Let G be a topological group and H a subgroup. Then H acts on G via $H \times G \to G$ given by $h \bullet g = hg$.
- (4) If N is a normal subgroup of G, then G acts on N by $g \bullet n = gng^{-1}$.

- (5) S^3 acts on \mathbb{R}^4 by quaternion multiplication. This induces an injection $T: S^3 \to SO(4)$.
- (6) S^3 acts on \mathbb{R}^3 by considering elements of \mathbb{R}^3 as imaginary quaternions ai + bj + ck and using

 $x \bullet (ai + bj + ck) = x(ai + bj + ck)\bar{x}.$

This induces a group homomorphism $C: S^3 \to SO(3)$ which is onto and has kernel given by $\{1, -1\}$.

Definition 7.9. If G acts on X, we can define an equivalence relation \sim on X by saying $x \sim y$ if there is $g \in G$ with gx = y. An equivalence class is called an *orbit*, and denoted by Gx. The corresponding quotient space is called the *orbit space*, denoted by X/G. If X/G is just a point, the action is called *transitive*.

Example 7.10.

- (1) If G acts trivially, every orbit is a point and X/G = X.
- (2) The action of O(n) on S^{n-1} is transitive. The action of SO(n) on S^{n-1} is transitive, provided that $n \ge 2$.
- (3) $\mathbb{R}^n/\mathrm{GL}_n(\mathbb{R})$ consists of two points, the orbit of 0, and a non-zero orbit. The topology on the quotient is neither discrete nor indiscrete.

Theorem 7.11. Let G be a connected topological group that acts on a topological space X such that X/G is connected. Then X is connected.

Corollary 7.12. SO(n) is connected for $n \ge 1$.