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Timetable

Each of the four weeks commencing 5/10, 12/10, 19/10, 26/10 there will be:

• Three hour-long content based activities, that will be uploaded to DUO on Monday, Tuesday
and Wednesday mornings by 10am. These will consist of videos to watch and related problems
to solve.

• Two online office hours on Tuesdays 09:00-10:00 & 12:00-13:00, where I will be available on
Zoom to answer any questions about the course.

• A problems session on Fridays 09:00-10:00, also on Zoom, where I will take requests to go over
problems from the set for that week. Solutions will be available afterwards.

Zoom meeting details
https://durhamuniversity.zoom.us/j/99149091697?pwd=S2o4N3dNcFFlcW1HOUo3K3duT2ZnQT09

Meeting ID: 991 4909 1697
Passcode: 934060

Outside of these times, do not hesitate to email me at ellen.g.powell@durham.ac.uk with any questions
you may have. I will endeavour to respond as soon as possible. If I do not respond within 24 hours, feel
free to send me a reminder!

Week 1

Content 1: §1.1
Content 2: §1.2
Content 3: §1.3
Problems session: Problems from §1

Week 2

Content 1: §2.1
Content 2: §2.2
Content 3: §3.1
Problems session: Problems from §2

Week 3

Content 1: §3.2
Content 2: §3.3
Content 3: §4.1
Problems session: Problems from §3

Week 4

Content 1: §4.2
Content 2: §5.1
Content 3: §5.2
Problems session: Problems from §4 and §5
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1 Probability spaces and random variables
Complementary reading: [1, §1.1] and [1, Appendix 2].

1.1 Probability spaces

Definition 1.1 (Probability space). A probability space or probability triple is a collection (Ω,F ,P)
where:

• Ω is the sample space (the set of all possible outcomes);

• F is a σ-field (consisting of events);

• P is a probability measure, assigning probabilities to events in F .

Definition 1.2 (σ-field). A σ-field (or σ algebra) F on Ω is a collection of subsets of Ω, such that

(i) ∅ ∈ F ,

(ii) if A ∈ F , then Ac ∈ F , and

(iii) if (Ai)i≥1 ∈ F then ∪∞i=1Ai ∈ F .

So in words, a σ-field is a collection of subsets of the sample space, that contains the empty set and
is closed under taking complements and unions.

Here are some simple examples of σ-fields.

• {∅,Ω}. This is the smallest possible σ-field, since by definition a σ-field has to contain the empty
set and its complement

• P(Ω), the set of all subsets of Ω. This is clearly the biggest possible σ-field

• {∅,Ω, A,Ac} for some A ⊂ Ω. This is the σ-field “generated by the event A”.

In general, if C is a collection of subsets of Ω (now not necessarily satisfying (i) − (iii) from Defini-
tion 1.2), it is possible to define the σ-field generated by C. This is the smallest σ-field that contains
all the elements of C, and is denoted by σ(C). Equivalently, σ(C) is the intersection of all σ-fields that
contain C. Clearly if C already satisfies the axioms of Definition 1.2, then σ(C) = C.

Example 1.3. Let Ω = R and C := {(a, b) : −∞ < a < b < +∞}. Then the σ-field σ(C) generated by C,
is called the Borel σ-field on R. This will be denoted by B(R), and sets in B(R) will be called Borel
sets.

Remark 1.4. In general, if T ⊂ R then the Borel σ-field on T , denoted B(T ), is the σ-field generated
by open sets with respect to T .

Definition 1.5 (Probability measure). Let (Ω,F) be a set and a σ-field on it. A probability measure
P is a function

P : F → [0, 1], (1)

satisfying the probability axioms. Equivalently, a number P(A) (the “probability of A”) assigned to each
A ∈ F . The probability axioms are:

(i) P(Ω) = 1 (the set of all outcomes has probability one);

(ii) if (Ai)i≥1 ∈ F and Ai ∩Aj = ∅ for i 6= j, then

P(∪∞i=1Ai) =

∞∑
i=1

P(Ai) (2)

(the probability of a disjoint union of events is the sum of the individual probabilities).
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If an event A ⊂ F satisfies P(A) = 1, then it is said that A occurs almost surely (or a.s. for short).

Example 1.6. Suppose you want to set up a probability space for a fair die roll. Then it is natural to
define the sample space, the set of possible outcomes, as Ω = {1, 2, 3, 4, 5, 6} and to set F = P(Ω). Since
the die is fair, the probablity measure P should be defined so that P({i}) = 1/6 for i = 1, 2, 3, 4, 5, 6. Note
that this defines P(A) for any A ∈ F by axiom (ii) of Definition 1.5, since any A ∈ F is equal to ∪i∈I{i}
for some subset I of {1, 2, 3, 4, 5, 6}.

Example 1.7. Let Ω = [0, 1] and B([0, 1]) be the Borel σ-field. Define P by setting

P((a, b)) = b− a (3)

for any open set (a, b) ⊂ [0, 1]. (This uniquely defines P(A) for any A ∈ B([0, 1]) by Carathéodory’s
extension theorem, but we will not go into this here). Then P is a probability measure (called Lebesgue
measure or uniform measure on [0, 1]) and ([0, 1],B([0, 1]),P) is a probability space.

One important notion in probability theory is that of independence. Roughly speaking, events are
independent if the occurrence of one of them does not affect the likelihood of the other occurring.

Definition 1.8 (Independence of events). Suppose (Ω,F ,P) is a probability triple. Then A,B ⊂ F are
said to be independent if

P(A ∩B) = P(A)P(B). (4)

Example 1.9. Suppose a fair coin is tossed twice. Then the events A1 ={coin 1 is heads} and A2 ={coin
2 is heads} are independent, and P(A1 ∩ A2) = 1/2 × 1/2 = 1/4. But if A3 ={both coins are tails} then
A1 and A3 (similarly A2 and A3) are not independent, because clearly P(A3 ∩A1) = 0 6= P(A3)P(A1).

More generally, one can describe how the occurrence of one event affects the likelihood of another
occurring. This gives rise to the definition of conditional probability.

Definition 1.10 (Conditional probability). Suppose (Ω,F ,P) is a probability triple and A,B ⊂ F . The
conditional probability of A given B is defined as

P(A|B) :=
P(A ∩B)

P(B)
. (5)

Example 1.11. Returning to Example 1.9, this definition gives that P(A3|A1) = 0/P(A1) = 0, which
makes sense, since intuitively “the probability that both coins are tails given the first is heads” really
should be 0. A slightly more complicated example would be to work out P(A3|Ac1). That is, the probability
that both coins are tails given the first coin is tails. Intuitively this should be 1/2 - the probability that the
second coin is tails - since if that happens then clearly both coins will be tails. Checking with the formula:

P(A3|Ac1) =
P(A3 ∩Ac1)

P(Ac1)
=

P(Ac1 ∩Ac2)

P(Ac1)
=

1/2× 1/2

1/2
=

1

2
(6)

as expected.

Exercises for §1.1

Exercise 1.1. Let F1 and F2 be σ-fields on Ω. Show that F1 ∩ F2 is a σ-field. If {Fα;α ∈ A} are a
collection of σ-fields indexed by some set A, show that ∩α∈AFα is always a σ-field.

Exercise 1.2. Let Ω = {ω1, ω2, ω3}. By considering suitable σ-fields on Ω, show that the union of two
σ-fields is not necessarily a σ field.

Exercise 1.3. Describe σ(C) when C is a finite collection A1, . . . , An ⊂ Ω.
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Exercise 1.4. Show that B(R) is also equal to σ(C̃) where C̃ = {(−∞, c]; c ∈ R}

Exercise 1.5. If A and B are any two events, show that P(A∪B) = P(A) +P(B)−P(A∩B). If A,B,C
are any three events, show that

P(Ac ∩ (B ∪ C)) = P(B) + P(C)− P(A ∩B)− P(B ∩ C)− P(C ∩A) + P(A ∩B ∩ C). (7)

Use this result to deduce how many of the numbers from 1 to 500 are not divisible 7, but are divisible by
3 or 5.

Exercise 1.6. Three machines, A, B and C, produce components. 10% of components from A are faulty,
20% of components from B are faulty, and 30% of components from C are faulty. Equal numbers from
each machine are collected in a packet. (i) One component is selected at random from the packet. What
is the probability that it is faulty? (ii) Suppose a component is drawn from the packet and found to be
faulty. What is the probability that it was made by machine A?

1.2 Random variables

Definition 1.12 (Measurable functions). Let F be a σ-field on Ω. A function X : Ω → R is said to be
F-measurable if

{ω ∈ Ω : X(ω) ∈ A} ∈ F for all A ∈ B(R), (8)

equivalently
{ω ∈ Ω : X(ω) ≤ x} ∈ F for all x ∈ R. (9)

The two definitions above are equivalent by Exercise 1.4.

Definition 1.13 (Random Variables). If (Ω,F ,P) is a probability space, then a random variable on
(Ω,F ,P) is just an F-measurable function

X : Ω→ R. (10)

Example 1.14. An important example of a random variable is the indicator function of an event
A ∈ F . This is the F-measurable function 1A : Ω→ R defined by

1A(ω) =

{
1 ω ∈ A
0 ω /∈ A

(11)

Example 1.15. Consider as in Example 1.6 the probability space for a fair die roll. Then X(ω) = ω (the
score) and Y (ω) = 1{ω is even} (the indicator that the score is even) are random variables on (Ω,F ,P),
since they are clearly F-measurable.

The random variables in this course will come in two flavours: discrete and continuous. A discrete
random variable is one that can only take values in some countable set X . Such a random variable can
be described completely by its probability mass function: that is, the countable collection of numbers

{px ; x ∈ X} with
∑
x∈X

px = 1, (12)

where px = P({X = x}) is the probability of the event that X is equal to x. A continuous random
variable is one that can take more than a countable collection of possible values. This is described by its
cumulative distribution function

F : R→ [0, 1] ; F (x) = P({X ≤ x}) for y ∈ R. (13)
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If there is exists a function p such that

F (x) = P({X ≤ x}) =

∫ x

−∞
p(y) dy (14)

for every x, then p is called the probability density function of X. This is the “infinitesimal” analogue
of the probability mass function: when dx is very small P(X ∈ [x, x+ dx]) ≈ p(x)dx.

The distribution or law of a random variable X is just the information P(X ∈ A) for all A ∈ B(R).

Example 1.16. The random variables X,Y from Example 1.15 are both discrete random variables since
they can only take values in {1, . . . , 6} and {0, 1}. The probability density function of X, for instance, is
given by pi = 1/6 for i = 1, . . . , 6.

On the other hand, consider the probability space ([0, 1],B([0, 1]),P) from Example 1.7. Then the
function Z : Ω → R defined by U(ω) = ω for ω ∈ [0, 1] is a continuous random variable called the
uniform random variable on [0, 1].

Definition 1.17 (Measurability). Suppose that X is a random variable on (Ω,F) and G ⊂ F is a σ-field
that is contained in the σ-field F . Then X is said to be G-measurable if

{ω ∈ Ω : X(ω) ≤ x} ∈ G for all x ∈ R. (15)

Roughly speaking, X is G-measurable if “knowing G” means “knowing X”.

Example 1.18. Take G ⊂ F given by
G =

{
∅, E,Ec,Ω

}
, (16)

where E = {2, 4, 6} is the event that the score is even, and its complement Ec = {1, 3, 5} (the score is
odd). Note that G is a σ-algebra.

Moreover, Y is G-measurable, since e.g. {ω : Y (ω) ≤ 1/2} = Ec ∈ G, but X is not G-measurable,
since e.g. {ω : X(ω) ≤ 1} = {1} /∈ G.

Just as with subsets of outcomes, it is possible to define the σ-field generated by a random variable
X. Informally this is the σ-field “containing all the information about the random variable X”.

Definition 1.19 (σ-field generated by a random variable). The σ-field generated by a random vari-
able X : Ω → R consists of all sets of the form {ω : X(ω) ∈ A} for A ∈ B(R). This σ-field will be
denoted by σ(X).

Definition 1.20 (Independence of σ-fields and random variables). Two σ-fields G1 ⊂ F and G2 ⊂ F are
said to be independent if any two events A1 ∈ G1 and A2 ∈ G2 are independent. A random variable X is
said to be independent of a σ-field G ⊂ F if σ(X) and G are independent. Similarly, two random variables
X,Y are said to be independent if σ(X) and σ(Y ) are independent.

This definition can be extended to families of σ-algebras and random variables. For example, if
G1,G2, . . . are a family of sub σ-fields on a probability space (Ω,F ,P) then they are said to be independent
if

P(A1 ∩ · · · ∩An) = P(A1) · · ·P(An) (17)

whenever k1, . . . , kn ≥ 1 and Ai ∈ Gki for each 1 ≤ i ≤ n.

Example 1.21. If X and Y are two discrete random variables, taking values in X and Y respectively,
then they are independent if and only if

P(X = x, Y = y) = P(X = x)P(Y = y) (18)

for all x ∈ X , y ∈ Y.

6



Maths Finance: Block I

Let us conclude this subsection with a couple more straightforward definitions.

Definition 1.22 (Random vector). A random vector on (Ω,F) is just a vector (X1, . . . , Xn) where
each Xi is a random variable.

