Topology (Math 3281)

Problem Class 2

This set of problems will be discussed in the Problem Class on 10.11.14, along with old homework problems.

1. Verify
(a) $\overline{A \cup B}=\bar{A} \cup \bar{B}$.
(b) $\overline{A \cap B} \subset \bar{A} \cap \bar{B}$.
(c) $\overline{\bar{A}}=\bar{A}$.
(d) Find two subsets $A, B \subset \mathbb{R}$ such that strict inclusion holds in (b).
2. Verify
(a) $A^{\circ} \cup B^{\circ} \subset(A \cup B)^{\circ}$.
(b) $A^{\circ} \cap B^{\circ}=(A \cap B)^{\circ}$.
(c) $\left(A^{\circ}\right)^{\circ}=A^{\circ}$.
(d) Find two subsets $A, B \subset \mathbb{R}$ such that strict inclusion holds in (a).
3. If $X \times Y$ has the product topology, and $A \subset X, B \subset Y$, show that

$$
\overline{A \times B}=\bar{A} \times \bar{B}
$$

4. Let (M, d) and $\left(M^{\prime}, d^{\prime}\right)$ be metric spaces.
(a) Show that

$$
d_{P}\left(\left(x, x^{\prime}\right),\left(y, y^{\prime}\right)\right)=d(x, y)+d^{\prime}\left(x^{\prime}, y^{\prime}\right)
$$

for $\left(x, x^{\prime}\right),\left(y, y^{\prime}\right) \in M \times M^{\prime}$ defines a metric on $M \times M^{\prime}$.
(b) Show that the topology induced by d_{P} is the same as the product topology coming from d and d^{\prime}.

