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1 Introduction

Here we shall briefly recall the most important facts from basic probability
theory; for a more detailed recap, check your notes from the previous years.

1.1 Probability revision

Probability triple

A probability triple is a collection
(
Ω,F ,P

)
, where:

• Ω is a sample space (eg., the collection
{

H,TH,TTH, . . .
}

of all possible
results in a coin tossing experiment until the first occurence of H);

• the σ-field F is the collection of all events under consideration (more pre-
cisely it is a set of subsets of Ω satisfying (i) ∅ ∈ F (ii) A ∈ F ⇒ Ω\A ∈ F
& (iii) if Ak ∈ F for all k ≥ 1, then ∪k≥1Ak ∈ F ); and

• the σ-additive1 probability measure P : F → [0, 1] assigns probabilities to
all these events in a consistent way. That is,

P : A 7→ P(A) ∈ [0, 1] , P(∅) = 0 , P(Ω) = 1, and

(Ak)k≥1 ∈ F and Aj∩Ak = ∅ for all j 6= k ⇒ P(∪k≥1Ak) =
∑
k≥1

P(Ak).

One immediate consequence is monotonicity:

C,D ∈ F and C ⊆ D =⇒ P(C) ≤ P(D) .

Another important property is the following continuity result:

If the events Ak ∈ F , k ≥ 1 form a monotone increasing sequence, ie.,
Ak ⊆ Ak+1 for all k ≥ 1, then we say that

Ak ↗ A
def
=
⋃
j≥1

Aj as k →∞.

We then have that
P(A) = lim

k→∞
P(Ak)

The proof is a straightforward, but instructive exercise.2 By taking complements,
one deduces an analogous result for monotone decreasing sequences Bk ∈ F ,
k ≥ 1 of events, ie., satisfying Bk ⊇ Bk+1 for all k ≥ 1.

Example 1.1. In the standard coin flipping experiment, let Bk be the event
{the first k results are T} ; then Bk ↘ B ≡ {all results are T}. If the coin
shows H with probability p > 0, then P(Bk) = (1 − p)k ↘ 0 as k → ∞ and, by
continuity, P(B) = 0.

1also called countably additive;
2See your 2nd year notes.
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Exercise 1.2. In the setup of Example 1.1, let Ak be the event

{no H observed from kth flip onwards}.

Show that P(Ak) = 0 for all k ≥ 1. Verify that
(
Ak
)
k≥1

is a monotone sequence

of events with the limit

A ≡
{

at most finitely many H observed
}
.

Use the continuity property of probability measures to deduce that P(A) = 0.

Conditional probability

If A, B are events (ie., A, B ∈ F) with P(B) > 0, then the conditional probability
of A given B is

P
(
A | B

) def
=

P(A ∩B)

P(B)
.

Notice that P( · | B ) : F → [0, 1] is a probability measure.

Formula of total probability (partition theorem)

Events B1, B2, . . .∈ F are said to form a partition of Ω, if they are pairwise
disjoint:

Bi ∩Bj = ∅ for i 6= j,

and cover the whole Ω, ie.,
∪kBk = Ω.

If
{
B1, B2, . . .

}
form a partition of Ω, then for every A ∈ F the following formula

of total probability holds (tacitly assuming that P
(
A | Bk

)
P(Bk) ≡ P(A∩Bk) = 0

for P(Bk) = 0):

P(A) =
∑
k≥1

P
(
A | Bk

)
P(Bk) .

Example 1.3. (Discrete Renewals) Consider a sequence of events that can
only occur at discrete times k = 1, 2, . . . (eg., a light bulb burns out and is
immediately replaced with a new one). Assume that the intervals X between
consecutive events have a common distribution fk = P(X = k), k ≥ 1. Let rn
denote the probability that an event occurs at time n; ie., rn = P(An) with An ={

replacement at time n
}

; we shall also assume that a replacement also occurs
at time 0 so that r0 = 1. Since the events Bk = { first bulb burns at time k }
form a countable partition of Ω, and P(An | Bk ) = rn−k for all n ≥ k (with
r1 = f1), the partition theorem implies

rn =

n∑
k=1

rn−k fk . (1.1)
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As f0 = 0, the RHS above is a convolution of the sequences (rn)n≥0 and (fk)k≥0;
the large n behaviour of rn can be analysed by taking various transforms (eg.,
generating functions) of these sequences.

Random variables

Random variables are “nice” functions X : Ω→ R characterized by the fact that
for every a ∈ R we have

{
ω ∈ Ω : X(ω) ≤ a

}
∈ F . In other words, every inverse

image X−1
(
(−∞, a]

)
is an event.

For discrete random variables, ie., those attaining at most countably many val-
ues, it is often convenient to replace the previous condition with its equivalent:
for every a ∈ R the set X−1

(
{a}
)

is an event.

Expectation

If X is a discrete random variable taking values in
{
x1, x2, . . .

}
with probabilities

pk = P(X = xk) ≡ P
(
{ω ∈ Ω : X(ω) = xk}

)
,

then if
∑
k≥1 |xk| pk <∞, we say that X is integrable and the expectation E(X)

of X is given by

E(X)
def
=
∑
k≥1

xk pk ≡
∑
k≥1

xk P(X = xk) .

(If
∑
|xk|pk =∞ we also write E(|X|) =∞).

It is clear from this definition that if X,Y are two random variables defined
on the same probability space with P(X ≤ Y ) = 1 then E(X) ≤ E(Y ). In
particular:

Example 1.4. (Markov’s inequality) Suppose that X is a random variable
taking real values, and a > 0. Then

E(|X|) ≤ E(|X|1X≥a)) ≤ aP(X ≥ a)

which rearranges to give

P(|X| ≥ a) ≤ E(|X|)
a

. (1.2)

This is a very useful tool for bounding the tail probabilities of X (i.e. the LHS
above with a large).

It is also straightforward to verify that expectation is linear: if X1, . . . , Xn

are integrable random variables and a1, . . . , an ∈ R then

E(
∑
i

aiXi) =
∑
i

aiE(Xi).
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The conditional expectation of X given B ∈ F with P(B) > 0 is computed
similarly:

E
(
X | B

)
=
∑
k≥1

xk P(X = xk | B ) .

We then have the following result.

Partition theorem for expectations

If
{
B1, B2, . . .

}
form a partition of Ω, then for every random variable X

E(X) =
∑
k≥1

E
(
X | Bk

)
P(Bk) .

In some cases, the RHS above might not be well defined (i.e., the partial sums
of the above series may not converge). However, everything is fine if∑

k≥1

∣∣E(X | Bk )∣∣P(Bk) <∞

(and we have equality in the sense that both sides are equal to∞ if P(X ≥ 0) =
1).

Recall also that for a random variable X with E(X2) < ∞, we define its
variance

Var(X) = E(X2)− E(X)2.

This measures, roughly speaking, how much the random variable deviates from
its expected value. For example, if P(X = x) = 1 for some fixed value x, then
Var(X) = x2 − (x)2 = 0.

Independence

Events A, B ∈ F are independent if

P(A ∩B) = P(A) P(B) .

Notice that if A, B ∈ F are independent and if P(A | B ) is well defined, then
P(A | B ) = P(A). Also, if B ∈ F satisfies P(B) ∈ {0, 1}, then for every A ∈ F
the events A and B are independent.

In general, a collection of events
(
Aα
)
α∈A is independent if every finite subcol-

lection is independent, ie., for every k ≥ 1 and all α1, . . . , αk ∈ A,

P
(
Aα1
∩Aα2

∩ . . . ∩Aαk

)
= P(Aα1

) P(Aα2
) . . . P(Aαk

) .

Two (discrete) random variables, X and Y are independent, if for all x, y,

P
(
X = x, Y = y

)
= P(X = x) P(Y = y).
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For general random variables (taking potentially uncountably many values in
R), the last condition needs to be replaced with, say,

P
(
X ∈ [a, b], Y ∈ [c, d]

)
= P

(
X ∈ [a, b]

)
P
(
Y ∈ [c, d]

)
for all finite or infinite real a, b, c, d. Recall that in the discrete case the
collection of numbers P

(
X = x, Y = y

)
is the joint distribution of the pair

(X,Y ) of random variables.
Of course, the above idea can also be used to define independence of arbitrary

collections of random variables.

Exercise 1.5. Let D be the result of a single roll of a standard fair dice. Next,
flip a fair coin D times, and let H be the total number of ‘heads’ observed. Write
the joint distribution of the pair (D,H). Are D and H independent?

Example 1.6. If X and Y are independent discrete random variables, and f ,
g : R → R are arbitrary functions, then f(X) and g(Y ) are independent ran-
dom variables and E

[
f(X)g(Y )

]
= Ef(X) · Eg(Y ). For example, E(sX+Y ) =

E(sX) E(sY ) for |s| ≤ 1.

Notice that knowing the joint distribution of a random vector (X,Y ), we can de-
rive the so-called marginal distributions of its components X and Y . The inverse
operation of constructing the joint distribution of a vector from its marginal dis-
tributions is not well posed, and often has no unique answer (see below).

Example 1.7. Let X ∼ Ber±1(p1), ie., P(X = 1) = 1 − P(X = −1) = p1 and
let Y be a Ber±1(p2) random variable, ie., P(Y = 1) = 1 − P(Y = −1) = p2.
Without loss of generality we may assume that p1 ≤ p2. Then both of the below
are valid joint distributions with given marginals (write qi = 1− pi, i = 1, 2):

(A)

−1 1 X

−1 q1q2 q1p2 q1

1 p1q2 p1p2 p1

Y q2 p2

(B)

−1 1 X

−1 q2 p2 − p1 q1

1 0 p1 p1

Y q2 p2

In (A) the variables X and Y are independent, whereas in (B) they are not in-
dependent. This demonstrates that we cannot re-construct the joint distribution
of X and Y knowing only their individual distributions.

As we shall see below, this flexibility in constructing several variables on a
common probability space (or “coupling”) often allows for intuitive and clear
probabilistic arguments.
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Example 1.8. Let (wXn )n≥0 be the random walk generated by independent copies
of X ∼ Ber±1(p1); wX0 = 0. Similarly, let (wYn )n≥0 be the random walk gener-
ated by independent copies of Y ∼ Ber±1(p2); wY0 = 0. If p1 < p2, then the law
of large numbers implies that 1

n w
X
n grows linearly with slope 2p1 − 1, whereas

1
n w

Y
n grows linearly with slope 2p2 − 1 > 2p1 − 1. In other words, for times

n large enough the trajectories of (wXn )n≥0 will lie below those of (wYn )n≥0. In
fact, using the joint distribution from Example 1.7 (B), one can construct a
joint distribution for the entire trajectories of these random walks such that the
inequality wXn ≤ wYn holds for all times n ≥ 0, and not only for n large enough.
This is useful. For example, as a result, for every monotone increasing function
f : R→ R one has

f
(
wXn
)
≤ f

(
wYn
)

for all n ≥ 0, and therefore Ef
(
wXn
)
≤ Ef

(
wYn
)
.

1.2 Generating functions: key properties

Lengthy calculations arising from even quite straightforward counting problems
can be simplified by using generating functions. Recall that the generating
function of a real sequence (ak)k≥0 is

G(s) = Ga(s)
def
=

∞∑
k=0

ak s
k (1.3)

(defined whenever the sum on the RHS converges). Similarly, the (probability)
generating function of a random variable X with values in

Z+ def
= {0, 1, . . . }

is just the generating function of its probability mass function:

G(s) ≡ GX(s)
def
= E

(
sX
)

=

∞∑
k=0

skP(X = k) . (1.4)

Notice that each probability generating function satisfies

|GX(s)| ≤ GX(1) =

∞∑
k=0

P(X = k) ≤ 1 ,

i.e., is well defined and finite for all (complex) s with |s| ≤ 1. In particular,
GX(s) can be differentiated term-by-term any number of times in the open unit
disk |s| < 1.

Generating functions are very useful when studying sums of independent
random variables. Indeed, Example 1.6 implies the following important fact:

Example 1.9. If X and Y are independent random variables with values in Z+

and Z = X + Y , then their generating functions satisfy

GZ(s) = GX+Y (s) = GX(s)GY (s)

for all s such that the RHS is well defined.
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Example 1.10. Let X,X1, . . . , Xn be independent identically distributed ran-
dom variables3 with values in {0, 1, 2, . . . } and let Sn = X1 + · · ·+Xn. Suppose
that GX(s) is well-defined. Then

GSn(s) = GX1(s) . . . GXn(s) ≡
[
GX(s)

]n
.