Definition 1.23 (Independent and identically distributed random variables). A sequence (Xi)i≥1 of ran-
dom variables on a probability space (Ω,F ,P) are said to be independent and identically distributed
or i.i.d. if they are independent and each have the same distribution. That is, for any A ∈ B(R),
P(Xi ∈ A) does not depend on i.

For example, the outcomes of successive fair die rolls would form an i.i.d. sequence.

Exercises for §1.2

Exercise 1.7. Determine the distribution function and probability density function of U from Exam-
ple 1.7.

Exercise 1.8. Describe the σ-field generated by Y from example Example 1.15.

Exercise 1.9. Check the conclusion of Example 1.21. Are X and Y from Example 1.15 independent?

1.3 Moments

Expectation

Definition 1.24 (Expectation: positive, discrete case). Suppose that X is a discrete random variable
taking values in a countable subset X of R, and that X is non-negative, i.e. all elements of X are ≥ 0.
Write (px;x ∈ X ) for the probability mass function of x. Then the expectation of X is defined by

E(X) :=
∑
x∈X

x.px ∈ [0,∞] (19)

Note that if X is infinite, the sum can be defined as the limit as n→∞ of an :=
∑

x∈Xn x.px, where Xn
is increasing in n and finite for each n with ∪nXn = X . The sequence an is increasing in n (since all the
x.px are non-negative) and so has a limit as n→∞. However, this may be infinite.

Definition 1.25 (Expectation: positive, general case). In general if (Ω,F ,P) is a probability space and
X is a non-negative random variable on Ω - that is, P(X < 0) = 0 - define

E(X) = lim
n→∞

E(2−nb2nXc) ∈ [0,∞] (20)

which exists since the sequence limn→∞ E(2−nb2nXc) is increasing. Note that 2−nb2nXc is a non-negative
discrete random variable for every X so each expectation in the sequence makes sense by the previous
definition. Again this limit may be infinite.

Definition 1.26 (Expectation: general case). If X is not assumed to be non-negative, it is possible to
write

X = X+ −X− := X1X≥0 +X1X<0 (21)

where X± are both non-negative. X is then said to be integrable if E(X+) and E(X−) are both finite.
In this case, the expectation of X is defined by

E(X) = E(X+)− E(X−). (22)

Example 1.27. If X takes values in a finite set X , this is easy. X is always integrable and E(X) =∑
x∈X x.px. For example, if X is the outcome of a fair dice roll as in Example 1.15 then E(X) =

(1/6).1 + (1/6).2 + . . .+ (1/6).6 = 21/6.
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The expectation of a random variable X is often referred to as its mean.

Example 1.28. If X is a continuous random variable with probability density function p then X is
integrable if and only if ∫ ∞

0
xp(x) dx <∞ and

∫ 0

−∞
xp(x) dx <∞ (23)

with

E(X) =

∫ ∞
−∞

xp(x) dx. (24)

(This can be shown using the definitions but is omitted here).

Proposition 1.29 (Properties of expectation). (i) If P(X ≥ 0) = 1 then E(X) ≥ 0.

(ii) If X = a with a ∈ R is a constant random variable then E(X) = a.

(iii) If X is a random variable and c ∈ R then E(cX) = cE(X).

(iv) For any finite sequence X1, . . . , Xn of random variables

E(
∑
i

Xi) =
∑
i

E(Xi). (25)

(v) If X and Y are independent, integrable random variables, then

E(XY ) = E(X)E(Y ). (26)

(vi) For any integrable X, |E(X)| ≤ E(|X|).

Lemma 1.30 (Markov’s inequality). If X is a random variable and a ∈ R, then

P(|X| ≥ a) ≤ E(|X|)
a

. (27)

Proof. Observe that a1|X|≥a ≤ |X| with probability one. Therefore by Proposition 1.29(i) it follows that
E(a1|X|≥a) ≤ E(|X|) and by Proposition 1.29(iii) that aE(1|X|≥a) ≤ E(|X|). Applying the conclusion of
Exercise 1.10 from this section, and rearranging, gives the result.

Lemma 1.31 (Law of the unconscious statistician (LOTUS)). If X is a discrete random variable with
probability mass function (px : x ∈ X ) and f is a function from X → [0,∞), then

E(f(X)) =
∑
x∈X

f(x) px ∈ [0,∞]. (28)

(If f can be negative, write f = f+ − f− with f+, f− non-negative. Then if E(f±(X)) < ∞ the above
still holds.)

If X is a continuous random variable with probability density function p : R → [0, 1] and f is a
measurable function from B(R)→ [0,∞), then f(X) is a random variable and

E(f(X)) =

∫
R
f(x) p(x) dx ∈ [0,∞]. (29)

Proof. Suppose that X is discrete, taking values in the countable set X ⊂ R. Then f(X) is discrete
taking values in the countable set f(X ) := {f(x) : x ∈ X}. So

E(f(X)) =
∑

y∈f(X )

y
∑

x∈X s.t.
f(x)=y

px =
∑
x∈X

px (
∑

y∈f(X ) s.t.
f(x)=y

y) =
∑
x∈X

f(x) px (30)

as required.
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Example 1.32. The exponential distribution describes the law of a commonly used continuous random
variable. If Y is exponentially distributed with parameter λ > 0, written Y ∼ Exp(λ), then Y has
probability density function p(y) = λ exp(−λy)1y≥0. The expectation of Y can then be calculated as:

E(Y ) =

∫ ∞
0

λy exp(−λy) dy = [−y exp(−λy)]∞0 +

∫ ∞
0

exp(−λy) dy =
1

λ
. (31)

Variance

Definition 1.33 (Variance). A random variable X is said to have finite variance, or be square inte-
grable, if

E(X2) <∞. (32)

If this holds then its variance is defined by

var(X) = E((X − E(X))2) = E(X2)− E(X)2. (33)

Example 1.34. If X is bounded, for example if X is the uniform random variable on [0, 1] from Exam-
ple 1.7, then X2 is bounded and so X must be square-integrable.

More generally, a random variable X is said to have finite pth moment if E(|X|p) <∞.

Proposition 1.35 (Properties of variance). (i) var(X) ≥ 0 with equality if and only if X is constant.

(ii) var(aX) = a2 var(X) for a ∈ R.

(iii) If X,Y are independent then var(X + Y ) = var(X) + var(Y ).

Lemma 1.36 (Cauchy–Schwarz inequality). If X,Y are square integrable random variables then

E(|XY |) ≤
√
E(X2)E(Y 2). (34)

Proof. Observe that for any a ∈ R, E((X − aY )2) = E(X2) − 2aE(XY ) + a2E(Y 2) ≥ 0. Setting a =
E(XY )/E(Y 2) gives that E(X2)− E(XY )/E(Y 2) ≥ 0 which provides the result.

Covariance and correlation

Covariance and correlation are ways of describing “how dependent” different random variables are.

Definition 1.37 (Covariance). Suppose that X and Y are two square-integrable random variables. Then
the covariance between them is defined by

cov(X,Y ) = E((X − E(X))(X − E(Y )) (35)

Note that for independent random variables

cov(X,Y ) = E(XY )− E(X)E(Y ) = E(X)E(Y )− E(X)E(Y ) = 0. (36)

So roughly speaking, a bigger covariance means “more dependence”. But this isn’t perfect, since a
small covariance could just be because the random variables themselves do not vary very much (even if
they depend heavily on each other). To get around this, the following definition is also often used.

Definition 1.38 (Correlation). If X,Y are square integrable random variables with var(X) > 0, var(Y ) >
0, then the correlation between X and Y is defined by

corr(X,Y ) =
cov(X,Y )√

var(X)
√

var(Y )
. (37)

By the Cauchy–Schwarz inequality, Lemma 1.36, it holds that corr(X,Y ) ∈ [−1, 1].

9
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Exercises from §1.3

Exercise 1.10. Show that if Y = 1A is the indicator function of an event A then E(Y ) = P(A).

Exercise 1.11. Calculate the expectation for the uniform random variable U from Example 1.7.

Exercise 1.12. Prove Proposition 1.29. Hint: it is easiest to start with the case of positive discrete
random variables and try to extend the results from there.

Exercise 1.13. A random variable X takes values 1, 2 and 3 with P(X = n) = cn2 for n = 1, 2, 3. Find:
(i) the value of the constant c; (ii) E(X); (iii) E(1/X).

Exercise 1.14. Show that if Y ∼ Exp(λ) then E(exp(tY )) = λ
λ−t for t < λ.

Exercise 1.15. Determine if the following are square integrable, and if so, compute their variance: (i)
the discrete random variable X with P(X = n) = c/n2 for all n ≥ 1 and 1/c =

∑∞
n=1 1/n2; (ii) the

exponential random variable Y ∼ Exp(λ)?

Exercise 1.16. Prove Proposition 1.35. Come up with an example to show that (iii) does not necessarily
hold when X and Y are not independent.

Exercise 1.17. Consider three independent random variables X1, X2, X3 with P(Xi = ±1) = 1/2
for i = 1, 2 and P(X3 = 0) = P(X3 = 1) = 1/2. Letting Z1 = X1X3 and Z2 = X2X3, show that
E(Z1Z2) = E(Z1)E(Z2). What is the correlation between Z1 and Z2? Are Z1, Z2 independent? Hint:
consider the event P(Z1 = 0 ∩ Z2 = 0).

10
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Solutions to exercises from §1

1. We need to check that F1 ∩F2 satisfies conditions (i)-(iii) of the σ-field definition. For (i), since F1

and F2 are both σ-fields we have ∅ ∈ F1 and ∅ ∈ F2. Therefore, ∅ ∈ F1 ∩F2. For (ii), suppose that
A ∈ F1 ∩ F2. This means that A ∈ F1 ⇒ Ac ∈ F1 and also that A ∈ F2 ⇒ Ac ∈ F2 (since F1, F2

are both σ-fields). Consequently Ac ∈ F1 ∩ F2. Finally, if (Ai)i≥1 are a sequence of subsets of Ω
with Ai ∈ F1 ∩ F2 for each i, we have (Ai)i≥1 ∈ F1 and (Ai)i≥1 ∈ F2. As with the previous points,
this implies that ∪iAi ∈ F1 and ∪iAi ∈ F2 ⇒ ∪iAi ∈ F1 ∩ F2, which means that F1 ∩ F2 satisfies
(iii).

2. Define F1 = {∅, {ω1, ω2, ω3}, {ω1}, {ω2, ω3}} and F2 = {∅, {ω1, ω2, ω3}, {ω2}, {ω1, ω3}}. It is easy to
check that F1 and F2 are both σ-fields. On the other hand, {ω1} ∈ F1 ∪ F2 and {ω2} ∈ F1 ∪ F2

but {ω1} ∪ {ω2} = {ω1, ω2} /∈ F1 ∪ F2. So F1 ∪ F2 is not a σ-field.

3. Suppose that C is a finite collection A1, . . . , An ⊂ Ω. Then

σ(C) = {∪i∈IAi
⋃
∪j∈JAcj ,∩i∈IAi

⋂
∩j∈JAcj}I,J

where I, J ranges over all disjoint subsets of {1, . . . , n}.

4. Recall that B(R) is defined to be the σ-field σ(C) generated by the collection of intervals C :=
{(a, b);−∞ ≤ a < b ≤ ∞}. To show that this is equal to σ(C̃) for C̃ = {(−∞, c]; c ∈ R} we need
to show that (i) C̃ ⊂ σ(C) and (ii) C ⊂ σ(C̃). Indeed if we can show this then (i) implies that
σ(C) ⊃ σ(C̃) (remember that σ(C̃) is by definition the smallest σ-field containing C̃ so for any σ-field
F containing C̃ we must have F ⊃ σ(C̃)) and similarly (ii) implies that σ(C̃) ⊃ σ(C). This means
that σ(C) = σ(C̃). It is obvious that (i) holds since by definition elements of C̃ are also elements of
C. (ii) is slightly more tricky, but for any (a, b) ∈ C we can write (a, b) = ([b,∞) ∪ (−∞, a])c. Note
that (−∞, a] ∈ C̃ by definition, and that [b,∞) = (∪n(−∞, b − 2−n])c must also be in σ(C̃) since
it is the complement of the union of elements of C̃. This implies that (a, b) is the complement of a
union of two events in σ(C̃) and therefore (a, b) ∈ σ(C̃) (since σ(C̃) is a σ-field). Hence (i) and (ii)
have been shown, and we are done.

5. Observe that we can write A∪B = (A∩Bc)∪B and also A = (A∩Bc)∪ (A∩B) as disjoint unions
of events. The latter tells us that P(A) = P(A∩B)+P(A∩Bc) so that P(A∩Bc) = P(A)−P(A∩B)
while the former says that P(A ∪ B) = P(A ∩ Bc) + P(B). Putting these together gives the first
result. For the second result, writing Ac ∩ (B ∪ C) = (Ac ∩ B) ∪ (Ac ∩ C) and applying the first
result with A = Ac ∩B and B = Ac ∩ C, we get that

P(Ac ∩ (B ∪ C)) = P(Ac ∩B) + P(Ac ∩ C)− P(Ac ∩B ∩ C).

Writing P(E ∩ Ac) = P(E)− P(E ∩ A) with E = B, E = C and E = B ∩ C and then substituting
into the above then provides the desired equality.

