Topology (Math 3281)

Problem Class 3

This set of problems will be discussed in the Problem Class on 24.11.14, along with old homework problems.

1. Let $n \geq 2, i, j \leq n$ with $i \neq j, \lambda, \mu \in \mathbb{R}$ and $A_{i j}(\lambda)$ the $n \times n$ matrix which differs from the identity matrix only in the (i, j)-th entry, where the entry of $A_{i j}(\lambda)$ is λ. Also, for $\mu \neq 0$ let $M_{i}(\mu)$ be the $n \times n$ matrix which differs from the identity matrix only in the (i, i)-th entry, where the entry of $M_{i}(\mu)$ is μ.
(a) Show that there is a path in $G L_{n}(\mathbb{R})$ from $A_{i j}(\lambda)$ to the identity $\operatorname{matrix} I_{n}$.
(b) For $\mu>0$, show that there is a path in $G L_{n}(\mathbb{R})$ from $M_{i}(\mu)$ to the identity matrix I_{n}.
(c) Let $G L_{n}^{+}(\mathbb{R})=\left\{A \in G L_{n}(\mathbb{R}) \mid \operatorname{det} A>0\right\}$. Show that $G L_{n}^{+}(\mathbb{R})$ is path connected.
(d) Show that $G L_{n}(\mathbb{C})$ is path connected.
2. Let X be a topological space and $\left(A_{i}\right)_{i \in I}$ a collection of subsets such that each A_{i} is path connected, and for $i, j \in I$ the set $A_{i} \cap A_{j}$ is path connected.
(a) Show that $\bigcup_{i \in I} A_{i}$ is path connected.
(b) Show that there is a concept of path components in X such that a path component is a maximal path connected subset of X, and such that each point in X is contained in a unique path component. Do path components have to be closed?