Example 1.11. Let X,X1, X2, . . . be i.i.d. with values in {0, 1, 2, . . . } and let
N ≥ 0 be an integer-valued random variable independent of {Xk}k≥1. Then
SN = X1 + · · ·+XN has generating function

GSN
= GN ◦GX (1.5)

This is a straightforward application of the partition theorem for expectations.
Alternatively, the result follows from the standard properties of conditional ex-
pectation:

E
(
sSN

)
= E

(
E
(
sSN | N

))
= E

([
GX(s)

]N)
= GN

(
GX(s)

)
.

In general, we say a sequence c = (cn)n≥0 is the convolution of a = (ak)k≥0

and b = (bm)m≥0 (write c = a ? b), if 4

cn =

n∑
k=0

ak bn−k , n ≥ 0 . (1.6)

Exercise 1.12. If c = a? b, show that the generating functions Gc, Ga, and Gb
satisfy Gc = Ga ×Gb.

Exercise 1.13. In the setup of Example 1.3, let Gf and Gr be the generating
functions of the sequences f = (fk)k≥1 and r = (rn)n≥0. Show that Gr(s) =
1/(1−Gf (s)) for all |s| ≤ 1.

Why do we care? If the generating function Ga of (an)n≥0 is analytic in a
neighbourhood of the origin, then there is a one-to-one correspondence between
Ga and (an)n≥0. Namely, ak can be recovered from Ga via 5

ak =
1

k!

dk

dsk
Ga(s)

∣∣
s=0

or ak =
1

2πi

∮
|z|=ρ

Ga(z)

zk+1
dz , (1.7)

for suitable ρ > 0. This result is often referred to as the uniqueness property of
generating functions.

3from now on we shall often abbreviate this to just i.i.d.
4If X and Y are independent variables in Z+ and Z = X + Y , their p.m.f.s satisfy this

equation.
5if a power series Ga(s) is finite for |s| < r with r > 0, then it can be differentiated in

the disk |s| < r; recall that each probability generating function is analytic in the unit disk
|s| < 1.
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Example 1.14. Let X ∼ Poi(λ) and Y ∼ Poi(µ) be independent. A straight-
forward computation gives GX(s) = eλ(s−1) for all s so that if Z = X + Y ,
Example 1.9 implies that

GZ(s) = GX(s)GY (s) = eλ(s−1) eµ(s−1) ≡ e(λ+µ)(s−1) .

This means that Z is Poi(λ+ µ) distributed.

A similar argument can be used in the following exercise.

Exercise 1.15. If X ∼ Bin(n, p) and Y ∼ Bin(m, p) are independent, show that
X + Y ∼ Bin(n+m, p).

Another useful property of probability generating functions is that they can
be used to compute moments:

Theorem 1.16. If X has generating function GX , then

E
(
X(X − 1) . . . (X − k + 1)

)
= G

(k)
X (1)

where G(k)(1) is the shorthand for G(k)(1−) ≡ lims↑1G
(k)(s), the limiting value

of the kth derivative of G(s) at s = 1. Since skG(k)(s) is increasing in s, the
RHS above is either +∞, or finite. In the latter case, X(X−1) . . . (X−k+1) is
integrable and the equality above holds. In the former, X(X − 1) . . . (X − k+ 1)
is not integrable.

Exercise 1.17. Prove Theorem 1.16.

Remark 1.18. The quantity E
(
X(X − 1) . . . (X − k + 1)

)
is called the kth

factorial moment of X. Notice also that

Var(X) = G′′X(1) +G′X(1)−
(
G′X(1)

)2
. (1.8)

Remark 1.19. Notice that lims↗1GX(s) ≡ lims↗1 E(sX) = P(X < ∞). This
allows us to check whether the random variable X is finite, if we do not know
this apriori. See Example 1.26 below.

Remark 1.20. The fact that a probability generating function is finite at u = 1
(or has a finite left derivative there) does not, in general, imply any regularity
beyond the unit disk. Indeed, let X be a random variable satisfying

P(X = k) = 1
k(k+1) for all k ≥ 1,

and let GX be its generating function. It is easy to check that GX(1) = 1
while E(X) = G′X(1−) = ∞, and thus |GX(u)| ≤ GX(1) = 1 if |u| ≤ 1 but
GX(u) =∞ for all |u| > 1.

Exercise 1.21. Let P(X = k) = 4/
(
k(k + 1)(k + 2)

)
for k ≥ 1. Show that the

generating function GX(u) = E(uX) satisfies GX(1) = 1, G′X(1−) = 2 < ∞,
but G′′X(1−) = ∞. Notice that in this case |G′X(u)| ≤ 2 uniformly in |u| < 1
while GX(u) =∞ for all |u| > 1.
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Exercise 1.22. Following the approach of Exercise 1.21 or otherwise, for m ∈ N
find a generating function G, which is continuous and bounded on the closed unit
disk |u| ≤ 1 together with derivatives up to order m, while G(u) = ∞ for all
|u| > 1.

Exercise 1.23. Let SN = X1 + . . .+XN be a random sum of random variables,
whose generating function is GSN

(u) ≡ GN
(
GX(u)

)
, recall Example 1.11. Use

Theorem 1.16 to express E
(
SN
)

and Var
(
SN
)

in terms of E(X), E(N), Var(X)

and Var(N). Check your result for E
(
SN
)

and Var
(
SN
)

by directly applying the
partition theorem for expectations.

Exercise 1.24. A bird lays N eggs, each being pink with probability p and blue
otherwise. Assuming that N ∼ Poi(λ), find the distribution of the total number
K of pink eggs.

Exercise 1.25. Suppose that in a population, each mature individual produces
immature offspring according to a probability generating function F .

(a) Assume that we start with a population of k immature individuals, each of
which grows to maturity with probability p and then reproduces, indepen-
dently of other individuals. Find the probability generating function of the
number of immature individuals in the next generation.

(b) Find the probability generating function of the number of mature individuals
in the next generation, given that there are k mature individuals in the parent
generation.

(c) Show that the distributions in a) and b) above have the same mean, but not
necessarily the same variance. You might prefer to first consider the case
k = 1, and then generalise.

The next example is very important for applications.

Example 1.26. Let Xk, k ≥ 1 be i.i.d. with the common distribution

P(Xk = 1) = p , P(Xk = −1) = q = 1− p .

Define the simple random walk (Sn)n≥0 via S0 = 0 and Sn = X1 + · · ·+Xn for
n ≥ 1 and let

T
def
= inf

{
n ≥ 1 : Sn = 1

}
be the first time this random walk hits 1.

To calculate the generating function GT , write pk = P(T = k), so that
GT (s) ≡ E(sT ) =

∑
k≥0 s

k pk. Conditioning on the outcome of the first step,
and applying the partition theorem for expectations, we get

GT (s) ≡ E
(
sT
)

= E
(
sT | X1 = 1

)
p+ E

(
sT | X1 = −1

)
q = ps+ qsE

(
sT2
)
,
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where T2 is the time of the first visit to state 1 starting from S0 = −1. By
partitioning on the time T1 of the first visit to 0, it follows that

P(T2 = m) =

m−1∑
k=1

P
(
T1 = k, T2 = m

)
.

where of course, on the event {S0 = −1},

P(T2 = m | S0 = −1) ≡ P
(
S1 < 1, . . . , Sm−1 < 1, Sm = 1 | S0 = −1

)
P(T1 = k | S0 = −1) ≡ P

(
S1 < 0, . . . , Sk−1 < 0, Sk = 0 | S0 = −1

)
.

Notice that by translation invariance the last probability is just P(T = k | S0 =
0) = pk. We also observe that

P
(
T2 = m | T1 = k

)
= P

(
first hit 1 from 0 after m− k steps

)
≡ pm−k .

The partition theorem now implies that

P(T2 = m) =

m−1∑
k=1

P
(
T2 = m | T1 = k

)
P(T1 = k) ≡

m−1∑
k=1

pk pm−k =

m∑
k=0

pk pm−k ,

ie., GT2
(s) =

(
GT (s)

)2
. We deduce that GT (s) solves the quadratic equation

ϕ = ps+ qsϕ2, so that 6

GT (s) =
1−

√
1− 4pqs2

2qs
=

2ps

1 +
√

1− 4pqs2
.

Finally this allows us to deduce that

P(T <∞) ≡ GT (1) =
1− |p− q|

2q
=

{
1 , p ≥ q ,
p/q , p < q .

In particular, E(T ) = ∞ for p < q (because P(T = ∞) = (q − p)/q > 0). For
p ≥ q we obtain

E(T ) ≡ G′T (1) =
1− |p− q|
2q|p− q|

=

{
1
p−q , p > q ,

∞ , p = q ,

ie., E(T ) <∞ if p > q and E(T ) =∞ otherwise.
Notice that at criticality (p = q = 1/2), the variable T is finite with proba-

bility 1, but has infinite expectation.

Example 1.27. In a sequence of independent Bernoulli experiments with suc-
cess probability p ∈ (0, 1), let D be the first time that two consecutive successful

6by recalling the fact that GT (s)→ 0 as s→ 0;
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outcomes have occured (i.e., if two successes occured in the first two experiments,
then D would be equal to 2).

To find the generating function of D, there are two good methods, and both
involve deriving a recursion relation.

Method 1: For n ≥ 2 let us write dn = P(D = n), and consider the events

• A := {(n− 2) failures followed by 2 successes},

• Ak := {first failure immediately preceeded by a success occurs at experiment k}
for k = 2, . . . , n− 2, and

• B = (A ∪
⋃n−2
k=2 Ak)c.

These form a partition of the probability space, since they are disjoint by con-
struction, and the definition of B means that they cover the whole space. Note
that for {D = n} to occur, it must be that one of A or A2, . . . , An−2 oc-
curs, so that P({D = n} ∩ B) = 0. Also it is clear that A ⊂ {D = n} so
P({D = n} ∩A) = P(A) = qn−2p2. Thus we can write

dn = P(D = n) = qn−2p2 +

n−2∑
k=2

P({D = n} ∩Ak)

and we are left to calculate P({D = n} ∩ Ak) for k = 2, . . . , n − 2. For this,
we observe that for {D = n} ∩ Ak to occur, it must be that the first (k − 2)
experiments are failures, the (k − 1)st is a success, the kth is a failure again,
and then for the new sequence of experiments starting from the (k + 1)st, the
first time that 2 consecutive successes are seen is (n − k). By independence of
the experiments, the probability of this happening is just qk−2pqdn−k. Hence we
obtain

dn = qn−2p2 +

n−2∑
k=2

qk−2pq dn−k ,

and a standard method implies that

GD(s) =
p2s2

1− qs
+

pqs2

1− qs
GD(s) , or GD(s) =

p2s2

1− qs− pqs2
.

A straightforward computation gives G′D(1) = 1+p
p2 , so that on average it takes

42 tosses of a standard symmetric dice until the first two consecutive sixes appear.

Method 2: we derive a recursion relation directly for the generating func-
tion, by conditioning on the result of the first experiment. That is, we use the
partition theorem for expectation to write

E(sD) = E(sD | failure )P(failure) + E(sD | success )P(success)

= sE(sD−1 | failure )q + sE(sD−1 | success )p.

12



Now, E(sD−1 | failure ) = E(sD) since the new sequence of experiments start-
ing from the 2nd have the same distribution as the whole sequence, and observ-
ing a failure for the first experiment means we are still just asking for the first
time that two consecutive successes are observed in this new sequence. How-
ever, this is not the case for E(sD−1 | success ) since if we have already seen one
success this could be the first one in a consecutive pair. So for this conditional
expectation we will condition again, but now on the result of the 2nd experi-
ment. If it is a success then sD−1 will be s with conditional probability one,
and if it is a failure then we will be starting from scratch again. Thus we obtain
that E(sD−1 | success ) = ps + qsE(sD). Putting this all together and writing
E(sD) = GD(s) we see that

GD(s) = qsGD(s) + p2s2 + pqs2GD(s)

and can rearrange to reach the same conclusion as for method 1.

Exercise 1.28. In a sequence of independent Bernoulli experiments with suc-
cess probability p ∈ (0, 1), let M be the first time that m consecutive successful
outcomes have occured. Using the approach of Example 1.27 or otherwise, find
the generating function of M .

Exercise 1.29. In the setup of Example 1.27, show that d0 = d1 = 0, d2 = p2,
d3 = qp2, and, conditioning on the value of the first outcome, that dn = q dn−1+
pq dn−2 for n ≥ 3. Use these relations to re-derive the generating function GD.