For the final part of the exercise, let Ω = {1, . . . , 500}, F = P(Ω), and set P(ω) = 1/500 for each
element of Ω. Then using the above with A = {7x : x ∈ Z, 0 ≤ 7x ≤ 500}, B = {5x : x ∈ Z, 0 ≤
5x ≤ 500} and C = {3x : x ∈ Z, 0 ≤ 3x ≤ 500} gives P(B) = 100/500 and P(C) = b500/3c/500 =
166/500 =, while P(A ∩ B) = b500/35c/500 = 14/500, P(A ∩ C) = b500/21c/500 = 23/500,
P(B ∩ C) = b500/15c/500 = 33/500 and P(A ∩ B ∩ C) = b500/105c/500 = 4/500. The answer is
then 500 ∗ (P(Ac ∩ (B ∪ C))) = 100− 14 + 166− 23 + 4− 33 = 200.

6. Write F for the event that the component is faulty, and A,B,C for the events that the component
is drawn from A,B,C respectively. (i) is asking for the probability of F which is equal to P(F ∩
A) +P(F ∩B) +P(F ∩C) = P(F |A)P(A) +P(F |B)P(B) +P(F |C)P(C) = 0.1 ∗ (1/3) + 0.2 ∗ (1/3) +
0.3 ∗ (1/3) = 0.6 ∗ (1/3) = 0.2. (ii) is asking for P(A|F ) = P(A ∩ F )/P(F ) = P(F |A)P(A)/P(F ) =
0.1 ∗ (1/3)/0.2 = 1/6.

11
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7. We work on ([0, 1],B([0, 1]),P) where P((a, b)) = b−a for any open interval (a, b), and are considering
the random variable U(ω) = ω. Then if x ∈ (0, 1),

P(U ∈ (−∞, x]) = P({ω ∈ Ω : U(ω) ≤ x}) = P({ω ∈ [0, 1] : ω ≤ x}) = P([0, x]).

Note that P({x}) = 0 since choosing any interval [0, 1] ⊃ (a, b) 3 x gives b − a = P((a, b)) =
{x}∪ (a, x)∪ (x, b), which is a disjoint union so b− a = P({x}) + (x− a) + (b− x) = P({x}) + b− a.
Therefore P([0, x]) = P({0}) + P({x}) + P((0, x)) = x. If x ≤ 0 it is clear that P(U ∈ (−∞, x]) = 0
and if x ≥ 1 then P(U ∈ (−∞, x]) = 1. So the distribution function FU is just equal to 0 for x ≤ 0
and min(x, 1) for x ≥ 0. Note that we therefore have FU (x) =

∫ x
−∞ 1y∈[0,1] dy for every x and so U

has a probability distribution function pU (y) = 1y∈[0,1].

8. σ(Y ) is by definition the smallest σ-field with respect to which Y = 1{2,4,6} is measurable. Observe
that Y is measurable with respect to F := {∅,Ω, {2, 4, 6}, {1, 3, 5}} which is a σ-field. Moreover,
any σ-field with respect to which Y is measurable has to contain the event Y −1((−∞, 1/2]) = {ω ∈
Ω : Y (ω) ≤ 1/2} = {1, 3, 5} and since it is a σ-field, must therefore also contain the complement
{2, 4, 6} and the sets ∅,Ω. So F is the smallest possible σ-field with respect to which Y is measurable
⇒ F = σ(Y ).

9. If X and Y are independent and x ∈ X , y ∈ Y then {X = x} ∈ σ(X) and {Y = y} ∈ σ(Y ) so that
P({X = x} ∩ {Y = y}) = P({X = x})P({Y = y}). Conversely, if this holds for all x ∈ X , y ∈ Y
we can write any A ∈ σ(X), B ∈ σ(Y ) as A = ∪x∈X1{X = x} where the union is over some subset
X1 ⊂ X and B = ∪y∈Y1{Y = y} where the union is over some subset Y1 ⊂ Y. Then

P(A ∩B) = P(∪x∈X1,y∈Y1{X = x} ∩ {Y = y})

=
∑

x∈X1,y∈Y1

P(X = x)P(Y = y)

= (
∑
x∈X1

P(X = x))(
∑
y∈Y1

P(Y = y))

= P(A)P(B)

⇒ X and Y are independent. In the example of a dice roll X(ω) = ω and Y (ω) = {1, 3, 5} are not
independent, because P({Y = 1} ∩ {X = 2}) = 0 6= P(Y = 1)× P(X = 2).

10. If Y = 1A then Y is a discrete random variable taking value 1 with probability P(A) and 0 with
probability 1− P(A). So E(Y ) = 1∗P(A) + 0∗(1− P(A)) = P(A).

11. We saw above that the probability density function of a uniform random variable is given by pu(x) =
1x∈[0,1]. Therefore, E(U) =

∫∞
−∞ x1x∈[0,1] dx =

∫ 1
0 x dx = 1/2.

12. (i) If P(X ≥ 0) = 1 then by definition E(X) is an increasing limit of E(Xn) where the Xn are
discrete and positive. In the discrete case, since E(X) =

∑
x xP(X = x) it is therefore immediate

that P(X ≥ 0) = 1 ⇒ E(X) ≥ 0. The proofs of properties (ii)-(v) are similar. For (vi), we have
|E(X)| = |E(X+)− E(X−)| ≤ |E(X+)|+ |E(X−)| by the triangle inequality for real numbers. But
X+ and X− are both positive with probability one, so by (i) of this exercise, |E(X±)| = E(X±)
and E(|X|) = E(X+1X≥0 +X−1{X<0}) = E(X+) + E(X−). Putting these together gives |E(X)| ≤
E(|X|) as required.

13. (i) It must be that P(X = 1) + P(X = 2) + P(X = 3) = 1, so c + 4c + 9c = 1 ⇒ c = 1/14.
(ii) E(X) = 1∗P(X = 1) + 2∗P(X = 2) + 3∗P(X = 3) = (1/14)∗(1 + 8 + 27) = 36/14. (iii)
E(1/X) = 1∗P(X = 1) + (1/2)∗P(X = 2) + (1/3)∗P(X = 3) = (1/14)∗(1 + 2 + 3) = 6/14.

12
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14. By definition, pY (y) = λ e−λy 1y≥0 so E(exp(tY )) =
∫∞

0 λe−λyety dy which is infinite if t > λ and
equal to λ/(λ− t) if t < λ.

15. (i) X is square integrable iff
∑∞

n=1 n
2P(X = n) is finite. When P(X = n) = c/n2 this is not the

case. (ii) On the other hand, Y is square integrable: all we have to check is that
∫∞

0 y2λe−λy <∞
which is true, it is equal to 1/λ2.

16. (i) var(X) is always ≥ 0, since it is the expectation of a square, i.e., a positive random variable. If
var(X) = 0 then by definition E((X−E(X))2) = 0. But suppose Y is a positive random variable with
E(Y ) = 0. Then recalling the definition Yn = min(n, 2−nb2nY c) we have that 0 ≤ E(Yn) ≤ E(Y )
for each n and so E(Yn) = 0 for all n. Moreover, for every fixed n, Yn is discrete taking values in
{0, 2−n, 2.2−n, 3.2−n, . . . , n}, so it must be that P(Yn = x) = 0 for x 6= 0 and therefore P(Yn = 0) = 1.
Since this holds for all n, we see that Y = 0 with probability one. Going back to the setting of the
question, we can deduce that (X − E(X))2 = 0 with probability one, and therefore X is constant.
Property (ii) holds since

var(aX) = E((aX − E(aX))2) = E((aX − aE(X))2) = E(a2(X − E(X))2) = a2E((X − E(X))2)

which is exactly a2 var(X). For (iii), if X and Y are independent, then

var(X + Y ) = E((X + Y − E(X + Y ))2)

= E((X + Y − E(X)− E(Y ))2)

= E((X − E(X))2 + (Y − E(Y ))2 − 2(X − E(X))(Y − E(Y )))

= var(X) + var(Y )− 2 cov(X,Y )

= var(X) + var(Y ),

as required.

Finally, let X be any non-constant random variable and Y = −X. Then var(Y + X) = 0 but
var(X) + var(Y ) = 2 var(X) 6= 0.

17. Z1Z2 is equal to 0 if X3 = 0, 1 if X1 = X2 and X3 = 1, and −1 if X1 6= X2 and X3 = 1/2. So
P(Z1Z2 = 1) = 1/4 = P(Z1Z2 = −1) and P(Z1Z2 = 0) = 1/2. This means that E(Z1Z2) = 0
while E(Z1),E(Z2) are also 0 by similar reasoning. cov(Z1, Z2) is therefore equal to E(Z1Z2) −
E(Z1)E(Z2) = 0, meaning that the correlation between Z1 and Z2 is also 0. Z1 and Z2 are not
independent however, since P({Z1 = 0} ∩ {Z2 = 0}) = P(X3 = 0) = 1/2 but P(Z1 = 0)P(Z2 = 0) =
1/2 ∗ 1/2 = 1/4 (and if they were independent then these should be equal).

13
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2 Normal random variables and convergence
Complementary reading: [1, Appendix 1].

2.1 Convergence of random variables

Definition 2.1 (Almost sure convergence). Let X and X0, X1, X2, . . . be random variables on a probability
space (Ω,F ,P). We say that Xn converges to X almost surely, written Xn

a.s.→ X, if

P
({
ω : lim

n→∞
Xn(ω) = X(ω)

})
= 1. (38)

Another way to say the same thing is that if Nε (random) is the smallest integer such that

|Xn −X| ≤ ε, for all n ≥ Nε, (39)

then Xn → X a.s. if and only if P (Nε <∞ for all ε > 0) = 1.

Example 2.2 (Strong law of large numbers). Suppose that X1, X2, . . . are a sequence of independent,
identically distributed and integrable random variables, with mean µ. Then

S̄n :=

∑n
i=1Xi

n

a.s.−→ µ (40)

as n→∞.

Definition 2.3 (Convergence in probability). Let X and X0, X1, X2, . . . be random variables on a prob-

ability space (Ω,F ,P). We say that Xn converges to X in probability, written Xn
P→ X, if

lim
n→∞

P (|Xn −X| > ε) = 0 for all ε > 0. (41)

Definition 2.4 (Convergence in Lq). Let X and X0, X1, X2, . . . be random variables on a probability
space (Ω,F ,P). For q ≥ 1, we say Xn converges to X in Lq, if

lim
n→∞

E [|Xn −X|q] = 0. (42)

Since by the triangle inequality

|E(|Xn|)− E(|X|)| ≤ E(|Xn −X|), (43)

Xn → X in L1 implies that E(|Xn|)→ E(|X|). The same holds with q in place of 1 for every q ≥ 1.

Definition 2.5 (Convergence in distribution/law). Let X and X0, X1, X2, . . . be random variables (not
necessarily on the same probability space) with cumulative distribution functions

F (x) = P(X ≤ x) and Fn(x) = P(Xn ≤ x). (44)

We say Xn converges to X in distribution, written Xn
(d)→ X, if

lim
n→∞

Fn(x) = F (x) for all x at which F is continuous. (45)

Example 2.6. For every n ≥ 1, let Xn be the continuous random variable with cumulative distribution
function Fn(x) = P(Xn ≤ x) = 1 − (1 − n−1x)n. Then Fn(x) → 1 − e−x for every x ∈ R. But
F (x) = 1 − e−x =

∫ x
0 e
−y dy is the cumulative distribution function of an exponential random variable

X ∼ Exp(1). So Xn → X in distribution as n→∞.

Lemma 2.7. The following implications hold:

14
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• Xn → X a.s. implies that Xn
P→ X.

• Xn → X in Lq implies that Xn
P→ X.

• Xn
P→ X implies that Xn

(d)→ X.

Proof. Let us show the implications in order.

• To prove the first implication, note that P(|Xn −X| > ε) ≤ P(n < Nε), so

lim
n→∞

P (|Xn −X| > ε) ≤ lim
n→∞

P(n < Nε) = P(Nε =∞). (46)

• The second follows from Markov’s inequality since P(|Xn −X| > ε) ≤ ε−qE(|Xn −X|q).

• Suppose x ∈ R is such that F (x) := P(X ≤ x) is continuous at x. Then for any ε > 0, it is
straightforward to check that

P(Xn ≤ x) ∈ [P(X ≤ x− ε) + P(|Xn −X| > ε),P(X ≤ x+ ε) + P(|Xn −X| > ε)]. (47)

By continuity of F at x and the assumption that P(|Xn−X| > ε)→ 0 as ε→ 0, it follows that the
left and right end points of the interval above converge to P(X ≤ x) as n→∞.

Example 2.8. Suppose that Xn = 2n with probability 2−n for every n, Xn = 2−n otherwise. Let X = 0
with probability one. Then

FXn(x) =


0 if x < 2−n

1− 2−n if x ∈ [2−n, 2n)

1 if x ≥ 2−n
(48)

which converges to 1{x≥0} for all x 6= 0. Since 0 is not a continuity point of FX , it follows that Xn → X
in distribution as n→∞. Note however that E(Xn) ≥ 1 for each n, while E(X) = 0.

Convergence of expectations

Let us state here without proof some useful results about when expectations converge.

