
1. Quaternions

Definition 1.1. The skew-field of Quaternions is defined as H = C × C,
where addition is the addition of the vectorspace C×C, and multiplication
is defined as

(z1, z2) · (w1, w2) = (z1w1 − w̄2z2, w2z1 + z2w̄1).(1)

Remark 1.2. One can think of (z1, z2) ≡ z1 + z2j, where j is a symbol as
i ∈ C. Notice that j2 = −1 and ij = −ji. In particular, this multiplication
is not commutative.

Writing k = ij, one can think of H = R4, and elements can be written as
a+ bi+ cj + dk with a, b, c, d ∈ R.

We stated that the quaternions are a skew-field, which is a ring such that
every non-zero element has a multiplicative inverse. This actually requires
some work, however we only have to show ring axioms involving the multi-
plication, as additively H is a C-vectorspace.

Lemma 1.3. Let a ∈ R, z ∈ C, x, x1, x2, x3 ∈ H. Then the following hold.

(1) a · x = x · a.
(2) z · j = j · z̄.
(3) x1 · (x2 · x3) = (x1 · x2) · x3.
(4) x1 · (x2 + x3) = x1 · x2 + x1 · x3.
(5) (x1 + x2) · x3 = x1 · x3 + x2 · x3.

Proof. Write a = (a, 0) and x = (z1, z2). Then

(a, 0) · (z1, z2) = (az1, z2a)

= (z1a, az2) = (z1, z2) · (a, 0).

For (2), note that

(z, 0) · (0, 1) = (0, z)

(0, 1) · (z, 0) = (0, z̄).

We now write xm = zm + wmj for m = 1, 2, 3 with zm, wm ∈ C. Then

(z1 + w1j)(z2 + w2j) = z1z2 − w1w̄2 + (z1w2 + w1z̄2)j,

but notice that this used that complex multiplication is commutative. In
particular, quaternion multiplication agrees with the naive multiplication
obtained by distributing complex numbers with rule (2). Checking (3), (4)
and (5) is then just a matter of putting the obvious symbols together. We
omit the details. �

To get inverses, we define a conjugation for H.

Definition 1.4. The conjugate of a quaternion (z1, z2) is defined as

(z1, z2) = (z̄1,−z2).
1
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The norm of a quaternion (z1, z2) is defined as

|(z1, z2)| =
√
|z1|2 + |z2|2.

Remark 1.5. If we write a quaternion as a+ bi+ cj + dk, the conjugate is
a− bi− cj−dk, and the norm is

√
a2 + b2 + c2 + d2. In particular the norm

is the euclidean distance from the origin in R4.

Lemma 1.6. For x ∈ H we have

x · x̄ = |x|2 = x̄ · x.

Proof. Let x = (z1, z2), then

x · x̄ = (z1, z2) · (z̄1,−z2)
= (z1z̄1 + z̄2z2,−z2z1 + z2z1)

= (|z1|2 + |z2|2, 0)

= |x|2.
To see that |x|2 = x̄ · x, note that ¯̄x = x and |x| = |x̄|. �

Proposition 1.7. The set H−{0} with multiplication is a topological group,
the inverse of x 6= 0 is given as

x−1 =
1

|x|2
x̄.

Proof. Multiplication and the formula for the inverse are clearly continuous.
Associativity is satisfied by Lemma 1.3. To see that the formula really gives
the inverse, note that

x · 1

|x|2
x̄ =

1

|x|2
x · x̄

=
|x|2

|x|2
= 1

=
1

|x|2
x̄ · x

where we used Lemma 1.3 and Proposition 1.7. �

Lemma 1.8. If x, y ∈ H, then

|x · y| = |x| · |y|.

Proof. Let x = (z1, z2) and y = (w1, w2). Then

|x · y| =
√

(z1w1 − w̄2z2)(w̄1z̄1 − z̄2w2) + (w2z1 + z2w̄1)(z̄1w̄2 + w1z̄2)

=
√
z1w1w̄1z̄1 + w̄2z2z̄2w2 + w2z1z̄1w̄2 + z2w̄1w1z̄2

=
√
|z1|2|w1|2 + |z2|2|w2|2 + |z1|2|w2|2 + |z2|2|w1|2

=
√

(|z1|2 + |z2|2)(|w1|2 + |w2|2)
= |x| · |y|
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as was to be shown. �

Corollary 1.9. The set S3 with quaternion multiplication is a subgroup of
H− {0}, furthermore, the inverse of x ∈ S3 is x̄.

Proof. By Lemma 1.8, we get x × y ∈ S3 for x, y ∈ S3, so the set is closed
under multiplication. Clearly, 1 ∈ S3 and since x · x̄ = |x|2 = 1 for x ∈ S3,
the inverse of x ∈ S3 is just given as x̄. �

Lemma 1.10. Let x, y ∈ H, then

x · y = ȳ · x̄.