Exercise 1.30. Use the method of Exercise 1.29, to derive an alternative so-
lution to Exercise 1.28. Compare the resulting expectation to that in Example
1.27.

Exercise 1.31. A biased coin showing ‘heads’ with probability p ∈ (0, 1) is
flipped repeatedly. Let Cw be the first time that the word w appears in the
observed sequence of results. Find the generating function of Cw and the expec-
tation E

[
Cw
]

for each of the following words: HH, HT, TH and TT.

Example 1.32. If Xn ∼ Bin(n, p) with p = pn satisfying n · pn → λ as n→∞,
then GXn(s) ≡

(
1 + pn(s − 1)

)n → exp{λ(s − 1)} for every fixed s ∈ [0, 1], so
that the distribution of Xn converges to that of X ∼ Poi(λ).

Exercise 1.33. For each n ≥ 1 let Yn =
∑n
k=1X

(n)
k , where X

(n)
k are indepen-

dent Bernoulli random variables,

p
(n)
k

def
= P(X

(n)
k = 1) = 1− P(X

(n)
k = 0).

Assume that
δ(n) def

= max
1≤k≤n

p
(n)
k → 0

13



as n→∞ and that for a positive constant λ we have

E(Yn) ≡
n∑
k=1

p
(n)
k → λ.

Using generating functions or otherwise, show that the distribution of Yn con-
verges to that of a Poi(λ) random variable. This result is known as the law of
rare events.

More generally, we have the following continuity result:

Theorem 1.34. For every fixed n, suppose that the sequence a0,n, a1,n, . . . is
a probability distribution, ie., ak,n ≥ 0 and

∑
k≥0 ak,n = 1, and let Gn be the

corresponding generating function, Gn(s) =
∑
k≥0 ak,ns

k for all s such that the
RHS converges. In order that for every fixed k

lim
n→∞

ak,n = ak

it is necessary and sufficient that lim
n→∞

Gn(s) = Ga(s) for every fixed s ∈ [0, 1),

where Ga(s) =
∑
k≥0 aks

k, the generating function of the limiting sequence (ak).

Remark 1.35. In the probabilistic context, the convergence above:

ak,n ≡ P(Xn = k)
n→∞→ P(X = k) = ak for each k,

is known as convergence in distribution.

Why do we care? In applications one often needs to describe the distribution of
a random variable, which is obtained as a result of some limiting approach (or
approximation). Then Theorem 1.34 can help to simplify the argument. This
method is similar to proving the central limit theorem using moment generating
functions E(exp

{
tXn

}
) ≡ Gn(et). Notice that Gn(et) exists for some t > 0 only

if the sequence ak,n ≡ P(Xn = k) decays sufficiently fast, recall Remark 1.20
above.
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2 Branching processes

2.1 Classification and extinction

Informally, a branching process 7 is described as follows, where {pk}k≥0 is a
fixed probability mass function (pmf).

• A population starts with a single ancestor who forms generation number 0.

• This initial individual splits into k offspring with probability pk for each
k ≥ 0; the resulting offspring constitute the first generation.

• Each of the offspring in the first generation splits independently into a
random number of offspring, again according to the pmf {pk}k≥0, and the
resulting offspring constitute the second generation.

• This process continues until extinction, which occurs when all the members
of a generation fail to produce offspring.

This model has a number of applications in biology (eg., it can be thought
as a model of population growth), physics (chain reaction in nuclear fission),
queueing theory, etc. Originally it arose from a study of the likelihood of survival
of family names (“how fertile must a family be to ensure that in future generations
the family name will not die out?”).

Formally, let {Zn,k}, n ≥ 1, k ≥ 1, be a family of i.i.d. random variables
in Z+, each having a common probability mass function {pk}k≥0. Then the
branching process (Zn)n≥0 (generated by {pk}k≥0) is defined by setting Z0 = 1,
and, for n ≥ 1,

Zn
def
= Zn,1 + Zn,2 + · · ·+ Zn,Zn−1

, (2.1)

where the empty sum is interpreted as zero. Notice that Zn is a Markov chain
in Z+. We shall use P( · ) ≡ P1( · ) and E( · ) ≡ E1( · ) to denote the corresponding
probability measure and the expectation operator. 8 If ϕn(s) ≡ E(sZn) is the
generating function of Zn, a straightforward induction based on (2.1) and (1.5)
implies that

ϕ0(s) ≡ s , ϕ(s) ≡ ϕ1(s) ≡ EsZ1 ,

ϕk(s) = ϕk−1

(
ϕ(s)

)
≡ ϕ

(
ϕk−1(s)

)
= ϕ(. . . ϕ(s) . . . ) . . . )︸ ︷︷ ︸

k times

k > 1. (2.2)

Usually explicit calculations are hard, but at least in principle, equations (2.2)
determine the distribution of Zn for any n ≥ 0.

Example 2.1. Let ϕ1(s) ≡ ϕ(s) = q + ps for some 0 < p = 1− q < 1. Then

ϕn(s) ≡ q(1 + p+ · · ·+ pn−1) + pns = 1 + pn(s− 1) .

Notice that here we have ϕn(s)→ 1 as n→∞, for all s ∈ [0, 1]. In other words,
the distribution of Zn converges to that of Z∞ ≡ 0, recall Theorem 1.34.

7sometimes called a Galton-Watson-Bienaymé process
8If Z0 = k, we shall explicitly write Pk( · ) and Ek( · ).
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The following result is a straightforward corollary of (1.5).

Lemma 2.2. In a branching process (Zn)n≥0 with Z0 = 1, let the offspring
distribution have mean m. Then E(Zn) = mn for all n ≥ 1.

Proof. Recall that a random variable X with values in Z≥0 has finite mean equal
to G′X(1−) := lims↑1G

′
X(s), if and only if this limit exists and is finite. Since Z1

is assumed to have finite mean m, this implies that ϕ′(1−) := lims↑1 ϕ
′(s) = m

(where ϕ is the generating function of Z1). We also know by (1.5) that the
generating function of Zn is given by ϕn which is just the composition of ϕ with
itself n times. By the chain rule, and since ϕk(1) = 1 for all k, we see that

lim
s↑1

ϕ′n(1−) = ϕ′(1−)n = mn,

implying the result. This can alternatively be shown by induction, using a
conditioning argument.

Exercise 2.3. In a branching process (Zn)n≥0 with Z0 = 1, let the offspring
distribution have mean m, variance σ2, and generating function ϕ. Write ϕn
for the generating function of the nth generation size Zn, ϕn(s) ≡ E(sZn).

(a) Using (2.2) or otherwise, show that Var(Zn) = σ2mn−1(mn − 1)/(m− 1) if
m 6= 1 and Var(Zn) = σ2n if m = 1.

(b) Deduce that E
(
(Zn/m

n)2
)

is uniformly bounded for m 6= 1.

This result suggests that if m ≡ E(Z1) 6= 1, the branching process might
explode (for m > 1) or die out (for m < 1). One therefore classifies branching
process as either critical (if m = 1), subcritical (m < 1), or supercritical (m > 1).

Example 2.4. It is straightforward to describe the case m < 1. Indeed, the
Markov inequality (1.2) implies that

P(Zn > 0) = P(Zn ≥ 1) ≤ E(Zn) = mn ,

so that P(Zn > 0) → 0 as n → ∞ (ie., Zn → 0 in probability). We also
notice that the average total population in this case is finite, E

(∑
n≥0 Zn

)
=∑

n≥0m
n = (1−m)−1 <∞.

Definition 2.5. The extinction event E is the event E = ∪∞n=1

{
Zn = 0

}
. Since{

Zn = 0
}
⊂
{
Zn+1 = 0

}
for all n ≥ 0, the extinction probability ρ is defined as

ρ = P(E) = lim
n→∞

P
(
Zn = 0

)
,

where P
(
Zn = 0

)
≡ ϕn(0) is the extinction probability before (n+ 1)st genera-

tion.
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The following result helps to derive the extinction probability ρ without
needing to compute the iterates ϕn( · ) precisely. To avoid trivialities we shall
assume that p0 = P(Z = 0) satisfies 9 0 < p0 < 1; notice that under this
assumption ϕ(s) is a strictly increasing function of s ∈ [0, 1].

Theorem 2.6. If 0 < p0 < 1, then the extinction probability ρ is given by the
smallest positive solution to the equation

s = ϕ(s) . (2.3)

In particular, if m = EZ1 ≤ 1, then ρ = 1; otherwise, we have 0 < ρ < 1.

In words, if the branching process is subcritical or critical then it eventually
becomes extinct with probability one. However, if it is supercritical, the process
has a positive probability to survive for all time.

Remark 2.7. There is a clear probablistic intuition behind the relation ρ =
ϕ(ρ). Indeed, if ρ = P1(E) is the extinction probability starting from a single
individual, Z0 = 1, then by independence we get Pk(E) ≡ P(E | Z0 = k) = ρk,
and thus the first step decomposition for the Markov chain Zn gives

ρ = P(E) =
∑
k≥0

P(E , Z1 = k) =
∑
k≥0

P(E | Z1 = k)P(Z1 = k)

=
∑
k≥0

ρk P(Z1 = k) ≡ E
(
ρZ1
)
≡ ϕ(ρ) ,

in agreement with (2.3).

Proof. Let us now give the proof of Theorem 2.6. You may find it helpful to draw
a picture!

Denote ρn = P
(
Zn = 0

)
≡ ϕn(0). By continuity and strict monotonicity of

ϕ( · ) we have (recall (2.2))

0 < ρ1 = ϕ(0) < ρ2 = ϕ(ρ1) < · · · < 1 ,

so that the extinction probability ρ ∈ (0, 1] is the increasing limit of ρn as
n→∞, and satisfies

ρ = lim
n
ϕn(0) = lim

n
ϕ(ϕn−1(0)) = ϕ(lim

n
ϕn−1(0)) = ϕ(ρ).

On the other hand, if ρ̄ is any other fixed point of ϕ( · ) in [0, 1], ie., ρ̄ = ϕ(ρ̄),
then ρ̄ = ϕn(ρ̄) ≥ ϕn(0) for all n, meaning that ρ̄ ≥ limn→∞ ϕn(0) = ρ. So, ρ
is indeed the smallest positive solution to (2.3).

Next, we turn to the extinction criterion in terms of m. For this, observe
that ϕ( · ) is convex on [0, 1], since ϕ′′(s) = E(Z1(Z1−1)sZ1−2) ≥ 0 for s ∈ [0, 1]
(actually unless p1 = 1−p0, i.e., if there is some possibility of having more than

9otherwise the model is degenerate: if p0 = 0, then Zn ≥ 1 for all n ≥ 0 so that ρ = 0; if
p0 = 1, then P(Z1 = 0) = ρ = 1.
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1 child, ϕ′′(s) is strictly positive and so ϕ is strictly convex on (0, 1)). Hence
if m = ϕ′(1−) > 1 we must have ϕ(s0) < s0 for some s0 < 1 and therefore the
curves y = s and y = ϕ(s) must cross at some point strictly in (0, 1) (recall
that ϕ(0) = p0 > 0). A completely rigorous way to justify this is to define
f(s) := ϕ(s) − s, which is continuous on [0, s0] with f(s0) < 0 and f(0) > 0,
so by the intermediate value theorem satisfies f(s) = 0, i.e. ϕ(s) = s, for some
s ∈ (0, s0). Conversely, suppose that m ≤ 1 and p1 6= 1−p0. Then the condition
m = ϕ′(1−) ≤ 1 together with strict convexity implies that ϕ(s) − s is strictly
decreasing on [0, 1], from p0 at 0 to 0 at 1, and therefore cannot be 0 for any
s < 1. The case p1 = 1− p0 give ϕ(s) = p0 + p1s and it is immediate that the
smallest solution of ϕ(s) = s in [0, 1] is at 1. This completes the proof.

Corollary 2.8. If s ∈ [0, 1), we have ϕn(s) ≡ E
(
sZn
)
→ ρ ∈ (0, 1] as n→∞.

Remark 2.9. As a result, the distribution of Zn converges to that of Z∞, where
P(Z∞ = 0) = ρ and P(Z∞ =∞) = 1− ρ.

Exercise 2.10. For a branching process with generating function ϕ(s) = as2 +
bs + c, where a > 0, b > 0, c > 0, ϕ(1) = 1, compute the extinction probability
ρ and give the condition for sure extinction. Can you interpret your results?