Lemma 2.9 (Fatou’s lemma). Suppose that X1, . . . are a sequence of non-negative random variables and
Xn → X almost surely. Then

E(X) ≤ lim inf
n→∞

E(Xn). (49)

Theorem 2.10 (Monotone convergence theorem). Suppose that X1, . . . are a sequence of non-negative
random variables that are almost surely increasing in n and converge to X almost surely as n→∞. Then

E(Xn) ↑ E(X) (50)

as n→∞.

Theorem 2.11 (Dominated convergence theorem). Suppose that X1, . . . are a sequence of random vari-
ables that converge to X almost surely as n→∞. Suppose further that for some non-negative integrable
random variable Z, |Xn| ≤ Z almost surely for all n. Then

E(Xn)→ E(X) (51)

as n→∞.

15
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Exercises from §2.1

Exercise 2.1. Take the set-up of Example 2.2 and assume in addition that the (Xi)i≥1 have finite vari-

ances. Use Markov’s inequality from §1 to show that S̄n
P→ µ as n→∞.

Exercise 2.2. If Xn ∼ Exp(n) for every n, show that Xn
(d)→ 0 as n→∞.

2.2 The normal distribution and the central limit theorem

Definition 2.12 (Normal distribution). A random variable X has the normal (or Gaussian) distri-
bution with mean µ and variance σ2 if it is a continuous random variable with probability density
function

p(x) =
1√

2πσ2
exp

{
−(x− µ)2

2σ2

}
, for x ∈ R. (52)

It is denoted by X ∼ N (µ, σ2).

Note that
∫∞
−∞ p(x) dx = 1 (you can take this for granted, or see Wikipedia for a proof!)

The case µ = 0, σ2 = 1 is the standard normal distribution Z ∼ N (0, 1). The density of the
standard normal is usually written as φ, and the cumulative distribution function is

Φ(x) = Pr(Z ≤ x) =

∫ x

−∞
φ(y)dy. (53)

If X ∼ N (µ, σ2), then α+ βX ∼ N (α+ βµ, β2σ2). In particular, if X ∼ N (µ, σ2), then

X − µ
σ

∼ N (0, 1). (54)

This implies that if X ∼ N (µ, σ2) then E(X) = µ and var(X) = σ2; because

1√
2π

∫ ∞
−∞

xe−x
2/2 = 0 and

1√
2π

∫ ∞
−∞

x2e−x
2/2 dx = 1

(the first equality follows by symmetry and the second by integration by parts with u = −x, v′ = −xe−x2/2,
using that

∫∞
−∞ e

−x2/2dx =
√

2π).
The normal random variable is fundamental in virtually all applications of probability theory; espe-

cially because of the central limit theorem (see below). Its probability density function is the familiar
bell-shaped curve: this has peak at µ and is more spread out as σ2 increases.

Definition 2.13. A random vector X = (X1, · · · , Xn) is normally distributed, also referred to as
a Gaussian random vector, if and only if a1X1 + · · · + anXn has a normal distribution for any
(a1, . . . , an) ∈ Rn. If

µ := (E(X1), · · · ,E(Xn)) and Σ is an n× n matrix with Σij = cov(Xi, Xj) ∀1 ≤ i, j ≤ n (55)

it is said that X ∼ (µ,Σ). When Σ is positive definite, X has probability density

pX(x) =
exp(−1

2(x− µ)TΣ−1(x− µ)√
(2π)n|det(Σ)|

; x = (x1, . . . , xn), (56)

meaning that for any B ⊂ Rn,

P(X ∈ B) =

∫
B
pX(x1, . . . , xn) dx1 . . . dxn (57)

16
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The central limit theorem

Let X1, X2, . . . be independent, identically distributed (i.i.d.) random variables on a probability
space (Ω,F ,P). Set S0 = 0 and Sn =

∑n
i=1Xi for n ≥ 1.

Theorem 2.14 (Central Limit Theorem (CLT)). The central limit theorem says that if E(Xi) = µ
and var(Xi) = σ2 ∈ (0,∞), then

Sn − nµ√
nσ2

(d)→ N (0, 1). (58)

In other words,

lim
n→∞

P
[
Sn − nµ√

nσ2
≤ z
]

= Φ(z) for all z ∈ R. (59)

Proof. Omitted.

Exercises from §2.2

Exercise 2.3. Let Z ∼ N (0, 1). Show that

MZ(t) = E
(
etZ
)

= et
2/2 (60)

for any t ∈ R.

Exercise 2.4. Suppose that Y1, Y2, . . . , Yn are independent with Yi ∼ N (µi, σ
2
i ) for each i. Show that∑n

i=1 Yi ∼ N (
∑

i µi,
∑

i σ
2
i ).

Exercise 2.5. Suppose that Z1, . . . , Zn are i.i.d. standard normal random variables. Write Z = (Z1, . . . , Zn)
and suppose that A is an n×n matrix and a is a vector of length n. Show that X = AZ+a is a normally
distributed vector, and find its mean and covariance matrix.

Exercise 2.6. Explain why the Theorem 2.14 holds when Xi ∼ N (µ, σ2) for each i. Hint: you should
use Exercise 2.4 .
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Solutions to exercises from §2

1. Fix ε > 0. Then by Markov’s inequality

P(|S̄n − µ| > ε) = P(|S̄n − E(S̄n))| > ε) ≤ var(S̄n)

ε2

by Markov’s inequality. But

var(S̄n) = var(
1

n

n∑
i=1

Xi) =
1

n2

n∑
i=1

var(Xi) =
1

n
var(X1),

using the basic properties of variance and the fact that the (Xi)i≥1 are i.i.d. This goes to 0 as
n → ∞, so indeed P(|S̄n − µ| > ε) → 0 as n → ∞. Since this holds for any ε, we have shown that
S̄n tends to µ in probability.

2. We need to show that if Yn ∼ Exp(n) and Y ≡ 0, FYn(x) → FY (x) for all x such that FY is
continuous at x. Note that FY (x) = P(Y ≤ x) is equal to 0 if x < 0 and 1 if x > 0, so is continuous
everywhere except at 0. Therefore we need to show that P(Yn ≤ x) → 0 as n → ∞ for any x > 0
and P(Yn ≤ x)→ 1 as n→∞ for any x > 0. The first of these points is obvious since P(Yn < 0) = 0
for all n. For the second point we can just calculate P(Yn ≤ x) =

∫ x
0 ne

−ny dy = 1 − e−nx. This
does tend to 1 as n→∞, so we are done.

20. The key point here is that we know, for any µ, σ ∈ R, that (2πσ2)−1/2
∫∞
−∞ exp(−(x−µ)2/(2σ2)) dx =

1, because it is the integral of a probability density function.

We wish to calculate for Z ∼ N (0, 1):

E(etZ) =
1√
2π

∫ ∞
−∞

etxe−x
2/2 dx.

The trick is that e−(x−t)2/2 = etxe−x
2/2e−t

2/2 so that the above is equal to

et
2/2

(
1√
2π

∫ ∞
−∞

e−(x−t)2/2 dx

)
= et

2/2 × 1 = et
2/2

as required.

By applying a change of variables, we can extend this to show that when Z ∼ N (0, σ2), E(etZ) =
et

2σ2/2 for any t.

3. By induction it suffices to consider the case n = 2. Moreover, by subtracting µ1 from Y1 and µ2

from Y2, it suffices to consider the case µ1 = µ2 = 0.

So suppose that Y1 ∼ N (0, σ2
1) and Y2 ∼ N (0, σ2

2). Then for any x ∈ R,

P(Y1 + Y2 ≤ x) =
∫∫
{y1+y2≤x}

1√
2πσ1

e−y
2
1/(2σ

2
1) 1√

2πσ2
e−y

2
2/(2σ

2
2)dy1dy2

= 1
2πσ1σ2

∫∞
−∞

∫ x−y2
−∞ e−y

2
1/(2σ

2
1)e−y

2
2/(2σ

2
2) dy1dy2

= 1
2πσ1σ2

∫∞
−∞

∫ x
−∞ e

−(u−y2)2/(2σ2
1)e−y

2
2/(2σ

2
2)dudy2

where the last line follows by making the change of variables u(y1) = y1 + y2. Next, we can switch
the order of integration to rewrite this as

1

2πσ1σ2

∫ x

−∞
e−u

2/(2σ2
1)

∫ ∞
−∞

e
− y22

2(σ21σ
2
2/σ

2
1+σ

2
2) e

uy2
σ21 dy2du
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where we know by the previous exercise that writing σ2 = (σ2
1σ

2
2/σ

2
1+σ2

2) we have 1√
2πσ

∫∞
−∞ e

tye−y
2/2σ2

=

et
2σ2/2 for all t. Substituting this in, we see that∫ ∞

−∞
e
− y22

2(σ21σ
2
2/σ

2
1+σ

2
2) e

uy2
σ21 dy2 = σ1σ2

√
2π

1√
σ2

1 + σ2
2

e
u2

2σ41

σ21σ
2
2

σ21+σ
2
2

and hence

P(Y1 + Y2 ≤ x) =
1√

2π(σ2
1 + σ2

2)

∫ x

−∞
e
−u

2

2
1

σ21
(1− σ22

σ21+σ
2
2

)
=

1√
2π(σ2

1 + σ2
2)

∫ x

−∞
e
− u2

2(σ21+σ
2
2) .

This says that Y1 + Y2 ∼ N (0, σ2
1 + σ2

2), as required.

4. We first note that Z = (Z1, . . . , Zn) is a Gaussian vector, by the previous exercise. Now let X =
(X1, . . . , Xn). Recalling the definition of a Gaussian vector, we need to show that Y := b1X1 + · · ·+
bnXn is normally distributed for any b = (b1, . . . , bn) ∈ Rn. But Y = bTX and X = AZ + a by
definition, so

Y = bT (AZ) + bTa = (Ab)TZ + bTa

where (Ab)TZ is normal since Z is multivariate Gaussian. Therefore Y is a normal random variable
plus a real number, meaning that it is also Gaussian.

By linearity of expectation (and since the mean vector of Z is 0 by definition) the mean vector of
X is just equal to a. To calculate the covariance matrix, observe (or check!) that adding a constant
vector does not affect this, so

cov(Xi, Xj) = cov((AZ)i, (AZ)j) = E((AZ)i(AZ)j) = E((
n∑
k=1

AikZk)(
n∑
k=1

AjkZk)),

where the penultimate equality follows since E((AZ)i) = 0 for i = 1, . . . , n. Multiplying out the
sums inside the expectation, and since E(ZiZj) = E(Zi)E(Zj) = 0 for i 6= j by independence and
E(Z2

i ) = 1 for all i, this expectation is equal to
∑n

k=1AikAjk = (ATA)ij . In other words, the
covariance matrix of X is equal to ATA.

5. If X1 ∼ N (µ, σ2) in the setting of the CLT, then Sn ∼ N (nµ, nσ2) for every n (since the sum of
independent Gaussians is Gaussian, with mean the sum of the means and variance the sum of the
variances). So

Sn − nµ√
nσ2

∼ N (0, 1)

for every n. In particular it converges in distribution to a standard normal as n→∞!
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3 Conditional Expectation
Complementary reading: [1, §1.4] and [2, Appendix A].

3.1 Preliminary definitions

Definition 3.1 (Partition). Suppose that (Ω,F ,P) is a probability space and B1, B2, . . . ∈ F . The collec-
tion (Bi)i≥1 is said to form a partition of Ω if:

• they are pairwise disjoint, i.e., Bi ∩Bj = ∅ if i 6= j;

• they cover Ω, i.e., ∪kBk = Ω.

Lemma 3.2 (Law of total probability). If (Bi)i≥1 form a partition of (Ω,F ,P) and A ∈ F , then

P(A) =
∑
i≥1

P(A|Bi)P(Bi). (61)

Proof. Since the (Bi)i cover Ω it holds that A = ∪i≥1(A ∩ Bi), and since they form a partition, these
are disjoint events. It therefore follows that P(A) =

∑
i≥1 P(A ∩ Bi) = P(A|Bi)P(Bi), where the second

equality comes from the definition of conditional probability.

Definition 3.3 (Expectation given an event). Suppose that X is an integrable random variable on a
probability space (Ω,F ,P), and A ∈ F . Then the conditional expectation of X given A is defined by

E(X|A) =
E(X1A)

P(A)
. (62)

Note that this coincides with the definition of conditional probability when X = 1B for an event B.

Example 3.4. Suppose that X is a discrete random variable on (Ω,F ,P) taking values in X ⊂ R. Then
for A ∈ F :

E(X|A) =
∑
x∈X

xP(X = x|A). (63)

Compare this expression with the usual definition of expectation for discrete random variables.

Lemma 3.5 (Law of total expectation). If (Bi)i≥1 form a partition of (Ω,F ,P) and X is an integrable
random variable defined on (Ω,F ,P) then

E(X) =
∑
i≥1

E(X|Bi)P(Bi). (64)

Proof. When X is a positive discrete random variable, this follows from the law of total probability. For
general X this follows from the definition of expectation (after a bit of work).

Exercises from §3.1

Exercise 3.1. Suppose you have two fair (6-sided) dice, one red and the other blue. The two dice are
rolled independently. Let X be the score on the red die and Y be the score on the blue die. Calculate the
following.