Proof. Let x = (z1, z2) and y = (w1, w2). Then

x · y = (z1w1 − w̄2z2,−w2z1 − z2w̄1)

= (w̄1z̄1 − z̄2w2,−w2z1 − z2w̄1)

and

ȳ · x̄ = (w̄1z̄1 − z̄2w2,−z2w̄1 − w2z1).

Since addition of complex numbers is commutative, the result follows. �

Remark 1.11. In the proof of Lemma 1.8 we used that

0 = −z1w1z̄2w2 − w̄2z2w̄1z̄1 + w2z1w1z̄2 + z2w̄1z̄1w̄2

which is obvious, as all variables are complex numbers so we can use com-
mutativity. If we would think of these variables as quaternions, we could
not use commutativity, however, we could write

a = z1w1z̄2w2

b = w2aw
−1
2

and then

−z1w1z̄2w2 − w̄2z2w̄1z̄1 + w2z1w1z̄2 + z2w̄1z̄1w̄2 = −a− ā+ b+ b̄.

Then

−(a+ ā) + b+ b̄ = −(a+ ā) + w2(a+ ā)w−12

= −(a+ ā) + w2w
−1
2 (a+ ā)

= 0,

since a + ā ∈ R for every a ∈ H, so it commutes with w2 ∈ H. So commu-
tativity is not needed in the proof of Lemma 1.8.

The point is that one can define Octonions as pairs of quaternions, and
a multiplication of octonions is defined by the formula (1). Most of the
results for quaternion multiplication carry over, for example the analogue
of Lemma 1.8 by the argument above. However, the multiplication is not
associative. In particular, S7 is invariant under this multiplication, but it is
not a topological group.
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Lemma 1.12. Let 〈 · , · 〉 denote the standard inner product of R4. Then
for x, y ∈ H we have

〈x, y〉 =
1

2
(x · ȳ + y · x̄).

Proof. By Lemma 1.6 we have

〈x+ y, x+ y〉 = (x+ y)(x+ y) = xx̄+ xȳ + yx̄+ yȳ.

Using bilinearity of the inner product, we also get

〈x+ y, x+ y〉 = 〈x, x〉+ 2〈x, y〉+ 〈y, y〉.

With Lemma 1.6 again, we get the result. �

Example 1.13. The topological group S3 acts on H as follows: Let x ∈ S3

and y ∈ H, then define

x • y = x · y · x̄,

which is easily seen to be a group action. Note that the action is given by
conjugation of y by x ∈ S3. For x ∈ S3 we will now write Cx : H → H
given by Cx(y) = x · y · x̄. It is clear that Cx is a linear map, and in fact the
assignment

C : S3 → GL4(R)

given by C(x) = Cx is a group homomorphism. We claim that the image is
in fact contained in SO(4). To see this, we need to make sure that each Cx
preserves the inner product. Let a, b ∈ H and x ∈ S3. Then

〈Cx(a), Cx(b)〉 = 〈xax̄, xbx̄〉

=
1

2
(xax̄xb̄x̄+ xbx̄xāx̄)

=
1

2
(x(ab̄+ bā)x̄)

= x〈a, b〉x̄
= 〈a, b〉,

because elements of R (such as 〈a, b〉) commute with x ∈ H. This proves that
each Cx ∈ O(4). But clearly C1 is the identity, and since S3 is connected,
we have a homomorphism

C : S3 → SO(4).

Notice however that if a ∈ R, then Cx(a) = a, so Cx keeps the 1-dimensional
subspace R of H invariant, and therefore also its orthogonal complement,
which is isomorphic to R3. So if we restrict the linear map Cx to this copy
of R3, we actually get a homomorphism

C : S3 → SO(3).

We now want to show that this homomorphism is indeed surjective.
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Definition 1.14. Let a ∈ H. We then define the real part of a as

< a =
1

2
(a+ ā)

and the imaginary part of a as

= a =
1

2
(a− ā).

An element a ∈ H is called imaginary, if < a = 0.

Remark 1.15. Notice that indeed < a ∈ R, and < (= a) = 0. The imaginary
numbers of S3 form a sphere S2, and for imaginary x ∈ S3 we get that
x−1 = −x. In particular, the polynomial p(x) = x2 + 1 has a whole S2 as
roots, when viewed over H.

Now we can think of S3 acting on the imaginary quaternions, which form a
3-dimensional vectorspace, by conjugation.

Theorem 1.16. The homomorphism C : S3 → SO(3) is surjective.

The main work in this theorem is to show that SO(3) is not “too big”.
Before we show this, let us take a look at SO(2) and O(2).

Lemma 1.17. The homomorphism H : S1 → SO(2) given by

H(eiθ) =

(
cos θ − sin θ
sin θ cos θ

)
is an isomorphism.

Proof. Since AAt = I for all A ∈ SO(2), we get that any A =

(
a b
c d

)
has to satisfy

a2 + b2 = 1

c2 + d2 = 1

ac+ bd = 0

and since detA = 1, we also get

ad+ bc = 1.