Exercise 2.11. Let (Zn)n≥0 be a branching process with generating function
ϕ(s) ≡ EsZ1 satisfying 0 < ϕ(0) < 1. Let

ϕ̄n(u)
def
= E

(
uZ̄n

)
be the generating function of

Z̄n =

n∑
k=0

Zk,

the total population size up to time n.

(a) Show that ϕ̄n+1(u) = uϕ
(
ϕ̄n(u)

)
for all n ≥ 0 and u ≥ 0.

(b) If u ∈ (0, 1), show that ϕ̄n(u) → ϕ̄(u)
def
= E

(
uZ̄
)

as n → ∞, where Z̄
is the total population size,

∑
k≥0 Zk, of (Zn)n≥0. Show that the limiting

generating function ϕ̄(u) is given by the smallest positive solution s to the
equation s = uϕ(s).

(c) Let the process (Zn)n≥0 be subcritical (ϕ′(1−) < 1) with offspring distribu-
tion having exponential tails (ϕ(s) < ∞ for some s > 1). Show that for
some u > 1 the equation s = uϕ(s) has positive solutions s, the smallest of
which coincides with ϕ̄(u) = E

(
uZ̄
)
.

(d) Let the process (Zn)n≥0 be supercritical (EZ1 > 1) with 0 < P(Z1 = 0) < 1
and let u > 1 be such that the equation s = uϕ(s) has positive solutions
s. Show that ϕ̄n(u) → ∞, in agreement with the fact that with positive
probability the process (Zn)n≥0 survives forever, P(Z̄ =∞) > 0.
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(e) In the setting of part d), let ϕ̂n(u)
def
= E

(
uZ̄n1Zn=0

)
, the generating function

of the total population on the event that the process (Zn)n≥0 dies out by
time n. Show that ϕ̂n+1(u) = uϕ

(
ϕ̂n(u)

)
for all n ≥ 0 and u ≥ 0. Deduce

that for each u > 1 such that the fixed point equation s = uϕ(s) has positive
solutions s, we have ϕ̂n(u) → E

(
uZ̄1Z̄<∞

)
, where the latter coincides with

the smallest positive s satisfying s = uϕ(s).

We now turn to classification of states for the Markov chain Zn in Z+. Of
course, since 0 is an absorbing state, it is recurrent.

Lemma 2.12. If p1 = P(Z1 = 1) 6= 1, then every state k ∈ N is transient. As
a result,

P(Zn →∞) = 1− P(Zn → 0) = 1− ρ .

Proof. We first show that every k ∈ N is transient. If p0 = 0, then Zn is a
non-decreasing Markov chain (ie., Zn+1 ≥ Zn), so that for every k ∈ N the first
passage probability fkk satisfies

fkk = P
(
Zn+1 = k | Zn = k

)
= Pk(Z1 = k) = (p1)k < 1 .

On the other hand, for p0 ∈ (0, 1] we have

fkk ≤ P
(
Zn+1 6= 0 | Zn = k

)
= Pk(Z1 6= 0) = 1− Pk(Z1 = 0) = 1− (p0)k < 1 .

This means that

P(Zn = k i.o.) = lim
m→∞

P(Zn returns to k at least m times) ≤ lim
m→∞

fm−1
kk = 0

and the state k is transient.
Fix arbitrary K > 0. Since the states 1, 2, . . . , K are transient, we see that

P
(
{Zn = 0} ∪ {Zn > K}

)
→ 1 as n→∞ and therefore

P
(
Zn → 0 or Zn →∞

)
= 1 .

As the LHS above equals P(Zn → 0) + P(Zn →∞), the result follows from the
observation that P(Zn → 0) ≡ P(E) = ρ.

Exercise 2.13. For a supercritical branching process (Zn)n≥0, let T0 = min{n ≥
0 : Zn = 0} be its extinction time and let ρ = P(T0 < ∞) > 0 be its

extinction probability. Define (Ẑn)≥0 as Zn conditioned on extinction, ie.,

Ẑn =
(
Zn | T0 <∞

)
.

(a) Show that the transition probabilities p̂xy of (Ẑn)n≥0 and the transition prob-
abilities pxy of the original process (Zn)n≥0 are related via p̂xy = pxyρ

y−x,
x, y ≥ 0.

(b) Deduce that the generating functions ϕ̂(s) ≡ E1

[
sẐ1
]

and ϕ(s) ≡ E1

[
sZ1
]

are related via10 ϕ̂(s) = 1
ρϕ(ρs), 0 ≤ s ≤ 1.

10 Geometrically, the graph of this generating function is a rescaled version of that of ϕ(·).
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(c) If the offspring distribution of (Zn)n≥0 is Poi(λ) with λ > 1, use the fixed
point equation ρ = eλ(ρ−1) to show that ϕ̂(s) = eλρ(s−1), ie., that the off-

spring distribution for (Ẑn)n≥0 is just Poi(λρ).

Exercise 2.14. Let (Zn)n≥0 be a supercritical branching process with offspring
distribution {pk}k≥0, offspring generating function ϕ(s) and extinction proba-
bility ρ ∈ [0, 1).

(a) If Z0 = 1, let p̃k be the probability that conditioned on survival the first
generation has exactly k individuals with an infinite line of descent. Show
that

p̃k =
1

1− ρ

∞∑
n=k

pn

(
n

k

)
(1− ρ)kρn−k .

(b) Let (Z̃n)n≥0 count only those individuals in (Zn)n≥0, who conditioned on

survival have an infinite line of descent. Show that (Z̃n)n≥0 is a branching
process with offspring generating function10

ϕ̃(s) =
1

1− ρ

(
ϕ
(
(1− ρ)s+ ρ

)
− ρ
)
.

Exercise 2.15. Let (Zn)n≥0 be a subcritical branching process whose generating
function ϕ(s) = E(sZ1) is finite for some s > 1, ie., the offspring distribution
has finite exponential moments in a neighbourhood of the origin.

(a) Using the result of Exercise 2.11 or otherwise, show that the total population
size Z̄ =

∑
k≥0 Zk satisfies E

(
uZ̄
)
<∞ for some u > 1.

(b) Suppose that for each 1 ≤ i ≤ Z̄, individual i produces wealth of size Wi,
where Wi are independent random variables with common distribution sat-
isfying E

(
sW
)
< ∞ for some s > 1. Show that for some u > 1 we have

E
(
uW
)
< ∞, where W = W1 + · · · + WZ̄ is the total wealth generated

by (Zn)n≥0.

2.2 Critical case m = 1

The following example is one of very few for which the computation in the
critical case m = E(Z1) = 1 can be done explicitly.

Example 2.16. Consider the so-called linear-fractional case, where the off-
spring distribution is given by pj = 2−(j+1), j ≥ 0. Then the offspring generat-
ing function is ϕ(s) =

∑
j≥0 s

j/2j+1 = (2−s)−1 and a straightforward induction
gives (check this!)

ϕk(s) =
k − (k − 1)s

(k + 1)− ks
=

k

k + 1
+

1

k(k + 1)

∑
m≥1

( ks

k + 1

)m
,

20



so that P(Zk = 0) = ϕk(0) = k/(k + 1), P(Zk > 0) = 1/(k + 1), and

P
(
Zk = m | Zk > 0

)
=

1

k + 1

( k

k + 1

)m−1

, m ≥ 1 ,

ie., (Zk | Zk > 0
)

has geometric distribution with success probability 1/(k + 1).

Remark 2.17. For each k ≥ 0, by the partition theorem,

1 = E(Zk) = E
(
Zk | Zk > 0

)
P(Zk > 0) + E

(
Zk | Zk = 0

)
P(Zk = 0) ,

so that in the previous example we have

E
(
Zk | Zk > 0

)
=

1

P(Zk > 0)
= k + 1 ,

ie., conditional on survival, the average generation size grows linearly with time.

The following example is known as the general linear-fractional case:

Exercise 2.18. For fixed b > 0 and p ∈ (0, 1), consider a branching process
with offspring distribution pj = b pj−1, j ≥ 1, and p0 = 1−

∑
j≥1 pj.

(a) Show that for b ∈ (0, 1 − p) the distribution above is well defined; find the
corresponding p0, and show that

ϕ(s) =
1− b− p

1− p
+

bs

1− ps
;

(b) Find b for which the branching process is critical and show that then

ϕk(s) = E
(
sZk
)

=
kp− (kp+ p− 1)s

(1− p+ kp)− kps
;

(c) Deduce that (Zk | Zk > 0
)

is geometrically distributed with parameter
1−p

kp+1−p .

Straightforward computer experiments show that a similar linear growth of
E
(
Zk | Zk > 0

)
takes place for other critical offspring distributions, eg., the one

with ϕ(s) = (1 + s2)/2.

Theorem 2.19. If the offspring distribution of the branching process (Zk)k≥0

has mean m = 1 and finite variance σ2 > 0, then k P(Zk > 0)→ 2
σ2 as k →∞;

equivalently,
1

k
E(Zk | Zk > 0

)
→ σ2

2
as k →∞. (2.4)

Remark 2.20. This general result suggests that, conditional on survival, a gen-
eral critical branching process exhibits linear intermittent behaviour; 11 namely,
with small probability (of order 2/(kσ2)) the values of Zk are of order k.

11Intermittency follows from the criticality condition, 1 = E(Zk | Zk > 0
)
P(Zk > 0); it is

the linearity which is surprising here!
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Our argument is based on the following general fact: 12

Lemma 2.21. Let (yn)n≥0 be a real-valued sequence. If for some constant a
we have yn+1 − yn → a as n→∞, then n−1yn → a as n→∞.

Proof. By changing the variables yn 7→ y′n = yn − na if necessary, we can and
shall assume that a = 0. Fix arbitrary δ > 0 and find K > 0 such that for
n ≥ K we have |yn+1 − yn| ≤ δ. Decomposing, for n > K,

yn − yK =
n−1∑
j=K

(
yj+1 − yj

)
we deduce that |yn − yK | ≤ δ(n − K) so that the

claim follows from the estimate∣∣∣yn
n

∣∣∣ ≤ ∣∣∣yn − yK
n

∣∣∣+
∣∣∣yK
n

∣∣∣ ≤ δ +
∣∣∣yK
n

∣∣∣ ≤ 2δ ,

provided n is chosen sufficiently large.

Proof. (of Theorem 2.19). We only derive the second claim of the theorem,
(2.4). By assumptions and Taylor’s theorem (here we are also using Theorem
1.16) the offspring generating function ϕ satisfies

1− ϕ(s) = (1− s) +
σ2

2
(1− s)2 +R(s)(1− s)2 where R(s)→ 0 as s ↑ 1.

Since ϕn(0) = P(Zn = 0) → 1 as n → ∞ this means in particular that 1 −
ϕn+1(0) = 1 − ϕ(ϕn(0)) = 1 − ϕn(0) + (1 − ϕn(0))2(σ

2

2 + rn)) with rn :=
R(ϕn(0))→ 0 as n→∞. Setting

yn =
1

1− ϕn(0)
=

E(Zn)

P(Zn > 0)
= E(Zn|Zn > 0)

we therefore have

yn+1 − yn =
1

1− ϕn(0)

1

1− (1− ϕn(0))(σ2/2 + rn)
− 1

which we can rewrite as

(1− ϕn(0))(σ2/2 + rn)

1− ϕn(0)

1

1− (1− ϕn(0))(σ2/2 + rn)

for each n. It therefore follows that yn+1 − yn → σ2/2 as n→∞ and hence

yn
n

=
E(Zn|Zn > 0)

n
→ σ2

2

as well (by the Lemma). This completes the proof.

12Compare the result to Cesàro limits of real sequences: if (ak)k≥1 is a real-valued sequence,

and sn = a1 + · · · + an is its nth partial sum, then 1
n
sn are called the Cesàro averages for the

sequence (ak)k≥1. Lemma 2.21 claims that if ak → a as k → ∞, then the sequence of its
Cesàro averages also converges to a. The converse is, of course, false. (Find a counterexample!)
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Remark 2.22. With a bit of extra work 13 one can generalize the above proof
to show that

lim
n→∞

n−1
( 1

1− ϕn(s)
− 1

1− s

)
=
σ2

2

for any s ∈ [0, 1] and use this relation to derive the convergence in distribution:

Theorem 2.23. If EZ1 = 1 and Var(Z1) = σ2 ∈ (0,∞), then for every z ≥ 0
we have

lim
k→∞

P
(Zk
k
> z | Zk > 0

)
= exp

{
−2z

σ2

}
,

ie., the distribution of
(
k−1Zk | Zk > 0

)
is approximately exponential with

parameter 2/σ2.