(i) E(X | X is even);

(ii) E(X | X is odd);

(iii) E(X + Y | X + Y is even);

(iv) E(X + Y | X + Y is odd).
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3.2 Conditioning on a σ-field

The next step is to define conditional expectation of a random variable given a σ-field, rather than given
an event. Informally, this is the expected value of the random variable given all the information contained
in the σ-field. In particular, it is a random variable (that is measurable with respect to the σ-field in
question) and not just a number (like ordinary expectation).

To begin, suppose that (Bi)i≥1 form a countable partition of (Ω,F ,P). Let G be the σ-field generated
by (Bi)i≥1. If X is an integrable random variable on (Ω,F ,P) then the conditional expectation of X
given G is defined by:

Definition 3.6 (Conditional expectation given a partition).

E(X|G) =
∑
i=1

E(X|Bi)1Bi , (65)

where the terms E(X|Bi) are defined by Definition 3.3. So this is a random variable that is equal to
E(X|Bi) on the event Bi for every i.

Example 3.7. Suppose that Ω = [0, 1], F = B([0, 1]) and P((a, b)) = b − a for all (a, b) ⊂ [0, 1]. Let
U(ω) = ω so that U is a uniform random variable on [0, 1] (like we saw in §1). Then if Bi = [ i−1

n , in ] for
1 ≤ i ≤ n,

E(U |Bi) =
E(U1Bi)

P(Bi)
= n.

∫ i/n

(i−1)/n
dx = (i− 1

2
) (66)

for each i (using in the second equality that the probability density function for U is just 1 on [0, 1] and 0
elsewhere). So if G = σ({B1, · · · , Bn}) then

E(U |G) =

n∑
i=1

(i− 1

2
)1Bi . (67)

In other words, E(U |G) : [0, 1]→ R is the random variable that is equal to the “middle” of the interval Bi
on each Bi.

The general definition is a bit more abstract.

Definition 3.8 (Conditional expectation given a σ-field). Suppose that (Ω,F ,P) is a probability space,
G ⊂ F is a sub σ-field, and X is an integrable random variable. Then there exists a unique integrable
random variable Y such that:

• Y is G-measurable;

• E(Y 1A) = E(X1A) for every A ∈ G.

This unique random variable Y is called the conditional expectation of X given G and is denoted by

E(X|G). (68)

The existence of this random variable can be deduced via approximation from the case where G =
σ((Bi)i≥1) for (Bi)i a partition, but this will not be done here. See [1, Appendix 6] for a proof.

Example 3.9. Consider again the example where X is the outcome of a fair die roll and G = σ(E) where
E is the event that the roll is even. Then G is generated by the partition E,Ec of Ω so

E(X|G) = E(X|E)1E + E(X|Ec)1Ec =
2 + 4 + 6

3
1E =

1 + 3 + 5

3
1Ec = 41E + 31Ec . (69)

That is, E(X|G) is the random variable equal to 4 on the event that the dice roll is even and equal to 3
on the event that it is odd.
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Conditioning on a random variable

Finally, let us define conditional expectation given a random variable, which is a special case of
conditional expectation given a σ-algebra.

Definition 3.10. Suppose that X is an integrable random variable on (Ω,F ,P) and that Y is another
random variable on (Ω,F ,P). Then the conditional expectation of X given Y is defined by

E(X|Y ) = E(X|G) ; G = σ(Y ). (70)

Example 3.11. If X,Y are discrete random variables taking values in X ,Y respectively, then

E(X|Y ) =
∑
y∈Y

1{Y=y}E(X|Y = y) =
∑
y∈Y

(∑
x∈X

xP(X = x|Y = y)

)
(71)

Exercises from §3.2

Exercise 3.2. In the set up of Definition 3.6, verify that:

• E(X|G) is G-measurable;

• E(X|G) is integrable and E(E(X|G)) = E(X);

• for any A ∈ G E(X1A) = E(E(X|G)1A).

Exercise 3.3. When G = {∅,Ω} show that E(X|G) is just equal to E(X).

Exercise 3.4. Take the set-up of Exercise 3.1. What is E(X|Y )? What about E(X + Y |Y )?

Exercise 3.5. Suppose that a bacteria colony starts with a single bacterium and every second, any bac-
terium alive in the colony either dies with probability 1 − p or splits into two with probability p. Write
Zn for the size of the colony after n seconds (so Z0 = 1). Let Gn be the σ-algebra generated by the first n
seconds of activity, i.e., by Z0, . . . , Zn. What is E(Zn+1|Gn)?

3.3 Properties of conditional expectation

Lemma 3.12 (Basic properties). Let X,Y be integrable random variables on (Ω,F ,P) and G ⊂ F a
σ-field. Then:

(i) E(E(X|G)) = E(X);

(ii) if X is G-measurable then E(X|G) = X a.s.;

(iii) if X is independent of G then E(X|G) = E(X) a.s.;

(iv) if X ≥ 0 then E(X|G) ≥ 0 a.s.;

(v) for any a, b ∈ R, E(aX + bY |G) = aE(X|G) + bE(Y |G);

Lemma 3.13 (Conditional Jensen’s inequality). If X is a random variable on (Ω,F ,P) and φ : R → R
is a convex function such that φ(X) is integrable, G ⊂ F a sub σ-field, then

φ(E(X|G)) ≤ E(φ(X)|G) a.s. (72)

Observe that taking G = {∅,Ω} gives the unconditional version of Jensen’s inequality. If φ is convex
and φ(X) is integrable then

φ(E(X)) ≤ E(φ(X)). (73)
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Proof. Let us admit without proof that any convex function φ is the supremum of countably many
affine functions. That is, φ(x) = supk(akx + bk) for all x, for some countable collection (ak, bk)k. In
particular, for each k it holds that φ(x) ≥ akx+ bk. By Lemma 3.12(iv) and (v), it therefore follows that
E(φ(X)|G) ≥ akE(X|G) + bk a.s. for each k, and so (since the supremum is over a countable set)

E(φ(X)|G) ≥ sup
k

(akE(X|G) + bk) = φ(E(X|G)) a.s. (74)

as desired.

Note in particular this implies
|E(X|G)|p ≤ E(|X|p|G) a.s. (75)

for any p ≥ 1, and so by Lemma 3.12(i) if Y = E(X|G) then

E(|Y |p) ≤ E(|X|p). (76)

This property is sometimes described by saying that conditioning is a contraction for pth moments.
Let us also mention here that the results concerning convergence of expectations (Fatou’s lemma, the

monotone convergence theorem, the dominated convergence theorem) have conditional versions (that are
exactly the same, replacing expectations by their conditional counterparts).

Lemma 3.14 (Tower law). Suppose that (Ω,F ,P) is a probability space, H ⊂ G are sub σ-fields and X
is an integrable random variable. Then

E(E(X|G)|H) = E(X|H) a.s. (77)

Proof. By definition of conditional expectation E(E(X|G)|H), it suffices to check that E(X|H) is H-
measurable and E(E(X|G)1A) = E(E(X|H)1A) for all A ∈ H. The first property holds by definition of
E(X|H). The second holds since any such A is both H- and G-measurable, meaning that E(E(X|H)1A) =
E(X1A) by definition of E(X|H) and E(E(X|G)1A) = E(X1A) by definition of E(X|G).

Lemma 3.15 (Taking out what is known). Suppose that (Ω,F ,P) is a probability space, G is a sub σ-field,
X is an integrable random variable, and Y is a bounded and G-measurable random variable. Then

E(XY |G) = Y E(X|G) a.s. (78)

Proof. First suppose that Y = 1B for some B ∈ G. Then it is immediate that Y E(X|G) is G-measurable,
and for any A ∈ G it holds that E(1BE(X|G)1A) = E(1A∩BE(X|G)) = E(X1A∩B) = E(XY 1A). Thus
the lemma is proved in this case. The result extends to positive random variables X,Y by linearity
of expectation and the monotone convergence theorem (approximating X,Y by finite weighted sums of
indicator functions). The general case follows by writing X = X+−X− and Y = Y +−Y − with X±, Y ±

non-negative.

Remark 3.16. The assumption that Y is bounded, is to ensure that XY is integrable. In fact, by
the Cauchy–Schwarz inequality, it is enough to assume that instead E(X2),E(Y 2) < ∞. (There is also
an extension to the Cauchy–Schwarz inequality called Hölder’s inequality, which implies that E(Xp) <
∞,E(Y q) <∞ for any (1/p) + (1/q) = 1 is enough).

Exercises from §3.3

Exercise 3.6. Prove the properties in Lemma 3.12.

Exercise 3.7. Going back to the setting of Exercise 3.5 from §3.2, what is E(Zn+m|Gn) for m > 1?
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Solutions to exercises from §3

1. (i) For i = 1, 3, 5, P(X = i|X is even) = P(X = i and X is even)/P(X is even) = 0/(1/2) = 0
since X cannot be equal to 1, 3 or 5 and also be even. On the other hand, for i = 2, 4, 6,
P(X = i|X is even) = P(X = i and X is even)/P(X is even) = (1/6)/(1/2) = 1/3, since
P(X = i and X is even) is just P(X = i) = 1/6 for i = 2, 4, 6. Therefore, by definition

E(X|X is even) = 1.0 + 2.(1/3) + 3.0 + 4.(1/3) + 5.0 + 6.(1/3) =
2 + 4 + 6

3
= 4.

(ii) Similarly

E(X|X is odd) = 1.(1/3) + 2.0 + 3.(1/3) + 4.0 + 5.(1/3) + 6.0 =
1 + 3 + 5

3
= 3.

(iii) Now P(X + Y = 2) = P(X + Y = 12) = 1/36, P(X + Y = 3) = P(X + Y = 11) = 2/36,
P(X+Y = 4) = P(X+Y = 10) = 3/36, P(X+Y = 5) = P(X+Y = 9) = 4/36, P(X+Y = 6) =
P(X + Y = 8) = 5/36 and P(X + Y = 7) = 6/36. Therefore, P(X + Y is even) = 18/36 = 1/2
and

E(X + Y |X + Y is even) = 2.
1/36

1/2
+ 4.

3/36

1/2
+ 6.

5/36

1/2
+ 8.

5/36

1/2
+ 10.

3/36

1/2
+ 12.

1/36

1/2
= 7.

(iv) Similarly,

E(X + Y |X + Y is odd) = 3.
2/36

1/2
+ 5.

4/36

1/2
+ 7.

6/36

1/2
+ 9.

4/36

1/2
+ 11.

2/36

1/2
= 7.

Note that by symmetry E(X + Y ) = 7 and so we didn’t really need to do (iv) once we knew
the answer to (iii), because by the law of total expectation

7 = E(X + Y ) = E(X + Y |X + Y is even)P(X + Y is even) + E(X + Y |X + Y is odd)P(X + Y is odd)

= 7
1

2
+ E(X + Y |X + Y is odd)

1

2

and we could have already deduced that E(X + Y |X + Y is odd) = 7.

2. We need to check that Y :=
∑

i≥1 E(X|Bi)1Bi satisfies the three defining properties of conditional
expectation with respect to G = σ({Bi}i≥1). First, Y is clearly G-measurable since it is a weighted
sum of indicator functions of events in G. It is also integrable since |Y | = |

∑
i≥1 E(X|Bi)1Bi | ≤∑

i≥1 E(|X||Bi)1Bi and the right hand side is the increasing limit of Zn :
∑n

i=1 E(|X||Bi)1Bi , so by
the monotone convergence theorem has finite expectation equal to limn E(Zn) = limn

∑n
i=1 E(|X||Bi)P(Bi) =

limn E(|X|1B1···∪...Bn) = E(|X|). Similarly we have

E(Y ) = E(
∑
i≥1

E(X|Bi)1Bi) =
∑
i≥1

E(E(X|Bi)1Bi) =
∑
i≥1

E(X|Bi)P(Bi) = E(X)

by the law of total expectation. Finally, we need to check that E(Y 1A) = E(X1A) for any A ∈ G.
However, any A ∈ G is a union of events Bi for some collection of i; therefore it suffices to check the
claim with A = Bj for some fixed j. But then

E(Y 1Bj ) = E(
∑
i≥1

E(X|Bi)1Bi1Bj ) = E(E(X|Bj)1Bj ) = E(X|Bj)P(Bj) = E(X1Bj )

as required, where the first equality follows since 1Bj1Bi = 1Bj if j = i and 0 if i 6= j.
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3. We need to check that the constant variable Y := E(X) satisfies the three defining properties of
conditional expectation with respect to G = {∅,Ω}. First, Y is measurable with respect to G since
Y −1((−∞, x]) = {ω ∈ Ω : Y (w) ≤ x} = {ω : E(X) ≤ x} which is the empty set if x < E(X) and Ω
otherwise. Secondly it is integrable, since it is constant, with E(Y ) = E(X). Finally, if A ∈ G then
A = ∅ or A = Ω, so we just need to check that E(Y 1∅) = E(X1∅) and E(Y 1Ω) = E(X1Ω). This
is immediate: the first equality follows since 1∅ ≡ 0 and the second since 1Ω ≡ 1. Note that this
should be interpreted as saying that E(X|“no information”) = E(X).

4. SinceX and Y are independent, we have E(X|Y ) = E(X). More concretely, E(X|Y ) =
∑6

i=1 E(X|Y =
i)1Y=i where E(X|Y = i) =

∑6
j=1 jP(X = j|Y = i) =

∑6
j=1 j/6 = 3.5 for each i (by independence)

⇒ E(X|Y ) =
∑6

i=1 3.51Y=i ≡ 3.5 = E(X).

