Topology (Math 3281)

Problem	Class	4
---------	-------	----------

08.12.14

This set of problems will be discussed in the Problem Class on 08.12.14, along with old homework problems.

- 1. Find an action of \mathbb{Z}_2 on the torus $S^1 \times S^1$ such that the orbit space is homeomorphic to $S^1 \times [0, 1]$.
- 2. Let the topological group G act on the topological space X. Denote the quotient map by $\pi: X \to X/G$.
 - (a) Let $U \subset X$ be open. Show that $\pi^{-1}(\pi(U))$ is the union of the sets $gU = \{g \cdot u \in X \mid u \in U\}$, where $g \in G$. Deduce that π maps open sets to open sets.
 - (b) Give an example to show that π does not have to send closed sets to closed sets.
- 3. Let $U(n) = \{A \in GL_n(\mathbb{C}) \mid AA^* = I\}$, where $A^* = (a_{ij}^*)$ is the matrix whose entries satisfy $a_{ij}^* = \bar{a}_{ji}$, where $A = (a_{ij})$, and \bar{a} is the complex conjugate of $a \in \mathbb{C}$. Show that U(n) is a compact topological group.