Topology (Math 3281)

Solutions to Problem Class 2

1. (a) $\bar{A} \cup \bar{B}$ is a closed set containing $A \cup B$, so $\overline{A \cup B} \subset \bar{A} \cup \bar{B}$ as $\overline{A \cup B}$ is the smallest such set.
Also $\overline{A \cup B}$ is a closed set containing A, so $\bar{A} \subset \overline{A \cup B}$. The same argument gives $\bar{B} \subset \overline{A \cup B}$. Therefore $\bar{A} \cup \bar{B} \subset \overline{A \cup B}$.
Therefore $\bar{A} \cup \bar{B}=\overline{A \cup B}$.
(b) $\bar{A} \cap \bar{B}$ is a closed set containing $A \cap B$, so $\overline{A \cap B} \subset \bar{A} \cap \bar{B}$.
(c) \bar{A} is closed, so it contains all of its limit points, so $\overline{\bar{A}}=\bar{A}$.
(d) Choose $A=(0,1)$ and $B=(1,2)$, then $A \cap B=\emptyset=\overline{A \cap B}$, but $\bar{A}=[0,1]$ and $\bar{B}=[1,2]$, so $\bar{A} \cap \bar{B}=\{1\}$ strictly bigger than \emptyset.
2. (a) A° is an open set contained in $A \cup B$, so $A^{\circ} \subset(A \cup B)^{\circ}$. For the same reason $B^{\circ} \subset(A \cup B)^{\circ}$, so $A^{\circ} \cup B^{\circ} \subset(A \cup B)^{\circ}$.
(b) $(A \cap B)^{\circ}$ is an open subset contained in both A and B, so $(A \cap B)^{\circ} A^{\circ} \cap B^{\circ}$. Also, $A^{\circ} \cap B^{\circ}$ is an open set contained in $A \cap B$, so $A^{\circ} \cap B^{\circ} \subset(A \cap B)^{\circ}$.
(c) Since A° is open, it appears in the defining union of $\left(A^{\circ}\right)^{\circ}$ and so $A^{\circ} \subset$ $\left(A^{\circ}\right)^{\circ}$. The other inclusion follows by definition.
(d) Take $A=(0,1], B=(1,2)$. Then $A^{\circ}=(0,1)$ and $B^{\circ}=(1,2)$, so $1 \notin A^{\circ} \cup B^{\circ}$, while $A \cup B=(0,2)=(A \cup B)^{\circ}$ containes 1 .
3. Note that the complement of $\bar{A} \times \bar{B}$ can be written as $X-\bar{A} \times Y \cup X \times Y-\bar{B}$, so it is a closed set. As it contains $A \times B$, this gives $\overline{A \times B} \subset \bar{A} \times \bar{B}$. Now let a be a limit point of A, and $b \in \bar{B}$. Any neighborhood of (a, b) contains a neighborhood of the form $U \times V$ with U a neighborhood of a and V a neighborhood of b. Then U contains points of A different from a, and V contains points of B. Hence $U \times V$ contains points of $A \times B$ different from (a, b), and (a, b) is a limit point of $A \times B$. Similarly, any $(a, b) \in \bar{A} \times \bar{B}$ with b a limit point of B is a limit point of $A \times B$. Therefore $\bar{A} \times \bar{B} \subset \overline{A \times B}$.
4. (a) Let $d_{P}\left(\left(x, x^{\prime}\right),\left(y, y^{\prime}\right)\right)=0$. Since d and d^{\prime} are metrics, we get that $x=y$ and $x^{\prime}=y^{\prime}$, and also $d_{P}\left(\left(x, x^{\prime}\right),\left(x, x^{\prime}\right)\right)=0$. Symmetry is also clear from the fact that d and d^{\prime} are symmetric. The triangle inequality is also just using the triangle inequalities for both d and d^{\prime}.
(b) We need to show that the open sets are the same. Since every open set U in the product topology is a union of sets of the form $B(x, r) \times B\left(x^{\prime}, r^{\prime}\right)$, where $\left(x, x^{\prime}\right) \in U$ and $r, r^{\prime}>0$ depend on $\left(x, x^{\prime}\right)$, and every open set V in the
metric topology coming from d_{P} is a union of sets of the form $B\left(\left(x, x^{\prime}\right), R\right)$, where $\left(x, x^{\prime}\right) \in V$ and $R>0$ appropriately, we need to find $R>0$ with

$$
\begin{equation*}
B\left(\left(x, x^{\prime}\right), R\right) \subset B(x, r) \times B\left(x^{\prime}, r^{\prime}\right) \tag{1}
\end{equation*}
$$

for given $r, r^{\prime}>0$, and we need to find $r, r^{\prime}>0$ with

$$
\begin{equation*}
B(x, r) \times B\left(x^{\prime}, r^{\prime}\right) \subset B\left(\left(x, x^{\prime}\right), R\right) \tag{2}
\end{equation*}
$$

for given $R>0$.
So let $r, r^{\prime}>0$ be given. Then let $R=\min \left\{r, r^{\prime}\right\}>0$. If $d_{P}\left(\left(x, x^{\prime}\right),\left(y, y^{\prime}\right)<\right.$ R, then both $d(x, y)<r$ and $d^{\prime}\left(x^{\prime}, y^{\prime}\right)<r^{\prime}$, so $\left(y, y^{\prime}\right) \in B(x, r) \times B\left(x^{\prime}, r^{\prime}\right)$. This shows (1).
Given $R>0$, let $r=r^{\prime}=R / 2$. Then if $d(x, y)<r$ and $d^{\prime}\left(x^{\prime}, y^{\prime}\right)<r^{\prime}=r$, then there sum is less than R, so $\left(y, y^{\prime}\right) \in B\left(\left(x, x^{\prime}\right), R\right)$, and (2) follows.