Remark 2.24. In the setup of Example 2.16, we have

P
(
Zk > m | Zk > 0

)
=
( k

k + 1

)m
=
(

1− 1

k + 1

)m
,

so that P
(
Zk > kz | Zk > 0

)
→ e−z as k → ∞; in other words, for large k the

distribution of
(
k−1Zk | Zk > 0

)
is approximately Exp(1).

Exercise 2.25. Let (Zn)n≥0 be the critical branching process from Exercise
2.18, namely, the one whose offspring distribution is given by (pj)j≥0,

pj = b pj−1 , j ≥ 1 , p0 = 1−
∑
j≥1

pj ,

where b > 0 and p ∈ (0, 1) are fixed parameters. Show that the result of Theorem
2.23 holds: for every z ≥ 0

lim
k→∞

P
(Zk
k
> z | Zk > 0

)
= exp

{
−2z

σ2

}
,

where Var(Z1) = σ2 ∈ (0,∞).

2.3 Non-homogeneous case

If the offspring distribution changes with time, the previous approach must be
modified. Let ψn(u) be the generating function of the offspring distribution of
a single ancestor in the (n− 1)st generation,

ψn(u) = E
(
uZn | Zn−1 = 1

)
(so in the cases considered up to now, ψn = ϕ for every n). Then the generating
function ϕn(u) = E

(
uZn | Z0 = 1

)
of the population size at time n given a single

ancestor at time 0, can be defined recursively as follows:

ϕ0(u) ≡ u , ϕn(u) = ϕn−1

(
ψn(u)

)
, ∀n ≥ 1 .

13using the fact that every s ∈ (0, 1) satisfies 0 < s < ϕk(0) < 1 for some k ≥ 1;
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If µn = E(Zn | Zn−1 = 1) = ψ′n(1) denotes the average offspring size in the nth
generation given a single ancestor in the previous generation, then

mn ≡ E
(
Zn | Z0 = 1

)
= µ1µ2 . . . µn−1µn .

It is natural to call the process (Zn)n≥0 supercritical if mn →∞ and subcritical
if mn → 0 as n→∞.

Exercise 2.26. A strain of phototrophic bacteria uses light as the main source
of energy. As a result individual organisms reproduce with probability mass
function p0 = 1/4, p1 = 1/4 and p2 = 1/2 per unit of time in light environment,
and with probability mass function p0 = 1−p, p1 = p (with some p > 0) per unit
of time in dark environment. A colony of such bacteria is grown in a laboratory,
with alternating light and dark unit time intervals.

a) Model this experiment as a time non-homogeneous branching process (Zn)n≥0

and describe the generating function of the population size at the end of the nth
interval.

b) Characterise all values of p for which the branching process Zn is subcritical
and for which it is supercritical.

c) Let (Dk)k≥0 be the original process observed at the end of each even interval,

Dk
def
= Z2k. Find the generating function of (Dk)k≥0 and derive the condition

for sure extinction. Compare your result with that of part b).
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3 Coupling

Two random variables, say X and Y , are coupled if they are defined on the
same probablity space. To couple two given variables X and Y means to define a
random vector

(
X̃, Ỹ ) with joint probability P̃( · , · ) on some probability space14

so that the marginal distribution of X̃ coincides with the distribution of X and
the marginal distribution of Ỹ coincides with the distribution of Y . Recall the
following example:

Example 3.1. Fix p1, p2 ∈ [0, 1] such that p1 ≤ p2 and consider the following
joint distributions (we write qi = 1− pi):

(A)

0 1 X̃

0 q1q2 q1p2 q1

1 p1q2 p1p2 p1

Ỹ q2 p2

(B)

0 1 X̃

0 q2 p2 − p1 q1

1 0 p1 p1

Ỹ q2 p2

It is easy to see that in both cases 15

X̃ ∼ Ber(p1) , Ỹ ∼ Ber(p2),

though in the first case X̃ and Ỹ are independent, whereas in the second case
we have P̃(X̃ ≤ Ỹ ) = 1.

3.1 Stochastic domination

If X ∼ Ber(p), its tail probabilities P(X > a) satisfy

P(X > a) =


1, a < 0 ,

p, 0 ≤ a < 1 ,

0, a ≥ 1 .

Consequently, in the setup of Example 3.1, for the variables X ∼ Ber(p1) and
Y ∼ Ber(p2) with p1 ≤ p2 we have P(X > a) ≤ P(Y > a) for all a ∈ R. The
last inequality is useful enough to deserve a name:

14A priori the original variables X and Y can be defined on arbitrary probability spaces, so
that one has no reason to expect that these spaces can be “joined” in any way!

15and in fact, every convex linear combination of these two tables provides a joint distribu-
tion with the same marginals.
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Definition 3.2. [Stochastic domination] A random variable X is stochastically
smaller than a random variable Y (write X 4 Y ) if the inequality

P
(
X > x

)
≤ P

(
Y > x

)
(3.1)

holds for all x ∈ R.

Remark 3.3. If X 4 Y and g( · ) ≥ 0 is an arbitrary increasing function on
R, then g(X) 4 g(Y ). If, in addition, X ≥ 0, Y ≥ 0, and g(·) is smooth with
g(0) = 0, then

Eg(X) ≡
∫ ∞

0

g′(z)P(X > z) dz ≤
∫ ∞

0

g′(z)P(Y > z) dz ≡ Eg(Y ) . (3.2)

Example 3.4. If X is a random variable and a ≥ 0 is a fixed constant, it is
immediate that Y = a + X stochastically dominates X, ie., X 4 Y : for each
x ∈ R we have P(X > x) ≤ P(X > x− a) = P(Y > x). Similarly, if a ≥ 1 and
Z = aX ≥ 0, then X 4 Z.

In the setup of Example 3.1, if X ∼ Ber(p1) and Y ∼ Ber(p2) then X is
stochastically smaller than Y (ie., X 4 Y ) if and only if p1 ≤ p2; moreover,

this is equivalent to existence of a coupling
(
X̃, Ỹ ) of X and Y in which these

variables are ordered with probablity one, P̃(X̃ ≤ Ỹ ) = 1. The next result
shows that this is a rather generic situation.

Lemma 3.5. A random variable X is stochastically smaller than a random
variable Y if and only if there exists a coupling

(
X̃, Ỹ ) of X and Y such that

P̃(X̃ ≤ Ỹ ) = 1.

Remark 3.6. Notice that one claim of Lemma 3.5 is immediate from

P(x < X) ≡ P̃
(
x < X̃

)
= P̃

(
x < X̃ ≤ Ỹ

)
≤ P̃

(
x < Ỹ

)
≡ P

(
x < Y

)
;

the other claim requires a more advanced argument (we shall not do it here!).

Example 3.7. If X ∼ Bin(m, p) and Y ∼ Bin(n, p) with m ≤ n, then X 4 Y .
Indeed, Let Z1 ∼ Bin(m, p) and Z2 ∼ Bin(n − m, p) be independent variables

defined on the same probability space. We then put X̃ = Z1 and Ỹ = Z1 +Z2 so
that Ỹ − X̃ = Z2 ≥ 0 with probability one, P̃(X̃ ≤ Ỹ ) = 1, and X ∼ X̃, Y ∼ Ỹ .

Example 3.8. If X ∼ Poi(λ) and Y ∼ Poi(µ) with λ ≤ µ, then X 4 Y .
Indeed, Let Z1 ∼ Poi(λ) and Z2 ∼ Poi(µ − λ) be independent variables defined

on the same probability space. 16 We then put X̃ = Z1 and Ỹ = Z1 +Z2 so that
Ỹ − X̃ = Z2 ≥ 0 with probability one, P̃(X̃ ≤ Ỹ ) = 1, and X ∼ X̃, Y ∼ Ỹ .

Example 3.9. Let (Xn)n≥0 be a branching process with offspring distribution
{pm}m≥0 and X0 = 1. Let (Yn)n≥0 be a branching process with the same off-
spring distribution and Y0 = 2. We can use stochastic domination to show that
P(Xn = 0) ≥ P(Yn = 0) for all n.

16here and below we assume that Z ∼ Poi(0) means that P(Z = 0) = 1.
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Indeed, it is enough to show that Xn 4 Yn for all n ≥ 0. To this end
consider two independent branching processes, (Z ′n)n≥0 and (Z ′′n)n≥0, having
the same offspring distribution {pm}m≥0 and satisfying Z ′0 = Z ′′0 = 1. We then

put X̃n = Z ′n and Ỹn = Z ′n + Z ′′n for all n ≥ 0, so that Ỹn − X̃n = Z ′′n ≥ 0, ie.,

P̃(X̃n ≤ Ỹn) = 1 and Xn ∼ X̃n, Yn ∼ Ỹn for all n ≥ 0.

Exercise 3.10. For a given offspring distribution {pm}m≥0, let (Xn)n≥0 be the
branching process with X0 = k and let (Yn)n≥0 be the branching process with
Y0 = l, k < l. Show that Xn 4 Yn for all n ≥ 0.

Exercise 3.11. Let X, Y , Z be random variables in Z+. If X 4 Y and Z is
independent of {X,Y }, show that X + Z 4 Y + Z.
Let {Xi, Yi}i=1,...,n be random variables in Z+. If the pairs (Xi, Yi) are mutually
independent and Xi 4 Yi for each i, show that X1 + · · ·+Xn 4 Y1 + · · ·+ Yn.

Exercise 3.12. Let (Xn)n≥0 and (Yn)n≥0 be standard branching processes with
X0 = Y0 = 1. Assume that the offspring distribution of X is stochastically
smaller than that of Y (X1 4 Y1), ie., for all integer k ≥ 0, P(X1 > k|X0 =
1) ≤ P(Y1 > k|Y0 = 1). Show that Xn 4 Yn for all n ≥ 0.

3.2 Total variation distance

Definition 3.13. [Total Variation Distance] Let µ and ν be two probability mea-
sures on the same probability space. The total variation distance between µ and
ν is

dTV(µ, ν)
def
= sup

A

∣∣µ(A)− ν(A)
∣∣ . (3.3)

If X, Y are random variables in Z+ with respective p.m.f.s {p} = {pk}k≥0 and
{q} = {q`}`≥0, then

dTV(X,Y )
def
= dTV({p}, {q}) = sup

A⊆Z+

∣∣∑
k∈A pk −

∑
k∈A qk

∣∣.
In general if X,Y are two discrete random variables taking values in the same space
X , with P(X = x) = px,P(Y = x) = qx for x ∈ X , then we define

dTV(X,Y )
def
= dTV({p}, {q}) = sup

A⊆X
|
∑
x∈A

px −
∑
x∈A

qx|.

Example 3.14. If X ∼ Ber(p1) and Y ∼ Ber(p2) we have

dTV(X,Y ) = max
{
|p1 − p2|, |q1 − q2|

}
= |p1 − p2| = 1

2

(
|p1 − p2|+ |q1 − q2|

)
.
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Exercise 3.15. Let probability measures µ and ν have respective p.m.f.s {px}
and {qy}. Show that the total variation distance between µ and ν is

dTV(µ, ν) ≡ dTV

(
{p}, {q}

)
=

1

2

∑
z

∣∣pz − qz∣∣ .
Deduce that dTV(·, ·) is a distance between probability measures17 (ie., it is non-

negative, symmetric, and satisfies the triangle inequality) such that dTV(·, ·) ≤ 1
for all probability measures µ and ν.

An important relation between coupling and the total variation distance is
explained by the following fact.

Example 3.16. [Maximal Coupling] Let random variables X and Y be such

that P(X = x) = px and P(Y = y) = qy. Define the coupling
(
X̃, Ỹ

)
via18

P̂
(
X̃ = Ỹ = z

)
= min

(
pz, qz

)
, (3.4)

P̂
(
X̃ = x, Ỹ = y

)
=

(
px −min(px, qx)

) (
qy −min(py, qy)

)
dTV

(
{p}, {q}

) , x 6= y . (3.5)

Exercise 3.17. Show that∑
x

(
px −min(px, qx)

)
=
∑
y

(
qy −min(py, qy)

)
= dTV

(
{p}, {q}

)
,

and deduce that (3.4) is indeed a coupling of X and Y (ie., that (3.4) defines
a probability distribution with correct marginals).

Example 3.18. Consider X ∼ Ber(p1) and Y ∼ Ber(p2) with p1 ≤ p2. It is a
straightforward exercise to check that the second table in Example 3.1 provides
the maximal coupling of X and Y . We notice also that in this case

P̂
(
X̃ 6= Ỹ

)
= p2 − p1 = dTV(X,Y ) .

Lemma 3.19. Let P̂( · , · ) be the maximal coupling (3.4) of X and Y . Then

for every other coupling P̃( · , · ) of X and Y we have

P̃
(
X̃ 6= Ỹ

)
≥ P̂

(
X̃ 6= Ỹ

)
= dTV

(
X̃, Ỹ

)
. (3.6)

Proof. Summing the inequalities P̃
(
X̃ = Ỹ = z

)
≤ min(pz, qz) we deduce

P̃
(
X̃ 6= Ỹ

)
≥ 1−

∑
z

min(pz, qz) =
∑
z

(
pz −min(pz, qz)

)
= dTV

(
{p}, {q}

)
,

in view of Exercise 3.17 and Example 3.18.
17so that all probability measures form a metric space for this distance!
18By Exercise 3.15, if dTV

(
{p}, {q}

)
= 0, we have pz = qz for all z, and thus all off-diagonal

terms in (3.4) vanish.
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Remark 3.20. Notice that according to (3.6),

P̃
(
X̃ = Ỹ

)
≤ P̂

(
X̃ = Ỹ

)
= 1− dTV

(
X̃, Ỹ

)
,

ie., the probability that X̃ = Ỹ is maximised under the optimal coupling P̂(· , ·).

Example 3.21. The maximal coupling of X ∼ Ber(p) and Y ∼ Poi(p) satisfies

P̂
(
X̃ = Ỹ = 0

)
= 1− p , P̂

(
X̃ = Ỹ = 1

)
= pe−p ,

and P̂
(
X̃ = Ỹ = x

)
= 0 for all x > 1. As a result,

dTV

(
X̃, Ỹ

)
≡ P̂

(
X̃ 6= Ỹ

)
= 1− P̂

(
X̃ = Ỹ

)
= p
(
1− e−p

)
≤ p2 . (3.7)

Is either of the variables X and Y stochastically dominated by the other?

3.3 Applications to convergence

3.3.1 Coupling of Markov chains

Coupling is a very useful tool for proving convergence towards equilibrium for
various processes, including Markov chains and random walks. The following
example uses the independent coupling19 of two random walks on a complete
graph.

Example 3.22. On the complete graph Km on m vertices, consider the random
walk (Xn)n≥0 with X0 = x, such that at every step it jumps to any of the vertices
of Km uniformly at random (excluding the current one). To show that eventually
(Xn)n≥0 forgets its initial distribution, one couples (Xn)n≥0 with another copy
(Yn)n≥0, Y0 = y, of this random walk, and shows that for large n both processes
coincide with large probability.

To do this, we treat the pair (X̃n, Ỹn)n≥0 as a two-component random walk
on Km×Km with the following jump probabilities: the transition (x, y) 7→ (x′, y′)
occurs with probability

p̃(x,y)(x′,y′) =

{
1
m2 , if x 6= y ,
1
m , if x = y and x′ = y′ ,

and set p̃(x,y)(x′,y′) = 0 otherwise (ie., if x = y and x′ 6= y′). It is straightforward
to check that this is a correct coupling:20∑
y′

p̃(x,y)(x′,y′) = m· 1

m2
= px,x′ ,

∑
y′

p̃(x,x)(x′,y′) = p̃(x,x)(x′,x′) =
1

m
= px,x′ .

Notice that the walks (X̃n)n≥0 and (Ỹn)n≥0 run independently until they meet,
and from that moment onwards they move together. For x 6= y, denote

T
def
= min{n ≥ 0 : X̃n = Ỹn} . (3.8)

19Recall the first table in Example 3.1.
20the argument for the other marginal is similar;
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By a straightforward induction, it is easy to see that

P̃(T > n) =
1

m

(
1− m− 2

(m− 1)2

)n
,

ie., T is (basically) a geometric random variable. Since X̃n and Ỹn coincide

after they meet, and P̃, X̃n, Ỹn gives a coupling of (Xn, Yn) for every n we have
that

dTV(Xn, Yn) ≤ P̃(X̃n 6= Ỹn) = P̃(T > n) ,

by ( (3.6)). It therefore only remains to observe that the RHS above is exponen-

tially small, P̃(T > n) ≤
(
1 − 1

m

)n ≤ e−n/m. In other words, the random walk
(Xn)n≥0 forgets its initial state X0 = x at least exponentially fast.

Notice that if (Yn)n≥0 starts from the equilibrium (ie., its initial position is
selected in Km uniformly at random), our argument shows that for every initial
state x and every state j we have |P(Xn = j) − 1

m | ≤ e−n/m, ie., convergence
towards the equilibrium distribution is at least exponentially fast.21

The next example is important for computer science.

Example 3.23. [Random walk on a hypercube] An n-dimensional hypercube is
just Hn ≡ {0, 1}n, a graph whose vertex set is the collection of all n-sequences
made of 0 and 1 (there are 2n of them) and whose edges connect vertices which
differ at a single position. The “lazy” random walk (Wk)k≥0 on Hn is defined
as follows: if Wk = v ∈ Hn, select m, 1 ≤ m ≤ n, uniformly at random and flip
a fair coin. If the coin shows heads, set the mth coordinate of v to 1, otherwise
set it to 0. The walk (Wk)k≥0 is aperiodic and irreducible; as k increases, it
tends to forget its initial state.

Exercise 3.24. Let (Wk)k≥0 be the random walk on the hypercube Hn, recall
Example 3.23. Use Example 3.22 to study its distribution for large k.

Exercise 3.25. Let (ξj)j≥1 be independent variables with P(ξ = 1) = 1−P(ξ =
−1) = px and let (ηj)j≥1 be independent variables with P(η = 1) = 1 − P(η =
−1) = py. Define simple random walks (Xn)n≥0 and (Yn)n≥0 on Z via Xn =
x+

∑n
j=1 ξj and Yn = y +

∑n
j=1 ηj.

a) Show that the random walk (Xn)n≥0 on Z forgets its initial state x; namely,
for px = py and y − x = 2k, construct a coupling of (Xn)n≥0 and (Yn)n≥0

similar to that of Example 3.22.

b) Show that the random walk (Xn)n≥0 monotonously depends on px; namely,
for x ≤ y and px ≤ py, use the ideas from Example 3.1 to construct a monotone

coupling of (Xn)n≥0 and (Yn)n≥0, ie., such that P̃
(
X̃n ≤ Ỹn

)
= 1 for all n ≥ 0.

21?? gives a more precise information about this convergence.
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Example 3.26. [Random-to-top shuffling] For many practical purposes it is
important to generate a random permutation of a collection of cards 1, 2, . . . ,
m. One way is to define a Markov chain (Xn)n≥0 in the space of all possible
permutations (so at any time n, Xn will be a permutation of {1, . . . ,m}), and
run it until the stationary distribution is reached. The stationary distribution is
as usual the uniform distribution on all possible permutations.

One of the simplest algorithms—the random-to-top shuffling—is defined as
follows: for a given state Xn = (σ(1), . . . , σ(m)) of the chain, find the jth card
by position (with j taken uniformly at random between 1 and m) and put it at
the top of the deck to get the new state Xn+1 = (σ(j), . . . , σ(j−1), σ(j+1), . . . ).
Note that we could take the jth card by value instead, and then the new state
would be (j, . . . , σ(k − 1), σ(k + 1), . . . ) for the unique k such that σ(k) = j.
Since j is chosen uniformly at random, this gives the same algorithm (a Markov
chain with the same transition probabilities).

To study the approach to stationarity, one couples two copies of the Markov
chain, (Xn)n≥0 and (Yn)n≥0, one starting from a fixed state, and other starting
from equilibrium, and shuffles until both configurations Xn and Yn agree.

Exercise 3.27. Let (Xn)n≥0 and (Yn)n≥0 be random-to-top shuffling (RTTS)
Markov chains, recall Example 3.26. Suppose that a random card in Xn (by
position) is chosen, say of value j, and then put at the top to get Xn+1. In Yn
find the (randomly positioned) card with number j and also move it to the top
to get Yn+1. Let T := min{k ≥ 0 : Yk = Xk} be the coupling time for (Xn)n≥0

and (Yn)n≥0.

a) Show that the described algorithm provides a coupling22 of the RTTS (by
position) for (Xn)n≥0 and the RTTS (by value) for (Yn)n≥0.

b) Describe the distribution of T .

3.3.2 The Law of rare events

This subsection is optional and will not be examined.

The convergence result in Exercise 1.33 can also be derived using coupling:

Theorem 3.28. Let X =
∑n
k=1Xk, where Xk ∼ Ber(pk) are independent

random variables. Let, further, Y ∼ Poi(λ), where λ =
∑n
k=1 pk. Then the

maximal coupling of X and Y satisfies

dTV

(
X̃, Ỹ

)
≡ P̂

(
X̃ 6= Ỹ

)
≤

n∑
k=1

(
pk
)2
.

Proof. Write Y =
∑n
k=1 Yk, where Yk ∼ Poi(pk) are independent rv’s. Of course,

P
(∑n

k=1Xk 6=
∑n
k=1 Yk

)
≤
∑n
k=1 P(Xk 6= Yk) for every joint distribution of

(Xk)nk=1 and (Yk)nk=1. Let P̂k be the maximal coupling for the pair {Xk, Yk},
22try coupling RTTS (by value) and RTTS (by value) chains!
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and let P̂0 be the maximal coupling for two sums. Notice that the LHS above
is not smaller than dTV

(
X̃, Ỹ

)
≡ P̂0

(
X̃ 6= Ỹ

)
; on the other hand, using the

(independent) product measure P = P̂1 × · · · × P̂n on the right we deduce that

then the RHS becomes just
∑n
k=1 P̂k

(
X̃k 6= Ỹk

)
. The result now follows from

(3.7).

Exercise 3.29. Let X ∼ Bin(n, λn ) and Y ∼ Poi(λ) for some λ > 0. Show that

1

2

∣∣P(X = k)− P(Y = k)
∣∣ ≤ dTV

(
X̃, Ỹ

)
≤ λ2

n
for every k ≥ 0. (3.9)

Deduce that for every fixed k ≥ 0, we have P(X = k)→ λk

k! e
−λ as n→∞.

Remark 3.30. Notice that (3.9) implies that if X ∼ Bin(n, p) and Y ∼ Poi(np)
then for every k ≥ 0 the probabilities P(X = k) and P(Y = k) differ by at most
2np2. In particular, if n = 10 and p = 0.01 the discrepancy between any pair of
such probabilities is bounded above by 0.002, ie., they coincide in the first two
decimal places.

3.4 Additional problems

Exercise 3.31. In the setting of Example 3.1 show that every convex linear
combination of tables T1 and T2, ie., each table of the form Tα = αT1 +(1−α)T2

with α ∈ [0, 1], gives an example of a coupling of X ∼ Ber(p1) and Y ∼ Ber(p2).
Can you find all possible couplings for these variables?

Exercise 3.32. Generalise the inequality (3.2) 1to a broader class of functions
g( · ) and verify that if X 4 Y , then E(X2k+1) ≤ E(Y 2k+1), EetX ≤ EetY with
t > 0, EsX ≤ EsY with s > 1 etc.

Exercise 3.33. Let ξ ∼ U(0, 1) be a standard uniform random variable. For
fixed p ∈ (0, 1), define X = 1ξ<p. Show that X ∼ Ber(p), a Bernoulli random
variable with parameter p. Now suppose that X = 1ξ<p1 and Y = 1ξ<p2 for some
0 < p1 ≤ p2 < 1 and ξ as above. Show that X 4 Y and that P(X ≤ Y ) = 1.
Compare your construction to the second table in Example 3.1.

Exercise 3.34. Let X ∼ Geom(p) and Y ∼ Geom(r) be two geometric random
variables. If 0 < p ≤ r < 1, are X and Y stochastically ordered? Justify your
answer.

Exercise 3.35. Let X ∼ Γ(a, λ) and Y ∼ Γ(b, λ) be two gamma random vari-
ables.23 If 0 < a ≤ b < ∞, are X and Y stochastically ordered? Justify your
answer.

23The density of Z ∼ Γ(a, λ) is λa

Γ(a)
xa−1e−λx (x > 0); notice that Γ(1, λ) is just Exp(λ).
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4 Martingales

4.1 Definition and some examples

A martingale is a generalized version of a “fair game”.

Definition 4.1. A process (Mn)n≥0 is a martingale if

a) for every n ≥ 0 the expectation EMn is finite, equivalently, E|Mn| <∞;

b) for every n ≥ 0 and all mn, mn−1, . . . , m0 we have

E
(
Mn+1 |Mn = mn, . . . ,M0 = m0

)
= mn . (4.1)

For those familiar with the notion of conditioning on a random variable (see
next section), (4.1) can just be written as E

(
Mn+1 |Mn, . . . ,M0

)
= Mn.

Definition 4.2. We say that (Mn)n≥0 is a supermartingale 24 if the equality in
(4.1) holds with ≤, ie., E

(
Mn+1 |Mn, . . . ,M0

)
≤Mn; and we say that (Mn)n≥0

is a submartingale, if (4.1) holds with ≥, ie., E
(
Mn+1 |Mn, . . . ,M0

)
≥Mn.

Example 4.3. Let (ξn)n≥1 be independent random variables 25 with

Eξn = 0

for all n ≥ 1. Then the process (Mn)n≥0 defined via

Mn
def
= M0 + ξ1 + · · ·+ ξn

is a martingale as long as the random variable M0 is independent of (ξn)n≥1 and
E|M0| <∞. For example, we will often take M0 = 0 or some other deterministic
constant.

Indeed, by the triangle inequality, E|Mn| ≤ E|M0| +
∑n
j=1 E|ξj | < ∞ for all

n ≥ 0; on the other hand, the independence property implies

E
(
Mn+1 −Mn |Mn, . . . ,M0

)
≡ E

(
ξn+1 |Mn, . . . ,M0

)
= Eξn+1 = 0 .

Remark 4.4. Notice that if Eξn ≥ 0 for all n ≥ 1, then (Mn)n≥0 is a submartin-
gale, whereas if Eξn ≤ 0 for all n ≥ 1, then (Mn)n≥0 is a supermartingale. More
generally, if (ξn)n≥1 are independent random variables with E|ξn| < ∞ for all
n ≥ 1, then the process Mn = M0 + (ξ1 − Eξ1) + · · · + (ξn − Eξn), n ≥ 0, is a
martingale.

Exercise 4.5. Given a sequence (ξk)k≥1 of independent Bernoulli variables
with common distribution P(ξ = 1) = p and P(ξ = −1) = q = 1 − p, define
the generated random walk via Xn =

∑n
k=1 ξk, n ≥ 0. Show that the process

Mn = (q/p)Xn is a martingale.

24If Mn traces your fortune, then “there is nothing super about a supermartingale”.
25Notice that we do not assume that all ξn have the same distribution!
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Example 4.6. Let (Zn)n≥0 be a branching process with EZ1 = m < ∞. We
have E|Zn| <∞ and E(Zn+1 | Zn, . . . , Z0) = mZn for all n ≥ 0. In other words,
the process (Zn)n≥0 is a martingale, a submartingale or a supermartingale de-
pending on whether m = 1, m > 1 or m < 1.
Notice also, that for every m ∈ (0,∞) the process (Zn/m

n)n≥0 is a martingale.

Exercise 4.7. Let ρ be the extinction probability for a branching process (Zn)n≥0;
show that Mn = ρZn is a martingale.

We can also construct many examples of submartingales and supermartin-
gales if we have a martingale and apply certain functions to it. This is a conse-
quence of:

Lemma 4.8 (Conditional Jensen’s inequality). Suppose that X is an integrable
random variable on (Ω,F ,P) and A ∈ F with P(A) > 0.

Suppose that ϕ is a convex function such that ϕ(X) is also integrable. Then

E(ϕ(X)|A) ≥ ϕ(E(X|A)).

Proof. This follows from the non-conditional version of Jensen’s inequality, and
using the fact that P(·|A) is a valid probability measure.

Example 4.9. Let (Xn)n≥0 be a martingale. If, for some convex function f( · )
we have E

(
|f(Xn)|

)
< ∞ for all n ≥ 0, then the process f(X) :=

(
f(Xn)

)
n≥0

is a submartingale.
Similarly, if for some concave f( · ) we have E

(
|f(Xn)|

)
< ∞ for all n ≥ 0,

then the process f(X) is a supermartingale.
Both these claims follow immediately from the Jensen inequalities for con-

ditional expectations.

4.2 A few remarks on conditional expectation

Recall the following basic definition:

Example 4.10. Let (Ω,F ,P) be a probability triple and let X and Y be random
variables taking values x1, x2, . . . , xm and y1, y2, . . . , yn respectively. On the
event {Y = yj} one defines the conditional probability

P
(
X = xi | Y = yj

) def
=

P(X = xi, Y = yj)

P(Y = yj)

and the conditional expectation: E
(
X | Y = yj

)
≡
∑
i xiP

(
X = xi | Y = yj

)
.

Then the conditional expectation Z = E(X |Y ) of X given Y is defined as follows:

if Y (ω) = yj , then Z(ω)
def
= zj ≡ E

(
X | Y = yj

)
.

Notice that the value zj is completely determined by yj; in other words, Z is
a function of Y , and as such, a random variable. Of course, if X and Y are
independent, we have Z(ω) ≡ EX.
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Definition 4.11. If D = {D1, D2, . . . , Dm} is a finite partition 26 of Ω, the
collection G = σ(D) of all 2m possible subsets of Ω constructed from blocks Di

is called the σ-field generated by D. A random variable Y is measurable with
respect to G if it is constant on every block Di of the initial partition D.

In Example 4.10 above we see that Z is constant on the events {Y = yj}; ie.,
Z is measurable w.r.t. the σ-field σ(Y ) ≡ σ({Y = yj}j). Moreover, for every
Gj ≡ {Y = yj}, we have

E
(
Z 1Gj

) = zjP(Y = yj) =
∑
i

xiP
(
X = xi | Y = yj

)
P(Y = yj)

=
∑
i

xiP
(
X = xi, Y = yj

)
= E

(
X1Gj ) ,

where the last equality follows from the observation that the random variable
X1Gj

equals xi on every event Gj ∩ {X = xi} = {Y = yj} ∩ {X = xi} and
vanishes identically outside the set Gj .

Remark 4.12. The last two properties can be used to define conditional expec-
tation in general: Let (Ω,F ,P) be a probability triple, let G ⊆ F be a σ-field, and
let X be a rv, X : Ω → R. The conditional expectation of X w.r.t. G is the
unique random variable Z such that: Z is G measurable and for every set G ∈ G
we have

∫
G
ZdP ≡ E

(
Z1G) = E

(
X1G) ≡

∫
G
XdP.

Notice that when G = σ(D), the definition in the remark above coincides
with Definition 4.11.

The following are the most important properties of conditional expectation:

Lemma 4.13. Let (Ω,F ,P) be a probability triple, and let G ⊂ F a σ-field.
Then for all random variables X, X1, X2 and constants a1, a2, the following
properties hold:

a) If Z = E
(
X | G

)
then EZ = EX;

b) If X is G-measurable, then E
(
X | G

)
= X;

c) E
(
a1X1 + a2X2 | G

)
= a1E

(
X1 | G

)
+ a2E

(
X2 | G

)
;

d) If X ≥ 0, then E
(
X | G

)
≥ 0;

e) If H and G are two σ-fields in Ω such that H ⊆ G, then

E
[
E
(
X | G

)
|H
]

= E
[
E
(
X |H

)
| G
]

= E
(
X |H

)
;

26 In the general countable setting, if D = {D1, D2, . . . } forms a denumerable (ie., infinite
countable) partition of Ω, then the generated σ-field G = σ(D) consists of all possible subsets
of Ω which are obtained by taking countable unions of blocks of D. Similarly, a variable Y is
measurable w.r.t. G, if for every real y the event {ω : Y (ω) ≤ y} belongs to G (equivalently,
can be expressed as a countable union of blocks of D.
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f) If Z is G-measurable, then E
[
ZX | G

]
= Z E(X | G).

g) If Z is independent of G, then E
[
Z | G

]
= E[Z].

If (Xk)k≥1 is a sequence of random variables, we can define the generated
σ-fields FX1 , FX2 , . . . , via

FXk
def
= σ(X1, X2, . . . , Xk) ; (4.2)

here, the σ-field FXk stores all information about the process (Xn)n≥1 up to
time k. Observe that these σ-fields form a filtration

(
FXn
)
n≥1

in the sense that

FX1 ⊆ FX2 ⊆ . . . ⊆ FXk ⊆ . . . . (4.3)

The notion of filtration is very useful when working with martingales. Indeed,
a process (Mn)n≥0 is a martingale if for all n ≥ 0, E|Mn| < ∞ and E

(
Mn+1 |

FMn ) = Mn. We can also generalise the definition of a martingale:

Definition 4.14. (Mn)n≥0 is a martingale with respect to a filtration (Fn)n≥0

if for all n ≥ 0, E(|Mn|) <∞ and

E(Mn+1|Fn) = Mn.

The original definition of martingale is sometimes referred to as “being a
martingale with respect to the natural filtration”.

We say that M is a martingale with respect to a sequence (Xn)n≥0 if it is a
martingale with respect to the filtration (FXn )n≥0.

We also notice that by repeatedly applying the tower property in claim e)
of Lemma 4.13 above to the sequence (4.3), we get the following result:

Lemma 4.15. If (Mn)n≥0 is a submartingale w.r.t. (Xn)n≥0, then for all in-
teger n ≥ k ≥ 0, we have EMn ≥ EMk.

Remark 4.16. Changing signs, we get the inequality EMn ≤ EMk for super-
martingales, and therefore the equality EMn = EMk for martingales.

4.3 Martingales and stopping times

Martingales are extremely useful in studying stopping times:

Example 4.17. Let (Xk)k≥1 be a sequence of i.i.d. Bernoulli random variables
with common distribution P(X1 = 1) = p, P(X1 = −1) = q = 1 − p, where
p ∈ (0, 1), p 6= 1/2. For fixed k ∈ {0, 1, . . . , N}, define the random walk (Sn)n≥0

defined via Sn = k +
∑n
j=1Xj, n ≥ 0, and consider the process (Yn)n≥0, where

Yn = (q/p)Sn . Clearly, Yn is an (FXn )n≥0-martingale, so that E(Yn) = E(Y0) =
(q/p)k for all n ≥ 0, recall Lemma 4.15.
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Let T be the first time Sn hits 0 or N . If an analogue of the above equality,
E(YT ) = E(Y0) = (q/p)k were true for (random) time T , we could find the exit
probability pk = P(S hits 0 before N |S0 = k) from the expression

E
(
YT
)

= (q/p)0pk + (q/p)N
(
1− pk

)
,

thus obtaining pk =
(
(q/p)k − (q/p)N

)
/
(
1− (q/p)N

)
.

Remark 4.18. The method used in the previous example relies on the assump-
tion E(YT ) = E(Y0) and on the formula for E(YT ) for a certain random variable
T . An important part of the theory of martingales is to study random variables
T for which the above statements are true. 27

Example 4.19. Let Sn =
∑n
k=1Xk be the simple symmetric random walk in

{−K, . . . ,K}, generated by a sequence of i.i.d. symmetric Bernoulli r.v. Xk,
where P(X1 = ±1) = 1/2. Similarly to Example 4.17 one can study the hitting
time T of the boundary, T = inf

{
n ≥ 0 : |Sn| = K

}
: namely, since 28

E
(
(ST )2

)
= K2P(ST = K) +K2P(ST = −K) = K2 ,

the same heuristics applied to the martingale (Yn)n≥0, Yn
def
=
(
Sn
)2 − n, leads

to 0 = E(Y0) = E(YT ) = E
(
(ST )2

)
− E(T ); i.e., it suggests that E(T ) = K2.

One of our aims is to discuss general results that justify the above heuristics.
To this end, we need to carefully define what we mean by a “stopping time”.

Definition 4.20. A variable T is a stopping time for a process (Xn)n≥0, if the
occurrence/non-occurrence of the event {T = n} =“we stop at time n” can be
determined by looking at the values X0, X1, . . . , Xn of the process up to time
n. Equivalently, if we have {T ≤ n} ∈ FXn ≡ σ(X0, . . . , Xn) for every n ≥ 0.

Example 4.21. Let (Xn)n≥0 be a stochastic process with values in S, and let
T be the hitting time of a set A ⊂ S, namely, T = min

{
n ≥ 0 : Xn ∈ A

}
. Then

T is a stopping time for (Xn)n≥0.
Indeed, for every fixed n ≥ 0, we have {T > n} ≡ {X0 /∈ A,X1 /∈ A, . . . ,Xn /∈

A}; therefore, the event {T > n} and its complement {T ≤ n} both belong to
FXn .

By contrast, the last time that X visits A, T̃ = max{n ≥ 0 : Xn ∈ A} is not
generally a stopping time. Because we generally cannot tell just by looking at
X0, . . . , Xn, whether the process will visit A after time n or not.