It is straightforward to check from the abstract definition that E(Z1 + Z2|G) = E(Z1|G) + E(Z2|G)
for any integrable Z1, Z2. Therefore E(X + Y |Y ) = E(X|Y ) + E(Y |Y ) = 3.5 + Y . (One can also
check that 3.5 + Y does satisfy the defining properties of conditional expectation, and therefore
must be the right answer).

5. For each bacteria in the colony at time n, there will be an average of 2.p+ 0.(1−p) = 2p bacteria in
the colony at time n+ 1. It is therefore natural to guess that E(Zn+1|Gn) = 2pZn. So let us check
that 2pZn satisfies the properties of conditional expectation. Firstly, it is Gn measurable, since it is
just a multiple of Zn. As Zn ≤ 2nZ0, it is also bounded and therefore integrable, with expectation

2pE(Zn) = 2pE(
∑
i≥1

1i≤Zn)

= 2
∑
i≥1

P(i ≤ Zn)P(“ith bacterium at stage n splits into two”)

= 2
∑
i≥1

P(i ≤ Zn ∩ “ith bacterium at stage n splits into two”)

= E(
∑
i≥1

2.1{i≤Zn∩“ith bacterium at stage n splits into two”})

= E(Zn+1)

where the third line follows by independence. We can similarly check that E(2pZn1A) = E(Zn+11A)
for any A ∈ Gn, and hence E(Zn+1|Gn) is indeed equal to 2pZn.

6. (i) This follows from the second defining property of conditional expectation, taking A = Ω.

(ii) If X is G measurable, then Y = X is clearly integrable, G-measurable, and satsifies E(X1A) =
E(Y 1A) for any A ∈ G. Therefore E(X|G) must be equal to X = Y .

(iii) E(X) is a G-measurable random variable for any G since {ω : E(X)(w) ≤ x} is either Ω (if
x ≥ E(X)) or ∅ (otherwise), and ∅,Ω must be elements of the σ-field G. It is also clearly
integrable, and for any A which is G-measurable E(E(X)1A) = E(X)P(A). By independence
of X and 1A, this last expression is equal to E(X1A), so indeed E(X|G) = E(X).

(iv) If X ≥ 0, set E(X|G) = Y so that Y is G-measurable by definition. Then the event A =
{Y < 0} must be an element of G, and therefore E(X1A) = E(Y 1A). Now the right-hand
side is clearly negative, so the left-hand side must be negative. But the left-hand side is also
positive since X1A ≥ 0 a.s. Therefore we must have E(Y 1{Y <0}) = 0. This implies that
E(X|G) = Y ≥ 0 a.s.

(v) We need to check that Z := aE(X|G) + bE(Y |G) satisfies the defining properties for the condi-
tional expectation E(aX+bY |G). Since E(X|G) and E(Y |G) are G-measurable by definition, Z
is also G-measurable. Similarly it is integrable as a sum of integrable random variables. Finally
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if A ∈ G, then E(Z1A) = E(aE(X|G)1A + bE(Y |G)1A) = aE(E(X|G)1A) + bE(E(Y |G)1A) just
by linearity of (non-conditional) expectation. But this is equal to aE(X1A)+ bE(Y 1A) by def-
inition of E(X|G) and E(Y |G), and finally by linearity again, this is equal to E((aX + bY )1A).
This completes the check.

7. Recall that we showed in a previous exercise that E(Zn+1|Gn) = 2pZn for any n. We will use the
tower law to repeat this step and deduce that E(Zn+m|Gn) = (2p)mZn for any n and m ≥ 2. More
precisely, since Gn ⊂ Gn+m−1 for m ≥ 2, we can write

E(Zn+m|Gn) = E(E(Zn+m|Gn+m−1)|Gn) = 2pE(Zn+m−1|Gn)

by the tower law and the aforementioned “one-step” result. Repeating this m− 1 times we obtain
that

E(Zn+m|Gn) = (2p)m−1E(Zn+1|Gn) = (2p)mZn.
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4 Stochastic processes
Complementary reading: [1, §1.2] and [2, Appendices B & C].

4.1 Stochastic processes in discrete and continuous time

Definition 4.1 (Stochastic processes in time). Let (Ω,F ,P) be a probability space and T be a subset of
R. Then a stochastic process

X = (Xt)t∈T (79)

is a collection of random variables Xt for each t ∈ T . That is, for any t ∈ T ,

Xt : Ω→ R (80)

is a random variable (= F-measurable function).

So for each fixed ω ∈ Ω, the map X(ω) taking t 7→ Xt(ω) is a function from T → R, or an element of
RT . This is called a trajectory or sample path of the stochastic process.

Caution/Aside: one can ask if the map taking ω to the associated trajectory X or function above is
measurable in some sense. That is, if some topology is put on the space of functions RT from T → R,
does it hold that {ω ∈ Ω : X(ω) ∈ A} ∈ F for all open sets A of RT . This, naturally, is not the case
for an arbitrary topology on RT . It is however the case when RT is given the product topology; that
is the topology generated by sets of the form {(Y (t))t∈T ∈ RT : Y (t1) ∈ (a1, b1), . . . , Y (tn) ∈ (an, bn)}
for some n ∈ N, t1, . . . , tn ∈ T and a1, b1, . . . , an, bn ∈ R. This is what makes the finite dimensional
distributions of a stochastic process (to be discussed below) particularly important.

Definition 4.2 (Discrete and continuous time). In this course, if T = {0, 1, 2, 3, . . .} then a stochastic
process X = (Xt)t∈T = (X1, X2, . . .) will be referred to as a discrete time stochastic process. In the
general case, usually this will be T = [0,∞) or T = [0, 1], X will be referred to as a continuous time
stochastic process.

Example 4.3. A classic example of a discrete time stochastic process is the simple symmetric random
walk. This is defined from an i.i.d. collection X1, X2, . . . of random variables with P(Xi = 1) = P(Xi =
−1) = 1/2 for i = 1, 2, . . .. The random walk at time n is then Sn =

∑n
i=1Xi. So this is the discrete time

process (“walker”) that moves left or right at every time step with equal probability.
A continuous time version of this process can be defined by letting the moves Xi occur not at fixed

integer times, but after independent exponential waiting times. More precisely, along with X1, X2, . . .,
take a collection T1, T2, . . . of i.i.d. Exp(1) random variables. Then for t ∈ [0,∞) setting Nt = max{n :
T1 + . . .+ Tn < t}, one can define the continuous time random walk St =

∑Nt
i=1Xi.

Definition 4.4 (Finite dimensional distributions). The finite dimensional distributions (fidis) of a
stochastic process X = (Xt)t∈T are the distributions of the random vectors

(Xt1 , . . . , Xtn) (81)

for n ∈ N and (t1, . . . , tn) ∈ Rn.

Two stochastic processes X = (Xt)t∈T and X′ = (X ′t)t∈T are said to be versions of one another if for
every t ∈ T , P(Xt = X ′t) = 1. Two such versions have the same finite dimensional distributions.

Caution/Aside: it is possible to define two stochastic processes on the same probability space that
are versions of one another (and have the same finite dimensional distributions) but do not have the
same sample path properties. For example, let a uniform random variable U on [0, 1] be defined on a
probability space (Ω,F ,P). Define Xt = 0 and X ′t = 1{U=t} for t ∈ [0, 1]. Then X = (Xt)t∈[0,1] and
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X′ = (X ′t)t∈[0,1] both define stochastic processes that are versions of one another with the same finite
dimensional distributions, but the sample paths of X and X ′ clearly differ. For instance, X defines a
continuous function a.s. while X ′ a.s. does not.

So, if one wants to work with a stochastic properties having specific sample path properties with
probability one, then it is necessary to specify which version of the stochastic process is being worked
with.

Properties of stochastic processes

Definition 4.5 (Expectation of a stochastic process). The expectation function of a stochastic process
X = (Xt)t∈T (such that Xt is integrable for every t ∈ T ) is the function µX : T → R defined by

µX(t) = E(Xt) for t ∈ T . (82)

Definition 4.6 (Covariance of a stochastic process). The covariance function of a stochastic process
X = (Xt)t∈T (such that Xt is square-integrable for every t ∈ T ) is the function cX : T × T → R defined
by

cX(t, s) = cov(Xt, Xs) = E((Xt − µX(t))(Xs − µX(s))) for t, s ∈ T . (83)

Definition 4.7 (Variance of a stochastic process). The variance function of a stochastic process X =
(Xt)t∈T (such that Xt is square-integrable for every t ∈ T ) is the function σX : T → R defined by

σX(t) = var(Xt) = E(X2
t )− E(Xt)

2 for t ∈ T . (84)

Example 4.8. Let X = (Xt)t∈[0,1] be such that Xt ∼ N (0, 1) for every t ∈ [0, 1] and Xs, Xt are independent
for s 6= t. Then for any t, s ∈ [0, 1]:

µX(t) = 0 ; cX(t, s) = 0 ; σX(t) = 1. (85)

Now let us describe some special and relevant properties that stochastic processes may possess.

Definition 4.9 (Strict stationarity). A stochastic process X = (Xt)t∈T is said to be strictly stationary
if its finite dimensional distributions do not change under time shifts. That is, if for any t1, . . . , tn ∈ T
and h ∈ R such that t1 + h, . . . , tn + h ∈ T , the random vectors

(Xt1 , . . . , Xtn) and (Xt1+h, . . . , Xtn+h) (86)

have the same distribution.

Definition 4.10 (Stationarity). A stochastic process X = (Xt)t∈T is said to be stationary if for any
t, s ∈ T :

• µX(t) = µX(s) is equal to some constant; and

• cX(t, s) depends only on |s− t|.

Definition 4.11 (Stationarity of increments). A stochastic process X = (Xt)t∈T is said to have station-
ary increments if for any t, s ∈ T and h ∈ R such that t+ h, s+ h ∈ T ,

Xt −Xs and Xt+h −Xs+h (87)

have the same distribution.

Definition 4.12 (Independence of increments). A stochastic process X = (Xt)t∈T independent incre-
ments if for any n ∈ N and t1, . . . , tn ∈ T ,

Xt2 −Xt1 , . . . , Xtn −Xtn−1 (88)

are independent random variables.
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Example 4.13. For example, the random walks from Example 4.3 are have stationary and independent
increments. For the discrete time version this follows directly from the definition. For the continuous
time version, one needs to use the memorylessness property of the exponential distribution: if t, s ≥ 0 and
T ∼ Exp(1) then P(T ≥ t+ s|T ≥ t) = P(T ≥ s).

On the other hand, they are not strictly stationary or stationary (for example, the variance is increasing
in time).

Exercises from §4.1

Exercise 4.1. Compute the mean, variance and covariance functions for the random walks in Exam-
ple 4.3.

Exercise 4.2. Consider the process (Nt)t∈[0,∞) from Example 4.3. Compute its mean and covariance
functions. Show that the process has independent and stationary increments.

Exercise 4.3. Show that strict stationarity implies stationarity (in the case of square integrable stochastic
processes).

4.2 Types of process

Filtrations and adaptedness

Definition 4.14 (Filtration). Suppose that (Ω,F ,P) is a probability space, that T ⊂ R and that Ft ⊂ F
is a σ-field for every t ∈ T . The collection (Ft)t∈T is called a filtration if

Fs ⊂ Ft whenever s, t ∈ T are such that s ≤ t. (89)

Example 4.15. If T = {0, 1, 2, . . . , } then this is equivalent to the condition that Ft ⊂ Ft+1 for all
t = 0, 1, 2, . . .

If (Ω,F ,P) is a probability space, and (Ft)t∈T is a filtration on it, then (Ω,F , (Ft)t,P) is called a
filtered probability space.

Definition 4.16 (Adaptedness). A stochastic process X = (Xt)t∈T is said to be adapted to a a filtration
(Ft)t∈T on (Ω,F ,P) if Xt is Ft-measurable for each t ∈ T .

Example 4.17 (Natural filtration). For a given stochastic process X = (Xt)t∈T one can define the σ-field
Ft generated by (Xs)s≤t,s∈T . That is, Ft := σ({X−1

s (A);A ∈ B(R), t ≥ s ∈ T }). X will always be adapted
to this filtration.

Definition 4.18 (Increasing process). Suppose that T = {0, 1, 2, ...} and that (Ω,F , (Ft)t∈T ,P) is a
filtered probability space. A stochastic process A = (At)t∈T is increasing if:

• it is adapted to (Ft)t∈T ;

• At is integrable for all t ∈ T ; and

• A0 ≤ A1 ≤ . . . with probability one.

Definition 4.19 (Predictable process). Suppose that T = {0, 1, 2, ...} and that (Ω,F , (Ft)t∈T ,P) is a
filtered probability space. A stochastic process C = (Ct)t∈T such that σ(Ct) ⊂ Ft−1 for all t ∈ T is called
a predictable process.

Roughly speaking, the value of a predictable process is “known” at the previous time step.
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Example 4.20. Any deterministic process (Ct)t∈T (i.e., such that for some c0, c1, . . . ∈ R, P(Ct =
ct∀ t ≥ 0) is predictable. This is because σ(Ct) = {∅,Ω} for every t, and this is always in Ft since Ft is
a σ-field.