It is now easy to see that each A ∈ SO(2) has to look as in the statement
of the lemma, that is, that there is a θ ∈ [0, 2π] with H(eiθ) = A. This
map is also clearly injective, so that H is a homeomorphism. To see that H
is an isomorphism, one has to use the standard properties of trigonometric
functions which express sine and cosine of θ + θ′. �

Remark 1.18. So every element of SO(2) is a rotation by some angle θ.
Notice in particular, that for θ 6= 0, π this rotation has no real eigenvalues.

All elements of O(2) with determinant −1 can now be described as rotations
followed by a reflection in the x-axis. Using linear algebra, it is now easy
to see that each element of O(2) with determinant −1 has an eigenvalue −1
and an eigenvalue +1.



6

Lemma 1.19. Let A ∈ SO(3). Then A has at least one eigenvalue equal
to 1. Furthermore, any A ∈ SO(3) different from I can be described as
fixing a one-dimensional eigenspace, and rotating the orthogonal plane to
this eigenspace.

Proof. The characteristic polynomial χA(x) has degree 3, so it has a real
zero by the Intermediate Value Theorem. Denote this root by λ ∈ R and let
x ∈ R3 be an eigenvector. Then

〈x, x〉 = 〈Ax,Ax〉
= 〈λx, λx〉
= λ2〈x, x〉,

so λ ∈ {±1}. If λ = −1, then A restricted to the 2-dimensional orthogonal
complement of x can be identified with an element B ∈ O(2). Note that
detB = −1, for otherwise detA = −1. Hence B has an eigenvalue +1 by
Remark 1.18, and so does A.

Therefore A fixes a one-dimensional subspace 〈y〉 of R3. The restriction to
the orthogonal complement gives an element of SO(2), which is a rotation
by Lemma 1.17. This proves the result. �

Proof of Theorem 1.16. Let A ∈ SO(3), and let u ∈ S2 be fixed by A, as
guaranteed by Lemma 1.19. Also, let 2θ ∈ [0, 2π] be the angle of rotation of
the plane orthogonal to u. Let x = cos θ + sin θ · u ∈ S3.

We claim that Cx fixes u and rotates the plane orthogonal to u by an angle
of 2θ.

To see this first note that x̄ = cos θ − sin θ · u, so

x · u · x̄ = (cos θ + sin θ · u) · u · (cos θ − sin θ · u)

= cos2 θ · u− cos θ sin θ · u2 + sin θ · u2 cos θ − sin2 θ · u3

= (cos2 θ + sin2 θ) · u
= u

and x fixes u. Notice that u3 = −u, as u is imaginary.

Now choose an imaginary v ∈ S2 which is orthogonal to u. This means
uv̄ = −vū by Lemma 1.12. We claim that uv is also imaginary. To see this
note that

uv + uv = uv + v̄ū

= uv − vū
= uv + uv̄

= uv − uv
= 0,

where we used that v̄ = −v and uv̄ = −vū by orthogonality.
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Also, uv is orthogonal to both u and v:

〈u, uv〉 =
1

2
(uv̄ū+ uvū)

=
1

2
(−uvū+ uvū)

= 0.

〈v, uv〉 =
1

2
(vv̄ū+ uvv̄)

=
1

2
(ū+ u)

= 0.

as u and v are imaginary. Hence v and uv span the plane orthogonal to u.
We now need to check that Cx rotates v and uv by an angle of 2θ. Now

Cx(v) = (cos θ + sin θ · u)v(cos θ − sin θ · u)

= cos2 θ · v − cos θ sin θ · vu+ sin θ cos θ · uv − sin2 θ · uvu
= (cos2 θ − sin2 θ) · v + 2 cos θ sin θ · uv
= cos(2θ) · v + sin(2θ) · uv,

where we used that vu = −uv, which follows from orthogonality and the
fact that u and v are imaginary. Similarly

Cx(uv) = (cos θ + sin θ · u)uv(cos θ − sin θ · u)

= cos2 θ · uv − cos θ sin θ · uvu+ sin θ cos θ · uuv − sin2 θ · uuvu
= (cos2 θ − sin2 θ) · uv − 2 cos θ sin θ · v
= − sin(2θ) · v + cos(2θ) · uv.

Therefore Cx = A, and the homomorphism is surjective. �

Corollary 1.20. The topological group RP3 = S3/{±1} is isomorphic to
SO(3).

Proof. We need to show that the normal subgroup {±1} of S3 is the kernel
of C. Clearly, it is contained in the kernel. Now let x ∈ S3 satisfy Cx = I.
Then x commutes with every imaginary a ∈ H, and since it commutes with
every real number, we get that xy = yx for all y ∈ H. Write x = z + wj.
Then

x · j = −w + zj

j · x = −w̄ + z̄j.

Which implies that z, w ∈ R. Also

x · i = zi− wij
i · x = iz + wij,

which implies that w = −w, that is, w = 0. Hence x ∈ R, and since
R ∩ S3 = {±1}, this is the kernel of C. �


