Topology (Math 3281)

Problem Class 2

10.11.14

This set of problems will be discussed in the Problem Class on 10.11.14, along with old homework problems.

1. Verify

- (a) $\overline{A \cup B} = \overline{A} \cup \overline{B}$.
- (b) $\overline{A \cap B} \subset \overline{A} \cap \overline{B}$.
- (c) $\overline{\overline{A}} = \overline{A}$.
- (d) Find two subsets $A, B \subset \mathbb{R}$ such that strict inclusion holds in (b).
- 2. Verify
 - (a) $A^{\circ} \cup B^{\circ} \subset (A \cup B)^{\circ}$.
 - (b) $A^{\circ} \cap B^{\circ} = (A \cap B)^{\circ}$.
 - (c) $(A^{\circ})^{\circ} = A^{\circ}$.
 - (d) Find two subsets $A, B \subset \mathbb{R}$ such that strict inclusion holds in (a).
- 3. If $X \times Y$ has the product topology, and $A \subset X$, $B \subset Y$, show that

 $\overline{A \times B} = \overline{A} \times \overline{B}.$

- 4. Let (M, d) and (M', d') be metric spaces.
 - (a) Show that

$$d_P((x, x'), (y, y')) = d(x, y) + d'(x', y')$$

for $(x, x'), (y, y') \in M \times M'$ defines a metric on $M \times M'$.

(b) Show that the topology induced by d_P is the same as the product topology coming from d and d'.