Definition 4.21 (Continuous and cadlag processes). Suppose that X = (Xt)t∈[0,T ] for some T ∈ [0,∞].
Then X is said to be continuous if its sample paths or trajectories are continuous functions almost surely.

Similarly, X is said to be cadlag if its sample paths admit left limits and are right-continuous at every
point almost surely.

Definition 4.22 (Uniform integrability). A stochastic process X = (Xt)t∈T is said to be uniformly
integrable if

sup
t∈T

E(|Xt|1|Xt|≥K) (90)

converges to 0 as K →∞.

This will be a useful property later on, which ensures that the process is sufficiently well behaved, and
allows one to apply various theorems.

Example 4.23. If Xt = X for all t ∈ T where X is an integrable random variable, then X is uniformly
integrable. This is because

sup
t∈T

E(|Xt|1|Xt|≥K) = E(|X|1|X|≥K) = E(|X|)− E(|X|1|X|≤K) (91)

for each K, and the right hand side goes to 0 as K →∞ by the monotone convergence theorem.

Gaussian processes

In this course, one very important class of stochastic processes are the Gaussian processes. For example,
Brownian motion (which you will see a great deal of later) is a Gaussian process.

Definition 4.24 (Gaussian process). A stochastic process X = (Xt)t∈T is called a Gaussian process,
if and only if all its finite dimensional distributions are multivariate Gaussian (i.e., the distributions of
Gaussian vectors). Equivalently, if and only if for each n ∈ N, (a1, . . . , an) ∈ Rn and (t1, . . . , tn) ∈ T n,

a1Xt1 + . . .+ anXtn (92)

is a Gaussian random variable.

Example 4.25. The process X from Example 4.8 is a Gaussian process. In fact, given T , a function
µ : T → R and a symmetric bilinear form c : T × T → R that is non-negative semidefinite (i.e., for
every n ∈ N, (a1, . . . , an) ∈ Rn and (t1, . . . , tn) ∈ T n it holds that

∑n
i,j=1 aiajc(ti, tj) ≥ 0), there exists a

Gaussian process X with µ = µX and c = cX.

Exercises from §4.2

Exercise 4.4. If Ft = {∅,Ω} for every t ∈ T , show that this defines a filtration. Which processes are
measurable with respect to this filtration? What about if Ft = F for each t ∈ T ?

Exercise 4.5. Suppose that a gambler starts with Z0 pounds, and for every t = 1, 2, 3, · · · can make a
bet of Ct pounds for any 0 ≤ Ct ≤ Zt−1, where Zt−1 pounds is their total fortune at time t− 1. At each
t ≥ 1, they will win back what they bet plus the same again with probability 1/2, or lose what they bet
with probability 1/2, so that Zt = Zt−1 + Ct or Zt = Zt−1 − Ct with equal probability. Let (Ft)t≥0 be the
natural filtration generated by (Zt)t≥0.
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Suppose that the betting strategy is to always bet everything available. In this case, is Ct a predictable
process for the filtration (Ft)t≥0? What if the gambler decides to flip a coin, and then bet nothing if it
lands tails or everything if it lands heads?

Exercise 4.6. Suppose that for some supt∈T E(|Xt|2) < ∞. Show that (Xt)t∈T is uniformly integrable.
(Hint: you may want to use the Cauchy–Schwarz inequality).

Exercise 4.7. (? Challenge ?) Suppose that (Xt)t=0,1,2 is uniformly integrable and converges to X∞ in
probability as t → ∞. Show that Xt → X∞ in L1. Let X1, X2, . . . be i.i.d. N (0, 1) Gaussian random
variables. Set S0 = 0 and let St =

∑t
i=1Xi for t ≥ 1. Show that (St)t∈T is a discrete time Gaussian

process. Compute its mean and covariance functions.
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Solutions to exercises from §4

1. The discrete time SSRW has E(Sn) = E(
∑n

i=1Xi) =
∑n

i=1 E(Xi) = 0 so µS ≡ 0. The same holds by
linearity of expectation for the continuous time symmetric random walk. The expectation function
of the process (Nt)t≥0 is more interesting. Note that P(Nt ≥ n) = P(T1 + · · · + Tn ≤ t), where
T1 + · · · + Tn is a sum of independent Exp(1) random variables. The distribution of T1 + · · · + Tn
is called a Gamma distribution with parameters n and 1. In particular, P(T1 + · · · + Tn ≤ t) =
e−t
∑∞

k=t t
k/k!, which is the probability that a Poisson random variable with parameter t is greater

than or equal to t. We therefore have Nt ∼ Poi(t), and so E(Nt) =
∑

t≥0 e
−t∑∞

k=t t
k/k! = t. This

means that the expectation function of N is given by µN (t) = t for t > 0.

Now for the covariance functions. In the discrete time SSRW case, if m < n,

E(SnSm) = E(

n∑
i=1

Xi

m∑
j=1

Xj) = E(

m∑
i=1

X2
i ) + E(

∑
i 6=j

XiXj) =

m∑
i=1

E(X2
i ) + 0 = m

(since E(XiXj) = E(Xi)E(Xj) = 0 for i 6= j and E(X2
i ) = 1 for each i. Since E(Sn)E(Sm) = 0, this

implies that cov(Sn, Sm) = m. So,

cS(n,m) = min{n,m} for n,m ∈ N.

For the continuous time symmetric random walk we have St =
∑∞

i=1Xi1Nt≥i and therefore E(StSs) =
E(
∑∞

i,j=1XiXj1Nt≥i1Ns≥j) where E(X2
i 1Nt≥i1Ns≥i) = P(Nmin{s,t} ≥ i) by independence of (Xi)i

and (Nt)t; similarly E(XiXj1Nt≥i1Ns≥j) = 0 for i 6= j. Thus

E(StSs) =
∞∑
i=1

P(Nmin{s,t} ≥ i) = E(Nmin{s,t}) = min{s, t} for s, t ≥ 0

and the covariance function of the continuous time SSRW is also given by cS(s, t) = min{s, t}.

2. For the Poisson process (Nt)t≥0, we calculated the expectation function in the previous exercises.
It also follows from the memorylessness property of the exponential distribution that if t ≥ s: Ns

and (Nt −Ns) are independent, and Nt −Ns has the same distribution Nt−s. More generally, the
memorylessness property implies that N has stationary and independent increments.

This also helps us to calculate the covariance function. Namely, it means that E(NtNs) = E(N2
s +

(Nt −Ns)Ns) = E(N2
s ) + E(Ns)E(Nt −Ns) where Ns ∼ Poi(s) has E(Ns) = s and E(N2

s ) = s+ s2,
while E(Nt −Ns) = E(Nt−s) = t− s. Hence

cov(Nt, Ns) = E(NtNs)− E(Nt)E(Ns) = s+ s2 − s(t− s)− st = s⇒ cN (s, t) = min s, t for s, t ≥ 0.

3. Strict stationarity implies that E(Xt) = E(Xt+h) for any t, t + h ∈ T . This implies that the
expectation function is constant. Suppose s, t and s′, t′ are all in T and |s − t| = |s′ − t′|. Then
without loss of generality we may assume that s ≤ t, s′ = s+ h and t′ = t+ h for h > 0. Applying
the strict stationarity assumption gives that c(s, t) = c(s′, t′).

4. We know that each Ft is a sub σ-field of F for every t. And it is obviously increasing, so does define
a filtration. But a random variable is measurable with respect to {∅,Ω} iff it is constant, i.e. equal
to some fixed value with probability one (as deduced in an earlier exercise). Thus, any process that
is measurable with respect to this filtration must be a deterministic function.

Similarly, Ft ≡ F defines a filtration. But now, all random variables are measurable with respect
to Ft for any t: thus any stochastic process is measurable with respect to this filtration.
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5. In the first case, Ct = Zt−1 so is Ft−1 measurable for every t. This means that the process
C = (Ct)t=0,1,2... is predictable. In the second case Ct = Zt−11A, where A is the event that the coin
flipped at time t is heads, and in particular is independent of Ft−1. This means that Ct is not Ft−1

measurable (for example the event Ct > 0 is not in Ft−1) and so C is not predictable.

6. For any K and t ∈ T we have E(|Xt|1|Xt|≥K) ≤ E(|Xt|2)1/2P(|Xt| ≥ K)1/2 by the Cauchy–Schwarz
inequality, while P(|Xt| ≥ K) ≤ E(|Xt|2)/K2 by Markov’s inequality. Hence

sup
t∈T

E(|Xt|1|Xt|≥K) ≤ sup
t∈T

E(|Xt|2)

K

which by the assumption that supt∈T E(|X2
t |) < ∞ does tend to 0 as K → ∞. Thus (Xt)t∈T is

uniformly integrable.
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5 Martingales
Complimentary reading: [1, §1.5].

5.1 Definitions

Another class of stochastic processes that are extremely important in financial mathematics (and in fact
generally in probability theory) are martingales. Informally, these have the special property that given
the values of the process up to time T , the value at any later time has conditional expectation equal to
the value observed at time T . For instance, one might consider the wealth of a gambler over time if they
are playing a completely fair game.

Definition 5.1 (Continuous time martingale). Suppose that T ∈ [0,∞]. A stochastic process X = (Xt; t ∈
[0, T ]) on a filtered probability space (Ω,F , (Ft)t∈[0,T ],P) is called a (continuous time) martingale if:

(1) it is adapted;

(2) Xt is integrable for every t ∈ [0, T ];

(3) E(Xt|Fs) = Xs a.s. for all 0 ≤ s < t ≤ T .

Remark 5.2. If (1) and (2) hold and = is replaced with ≤ (respectively ≥) in condition (3) above, the
process is called a supermartingale (respectively a submartingale).

Definition 5.3 (Discrete time martingale). A stochastic process X = (Xt; t = 0, 1, 2, . . .) on a filtered
probability space (Ω,F , (Ft)t∈[0,T ],P) is called a (discrete time) martingale if:

(1) it is adapted;

(2) Xt is integrable for every t ∈ [0, T ];

(3) E(Xt|Ft−1) = Xt−1 a.s. for all t = 0, 1, 2, . . ..

Remark 5.4. Submartingales and supermartingales are also defined similarly in this case.

Remark 5.5. An important property of martingales is that they have constant expectation. That is,
for any s, t ∈ T

E(Xt) = E(E(Xt|Fs)) = E(Xs) (93)

(This follows from the basic property of conditional expectation, that if X is a random variable and
G is a σ-algebra, then E(E(X|G)) = E(X).)

Examples

Example 5.6 (Random walk). A classical example of a discrete (resp. continuous) time martingale (with
respect to its own natural filtration) is the discrete (resp. continuous) time random walk from the previous
chapter.

To check this, let us consider the discrete time version (St)t=0,1,.... If the filtration is set to be Ft =
σ(S0, . . . , St) for each t ≥ 0 then S is clearly adapted to this filtration. Moreover, since the walker can
only take steps of size ±1, it holds that |St| ≤ t and so St is integrable for every t. So it only remains to
check condition (3). This follows since St =

∑t
i=1Xi, which means that

E(St|Ft−1) = E(St−1 +Xt|Ft−1) = E(St−1|Ft−1) + E(Xt|Ft−1) = St−1 + E(Xt) = St−1 (94)

with probability one. The second inequality here follows by linearity of conditional expectation, and the
third since St−1 is measurable with respect to Ft−1, while Xt is independent of it. The final equality holds
since E(Xt) = (−1)× P(Xt = −1) + 1× P (Xt = 1) = −1/2 + 1/2 = 0.
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Example 5.7 (Closed martingale). Suppose that (Ω,F , (F)t∈T ,P) is a filtered probability space, with
T = {0, 1, 2, . . .} or T = [0, T ] for T ∈ [0,∞]. Suppose that X is an integrable random variable on
(Ω,F ,P). Then

(Xt)t∈T := (E(X|Ft))t∈T (95)

is a martingale in discrete/continuous time.

Theorem 5.8 (Doob–Meyer decomposition theorem). Suppose that T = {0, 1, . . .} and that X = (Xt)t∈T
is a stochastic process on (Ω,F , (Ft)t∈T ,P). Then X is a submartingale if and only if it is the sum of a
martingale and an increasing predictable process.

Proof. Suppose first that X = (Xt)t=0,1,... is a submartingale. Define

A0 = 0 ; At = E(Xt −Xt−1|Ft−1) for t ≥ 1 ; Mt = Xt −At for t ≥ 0. (96)

Then it is clear by linearity of conditional expectation that Mt is a martingale. So it remains to show
that A is an increasing predictable process. The fact that A is predictable follows from the definition,
since At is a conditional expectation with respect to Ft−1, so must therefore be Ft−1-measurable. The
fact that A is increasing follows from the assumption that X is a submartingale.

Conversely, if X = M + A is the sum of a martingale and a predictable, increasing process then it is
easy to check that

E(Xt|Ft−1) = E(Mt|Ft−1) + E(At|Ft−1) = Mt−1 +At ≥Mt−1 +At−1 = Xt−1, (97)

and so X is a submartingale.

Exercises from §5.1

Exercise 5.1. Verify that the process in Example 5.7 is a martingale, with respect to the filtration (Ft)t∈T ,
using the tower property of conditional expectation.

Exercise 5.2. Suppose that (Xt)t∈T is a martingale (in discrete or continuous time) and that φ : R→ R
is a convex function such that φ(Xt) is integrable for every t. Show, using conditional Jensen’s inequality,
that (φ(Xt))t∈T is a submartingale.

5.2 Applications

Optional stopping

The definition of a martingale (Xt)t∈T means that, for any t = 0, 1, . . . (discrete case) or in [0, T ] (con-
tinuous case), the expectation E(Xt) is constant. In fact this holds for a more general class of times t,
that are allowed to be random. For a time τ to be in this class, it essentially suffices that for every t ∈ T ,
the filtration (that X is a martingale with respect to) up to time t “knows” whether or not τ has already
happened.

Definition 5.9 (Stopping time). Suppose that T = [0, T ] for T ∈ [0,∞] or T = {0, 1, . . .}. Let
(Ω,F , (Ft)t∈T ,P) be a filtered probability space. Then a random variable τ : Ω → T is a stopping
time (for this filtered probability space) if the event

{τ ≤ t} ∈ Ft for all t ∈ T . (98)

Remark 5.10. In the discrete case this is equivalent to the property that {τ = t} ∈ Ft for every
t = 0, 1, . . ..
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Example 5.11. Consider the discrete time random walk from Example 5.6. Let τ = min{t : St = 10} be
the first time that the walk hits 10: this is called a (first) hitting time. This is an example of a stopping
time (for the natural filtration of the random walk) because for any t = 0, 1, . . ., the event {τ = t} depends
only on S0, S1, . . . , St. Since these are all measurable with respect to Ft it follows that {τ = t} ∈ Ft.

As explained above, if (Xt)t∈T and τ are a martingale and a stopping time respectively, with respect
to the same filtration, then the equality E(Xτ ) = E(X0) will hold. In fact, it is possible to say more:

Theorem 5.12 (Optional stopping theorem; discrete case). Suppose that (Ω,F , (Ft)t∈0,1,...,P) is a filtered
probability space, that (Xt)t∈0,1,... is a martingale on it, and that τ is a stopping time. Then

• the process (Xτ
t )t∈0,1,... := (Xτ∧t)t∈0,1,... is a martingale, in particular E(Xτ∧t) = E(X0) for all t;

• if τ is bounded then E(Xτ ) = E(X0);

• if τ <∞ a.s. and |Xt| ≤ Y a.s. for all t ∈ 0, 1, . . ., where Y is an integrable random variable, then
E(Xτ ) = E(X0).

Proof. First, (Xτ
t )t∈0,1,... is adapted, becauseXτ

t = Xt∧τ , so for any A ∈ B(R), {Xτ
t ∈ A} := (∪tm=0{Xm ∈

A} ∩ {τ = m})
⋃

({Xt ∈ A} ∩ {τ > t}) ∈ Ft. It is also integrable, because for any t E(|Xτ
t |) ≤

E(max0≤m≤t |Xm|) ≤
∑t

m=0 E(|Xm|) <∞. Finally, the martingale property holds, since for t ≥ 1:

E(Xτ
t |Ft−1) = E(

t−1∑
m=0

Xm1τ=m +Xt1τ≥t|Ft−1) =
t−1∑
m=0

Xm1τ=m + 1τ≥tE(Xt|Ft−1) (99)

where the last equality holds by the basic properties of conditional expectation and “taking out what is
known” with {τ ≥ t} = {τ ≤ t− 1}c ∈ Ft−1. Since X is assumed to be a martingale this is equal to

t−2∑
m=0

Xm1τ=m +Xt−11τ≥t−1 = Xτ
t−1, (100)

so Xτ is indeed a martingale.
For the second point, if τ is bounded, then there exists some n such that P(τ ≤ n) = 1. So for this n,

E(Xτ ) = E(Xτ∧n) = E(Xτ
n) = E(Xτ

0 ) = E(X0), (101)

by Remark 5.5 since Xτ is a martingale.
Finally, if τ <∞ and |Xt| ≤ Y for all t a.s. where Y is integrable, then by the dominated convergence

theorem:
E(Xτ ) = E( lim

t→∞
Xτ∧t) = lim

t→∞
E(Xτ∧t) = E(Xτ

t ) = E(Xτ
0 ) = E(X0). (102)

Example 5.13. Again consider the discrete time simple symmetric random walk (St)t=0,1,... from Exam-
ple 5.6. This is a martingale with respect to (Ft)t=0,... = (σ(X1, . . . , Xt))t=0,... = (σ(X1, . . . , Xt))t=0,....

Let a, b > 0 be given, and let us try to compute the probability that the random walk hits −a before
b. That is, if T−a and Tb are the first hitting times of −a and b respectively by the random walk, then
the probability P(T−a < Tb). To calculate this, since E(τ) := E(T−a ∧ Tb) < ∞ and the increments of S
are bounded, the above exercise means that the optional stopping theorem can be applied. Consequently,
it holds that

E(Sτ ) = E(S0) = 0. (103)

On the other hand,

E(Sτ ) = E(Sτ1τ=T−a + Sτ1τ=Tb) = (−a)P(T−a < Tb) + bP(Tb < T−a). (104)
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Putting these together and writing x = P(T−a < Tb) = 1− P(Tb < T−a), it follows that

0 = −a.x+ b(1− x) ⇒ P(T−a < Tb) = x =
b

a+ b
. (105)

Theorem 5.14. Suppose that T = [0, T ] for some T ∈ [0,∞], that (Ω,F , (Ft)t∈T ,P) is a probability
space, that X = (Xt)t∈T is a martingale on it and that τ is a stopping time. Suppose that X is a.s. cadlag
and uniformly integrable. Then

E(Xτ ) = E(X0). (106)

Proof. Omitted. A proof can be found, for example, in the lecture notes of Prof. J. Norris: available
online at http://www.statslab.cam.ac.uk/~james/Lectures/ap.pdf (Theorem 4.3.8).

Martingale difference and transform

Definition 5.15 (Martingale difference). Let X = (Xt)t=0,1,... be a discrete time martingale on a filtered
probability space (Ω,F , (Ft)t=0,1,...,P). Then the process

Yt := Xt −Xt−1 t = 1, 2, 3, . . . (107)

is called a martingale difference sequence on (Ω,F , (Ft)t=0,1,...,P).

Definition 5.16 (Martingale transform). Suppose that Y is a martingale difference sequence and that
(Ct)t=1,2,... is a predictable process on (Ω,F , (Ft)t=0,1,...,P). Then the process (Zt)t=0,1,... defined by

Z0 = 0; Zt =

t∑
i=1

CiYi (108)

is called the martingale transform of Y by C, and denoted

Z = C • Y. (109)

Lemma 5.17. If C, Y, Z are as above and E(C2
t ),E(Y 2

t ) < ∞ for all t, then (Zt)t=0,1,... is a martingale
with respect to (Ft)t=0,1,....

Proof. First, since Cs, Ys are Ft measurable for s ≤ t, the sum Zt =
∑t

i=1CiYi is Ft-measurable for each
t. So Z is adapted to the filtration in question. The fact that is integrable can be seen by induction, since
Z0 is clearly integrable, and if E(|Zs|) < ∞ for s = 0, 1, . . . , t then E(|Zt+1|) ≤ E(|Zt| + |CtYt|) where
E(|CtYt|) ≤ E(|Ct|2)E(|Yt|2) < ∞ by assumption and the Cauchy–Schwarz inequality. Finally, for any
t ≥ 1

E(Zt|Ft−1) = E(Zt−1 + CtYt|Ft−1) = Zt−1 + CtE(Yt|Ft−1) = Zt−1, (110)

which shows the martingale property. The first equality above holds since Zt−1, Ct are Ft−1-measurable
(using the “taking out what is known” lemma), and the second holds by Exercise 5.7.

Example 5.18. Take the set up of the gambler exercise from §4.2, and suppose that (Ct)t=1,2,... is pre-
dictable betting strategy, meaning that Ct is Ft−1 = σ(Z0, Z1, . . . , Zt−1)-measurable for every t. Then
(Zt − Z0) is the martingale transform of (Yt)t≥0 by (Ct)t≥0 where for each t, Yt is +1 if the bet is won,
and −1 if it is lost. Note that Yt is the martingale difference sequence associated with the martingale
Xt =

∑t
i=1 Yi.
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Exercises from §5.2

Exercise 5.3. Show that τ = max{1 ≤ t ≤ 100 : St = 10} (with τ = 0 if St 6= 10 ∀1 ≤ t ≤ 100) is not a
stopping time for the random walk in Example 5.11 (for the same filtration considered there).

Exercise 5.4. Take the same set-up as in the Theorem 5.12. Suppose that τ is integrable and (Xt)t∈0,1,...

has bounded increments: that is, for some M < ∞, |Xt+1 −Xt| ≤ M for all t a.s. Under this condition
show that E(Xτ ) = E(X0).

Exercise 5.5. (? Challenge ?) Again take the same set-up as in Theorem 5.12, and suppose that X is
uniformly integrable, P(τ <∞) = 1. Show that E(Xτ ) = E(X0).

Exercise 5.6. (Wald’s identity) Suppose that X1, X2, . . . is an i.i.d. sequence of random variables with
Xt integrable and E(Xt) = µ <∞ for each t. Write S0 = 0, St =

∑t
m=1Xm for t > 0. Show that for any

t ≥ 1, E(St) = tµ. Show more generally that if τ is a stopping time with E(τ) <∞, then

E(Sτ ) = µE(τ). (111)

Hint: first suppose that the (Xi)i≥1 are positive random variables.

Exercise 5.7. Show that if Y is as in Definition 5.15, then E(Yt+1|Ft) = 0 for all t = 0, 1, . . ..

Exercise 5.8. Take the set up of Example 5.18. Using Lemma 5.17, deduce how much money should the
gambler expect to make.
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Solutions to exercises from §5

1. Since X is integrable, E(X|Ft) is well-defined and integrable for every t. It is also Ft-measurable,
so X is adapted. Finally, we have for s ≤ t: E(Xt|Fs) = E(E(X|Ft)|Fs) = E(X|Fs) = Xs, where
the middle equality follows by the tower law. Therefore (E(X|Ft))t≥0 is a martingale.

2. φ(X) is integrable by assumption, and adapted since Xt being measurable w.r.t. Ft implies that
φ(Xt) is measurable for Ft. For s ≤ t we also have E(φ(Xt)|Fs) ≤ φ(E(Xt|Fs)) = φ(Xs) since X is
a martingale. This implies that φ(X) is a martingale.

3. For any 1 ≤ t < 100 we have {τ ≤ t} = {Ss 6= 10 : t + 1 ≤ s ≤ 100}, which is not in Ft, since
{Xs : s ≥ t+ 1} is independent of Ft by definition.

4. We have E(Xτ∧t) = E(X0) for any t < ∞, and also that Xτ∧t → Xτ as t → ∞. We would like to
use the dominated convergence theorem to conclude that

E(Xτ∧t)→ E(Xτ )

which provides the result, since the left-hand side is constant and equal to E(X0). To apply the
dominated convergence theorem, we note that by the triangle inequality

|Xt∧τ | ≤M(t ∧ τ) ≤Mτ

for every t, where Mτ is an integrable random variable by assumption. So we may use this as the
dominating random variable.

5. (? Challenge ?)

6. The fact that E(St) = tµ just follows by linearity of expectation. Furthermore, we have that St−µt
is actually a martingale with respect to the filtration defined by Ft = σ(X1, . . . , Xt) for every t.
Indeed, it is adapted and integrable by definition (and the fact that the Xi are integrable) and for
every t we have

E(St−µt|Ft−1) = E(St−1−µ(t−1)+Xt−µ|Ft−1) = St−1−µ(t−1)+E(Xt−µ|Ft−1) = St−1−µ(t−1).

We can therefore apply the optional stopping theorem so see that for any t <∞,

E(St∧τ − µ(t ∧ τ)) = E(S0) = 0 ⇒ E(St∧τ ) = µE(τ ∧ t) ∀t.

Now let us write Xi = X+
i −X

−
i for every i, with X±i positive, and accordingly write µ = µ+−µ− =

E(X+
1 ) − E(X−1 ) and S±t =

∑t
i=1X

±
i , so that µ = µ+ − µ− and St = S+

t − S
−
t . Then the above

argument gives that
E(S+

t∧τ )→ µ+τ as t→∞

where limt→∞ E(S+
t∧τ ) → S+

τ by the monotone convergence theorem. Thus, E(S+
τ ) = µ+E(τ).

Similarly E(S−τ ) = µ−E(τ), and hence

E(Sτ ) = µ+E(τ)− µ−E(τ) = µE(τ)

as required.

7. E(Yt+1|Ft) = E(Xt+1 −Xt|Ft) = 0 = E(Xt+1|Ft)− E(Xt|Ft). But Xt is Ft-measurable (since X is
adapted), and therefore E(Xt|Ft) = Xt. On the other hand, E(Xt+1|Ft) = Xt, since X is assumed
to be a martingale. So E(Yt+1|Ft) = Xt −Xt = 0.

8. Zt−Z0 is a martingale (if the betting strategy given by C is nice enough) so E(Zτ ) = E(Z0) at any
nice enough stopping time τ . This means that the gambler should not expect to make any money.
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