Exercise 4.22. Let k ∈ N be fixed, and let S and T be stopping times for a
process (Xn)n≥0. Show that the following are stopping times:

(a) T ≡ k,

27Notice that the gambler’s ruin problem can be solved by using the methods of finite
Markov chains, so we indeed know that the result above is correct.

28the equality is correct, because P(T <∞) = 1 here!
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(b) S ∧ T ≡ min(S, T ),

(c) S ∨ T ≡ max(S, T ).

Let A be a set of states, and let T = TA be the moment of the first visit to A, ie.,
T = min{n ≥ 0 : Xn ∈ A}. Consider S = SA = min{n > TA : Xn ∈ A}, the
moment of the second visit to A. Show that SA is a stopping time for (Xn)n≥0.
Is the variable L = max

{
n ≥ 0 : Xn ∈ A

}
a stopping time for (Xn)n≥0?

Exercise 4.23. Let (Mn)n≥0 be a submartingale w.r.t. (Xn)n≥0, and let T be
a stopping time for (Xn)n≥0. Show that the process (LTn )n≥0,

LTn
def
= Mn∧T ≡

{
Mn , n ≤ T ,
MT , n > T ,

is a submartingale w.r.t. (Xn)n≥0. Deduce that if (Mn)n≥0 is a martingale w.r.t.
(Xn)n≥0, then the stopped process (LTn )n≥0 is also a martingale w.r.t. (Xn)n≥0.

4.4 Optional stopping theorem

The optional stopping (or sampling) theorem (OST) tells us that, under quite
general assumptions, whenever Xn is a martingale, then XT∧n is a martingale
for a stopping time T . Such results are very useful in deriving inequalities and
probabilities of various events associated with such stochastic processes.

Theorem 4.24 (Optional Stopping Theorem). Let (Mn)n≥0 be a martingale
w.r.t. (Xn)n≥0, and let T be a stopping time for (Xn)n≥0. Then the equality

E
[
MT

]
= E[M0] (4.4)

holds whenever one of the following conditions holds:

(OST-1) the stopping time T is bounded, i.e., P(T ≤ N) = 1 for some N <∞;

(OST-2) ET < ∞, and the martingale (Mn)n≥0 has bounded increments, i.e.,
|Mn+1 −Mn| ≤ K for all n and some constant K;

(OST-3) P(T < ∞) = 1, and the martingale (Mn)n≥0 is bounded, i.e., |Mn| ≤
K for all n and some constant K.

Remark 4.25. If Mn records gambler’s fortune, by (OST-3), one cannot make
money from a fair game, unless an unlimited amount of credit is available.

Remark 4.26. One can generalize (OST-3) by replacing the condition of bound-
edness, |Mn| ≤ K, by that of uniform integrability for the martingale (Mn)n≥0:
a sequence of random variables (Yn)n≥0 is uniformly integrable if

lim
K→∞

sup
n≥0

E
(
|Yn|1{|Yn|>K}

)
= 0 . (4.5)
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Example 4.27. Let the SSRW (Sn)n≥0 be generated as in Example 4.19. Put

H
def
= inf{n ≥ 0 : Sn = 1} .

Since this RW is recurrent, 29 we deduce that P(H < ∞) = 1. However, the
(OST) does not apply, as 0 = E(S0) 6= E(SH) ≡ 1. It is an instructive Exercise
to check which conditions in each of the above (OST) are violated.

We now give the proof of Theorem 4.24.

Proof. Let us first assume that T satisfies (OST-1); that is, there is some N <∞
with 0 ≤ T ≤ N . Then the decomposition

MT =
N∑
n=0

MT 1{T=n} =

N∑
n=0

Mn1{T=n} = M0 +

N−1∑
n=0

(
Mn+1 −Mn

)
1{T>n}

holds. Now for each 0 ≤ n ≤ N − 1, (a) of Lemma 4.13 allows us to rewrite
E
(
(Mn+1 −Mn)1{T>n}

)
as

E
(
E
(
(Mn+1 −Mn)1{T>n}| FXn

))
= E

(
1{T>n}E

(
Mn+1 −Mn| FXn

))
where we have used that {T > n} is FXn -measurable (by definition of a stopping
time). Since M is a martingale, E

(
Mn+1−Mn| FXn

)
= 0 and hence E

(
(Mn+1−

Mn)1{T>n}
)

= 0 for each n. Linearity of expectation then implies that E(MT ) =
E(M0) as required.

Now let us assume that T satisfies (OST-2). For fixed n, min(T, n) = T ∧ n
is clearly a bounded stopping time (it is less than n with probability one), so
by (OST-1) we have that EMT∧n = EM0 for all n ≥ 0. We now want to take a
limit as n→∞. For this we write

|MT −MT∧n| =
∣∣∑
k>n

(Mk −Mn)1{T=k}| =
∣∣∑
k>n

(
Mk −Mk−1

)
1{T≥k}

∣∣
(in particular, noting that this gives |MT | ≤ KT when n = 0 and so MT is inte-
grable). Taking expectations then gives that E(|MT−MT∧n|) ≤ K

∑
k>n P(T ≥

k) which tends to 0 as n→∞. Hence E(MT ) = limn→∞ E(MT∧n) = limn→∞ E(M0) =
E(M0).

Finally, we can assume (OST-3) and deduce the result in a similar way. The
strategy is the same, but instead of writing MT −MT∧n as a telescoping sum,
we note that |MT −MT∧n| ≤ 2K1{T>n} so that∣∣EMT − EMT∧n

∣∣ ≤ 2KP(T > n)→ 0 as n→∞ .

Remark 4.28. The proofs above will work exactly the same way if in (OST-2)
one only assumes that |MT∧n −MT∧(n+1)| ≤ K for all n, or if in (OST-3) if
one only assumes that |MT∧n| ≤ K for all n.

29alternatively, recall the result in Example 1.26.
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With suitable martingales (OST) gives very powerful results.
The following instructive example is due to D. Williams:

Example 4.29. (ABRACADABRA) A monkey types symbols at random, one
per unit time, on a typewriter having 26 keys. How long on average will it take
him to produce the sequence ‘ABRACADABRA’?

Solution To compute the expected time, imagine a sequence of gamblers,
each initially having £1, playing at a fair gambling casino. Gambler arriving
just before time n (n ≥ 1) bets £1 on the event {nth letter will be A}. If he
loses, he leaves. If he wins, he receives £26 all of which he bets on the event
{n + 1 st letter will be B}. If he loses, he leaves. If he wins, he receives £262

all of which he bets on the event {n + 2 nd letter will be R} and so on through
the whole ABRACADABRA sequence.

Let Xn denote the total winnings of the casino after the nth day. Since all
bets are fair the process (Xn)n≥0 is a martingale with mean zero. Let N denote
the time until the sequence ABRACADABRA appears. At time N , gambler N−10
would have won £2611 − 1, gambler N − 3 would have won £264 − 1, gambler
N would have won £26− 1 and all other N − 3 gamblers would have lost their
initial fortune. Therefore,

XN = N − 3− (2611 − 1)− (264 − 1)− (26− 1) = N − 2611 − 264 − 26

and since (OST-2) can be applied (check this!), we deduce the E(XN ) = E(X0) =
0, that is

E(N) = 26 + 264 + 2611 .

Remark 4.30. Notice that the answer could also be obtained by considering
a finite state Markov chain Xn on the state space of 12 strings representing
the longest possible intersection of the tail of the typed text with the target word
ABRACADABRA, ie.,

{
ABRACADABRA,ABRACADABR, . . . ,ABRA,ABR,AB,A,∅

}
,

as there N is just the hitting time of the state ABRACADABRA from the initial
condition X0 = ∅.

Exercise 4.31. Use an appropriate (OST) to carefully derive the probability pk
in Example 4.17.

Exercise 4.32. Use an appropriate (OST) to carefully derive the expectation
E(T ) in Example 4.19.

Exercise 4.33. Consider the simple symmetric random walk (Sn)n≥0, gen-
erated by a sequence of i.i.d. Bernoulli r.v. Xk with P(X1 = ±1) = 1/2,
ie., Sn =

∑n
k=1Xk. For integer a < 0 < b, let T be the stopping time

T = inf
{
n ≥ 0 : Sn /∈ (a, b)

}
≡ inf

{
n ≥ 0 : Sn ∈ {a, b}

}
.

(a) Show that (Sn)n≥0 is a martingale and use an appropriate (OST) to find
P(ST = a) and P(ST = b).
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(b) Show that (Mn)n≥0 defined via Mn = (Sn)2 − n is a martingale w.r.t. the
process (Sn)n≥0.

(c) For fixed integer K > 0, carefully apply an appropriate (OST) to Mn and
prove that E(T ∧K) = E

[
(ST∧K)2

]
.

(d) Deduce that E(T ) = −ab.

Exercise 4.34. A coin showing heads with probability p is tossed repeatedly. Let
w be a fixed sequence of outcomes such as ‘HTH’, and let N denote the number
of (independent) tosses until the word w is observed. Using an appropriate
martingale, find the expectation EN for each of the following sequences: ‘HH’,
‘HTH’, ‘HHTTHH’.

Lemma 4.35. Let (Yn)n≥0 be a supermartingale w.r.t. a sequence (Xn)n≥0 and
let Hn ∈ FXn−1 = σ(X0, . . . , Xn−1) satisfy 0 ≤ Hn ≤ cn, where the constant cn
might depend on n. Then the process Wn = W0 +

∑n
m=1Hm

(
Ym − Ym−1

)
,

n ≥ 0, is a supermartingale w.r.t. (Xn)n≥0.

Proof. Following the proof of the optional stopping theorem, we observe that
since (Yn)n≥0 is a supermartingale w.r.t. (Xn)n≥0,

E
(
Hm(Ym − Ym−1)

)
= E

[
Hm E(Ym − Ym−1 | Fm−1)

]
≤ 0 .

Example 4.36. If (Yn)n≥0 describes the stock price process, and Hm is the
number of stocks held during the time (m− 1,m] (decided when the price Ym−1

is known), then Wn describes the fortune of an investor at time n. As (Wn)n≥0

is a supermartingale w.r.t. (Xn)n≥0, we have EWn ≤ EW0 for all n ≥ 0.

Remark 4.37. The famous “doubling martingale” corresponds to doubling the
bet size until one wins, ie., to taking Hm = 2m−11{T>m}, where T is the first
moment when the price goes up, ie., T = min{m > 0 : Ym − Ym−1 = 1}.
Since the stopped process (Wn∧T )n≥0 is a supermartingale, for all n ≥ 0 we
have E(Wn∧T ) ≤ E(W0), ie., on average, the doubling strategy does not produce
money if one bets against a (super)martingale.

Example 4.38. [Wald’s equation] Let (Sn)n≥0 be a random walk generated by a
sequence (Xn)n≥0 of i.i.d. steps with E|X| <∞ and E(X) = m. If T is a stopping
time for (Xn)n≥0 with E(T ) <∞, then the optional stopping theorem implies that
ST is integrable and

E(ST − S0) = mE(T ).

To show this, first notice that Sn − nEX = Sn −mn is a martingale and for
every n ≥ 0 the variable T ∧ n is a bounded stopping time. By (OST-1), we have

E(S0) = E
(
Sn∧T −m(n ∧ T )

)
. (4.6)
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This rearranges to
E
(
Sn∧T − S0

)
= mE(n ∧ T )

for every n. Now, the RHS converges to E(T ) as n→∞ since |E(T )−E(n∧T )| ≤
E(T1{T>n}) =

∑
k>n kP(T = k), where the tail sums on the right go to zero

as n → ∞ by the assumption that T is integrable. Next, by writing |ST | =∑
k≥0 |Xk|1{T≥k} as a telescoping sum, where E(|Xk|1{T≥k}) = P(T ≥ k)E(|X1|)

and
∑
k P(T ≥ k) <∞, we see that |ST | is integrable. 30 Similarly, we can bound

E(|ST − ST∧n|) ≤ E(|X1|)
∑
k>n P(T ≥ k) which tends to 0 as n → ∞. This

implies that E(ST∧n) → E(ST ) as n → ∞, and combining the above completes
the argument.

4.5 Martingale convergence theorem

This subsection is optional and will not be examined.

The following example has a number of important applications.

Example 4.39 (Pólya’s urn). An urns contains one green and one red ball. At
every step a ball is selected at random, and then replaced together with another
ball of the same colour. Let Xn be the number of green balls after nth draw,
X0 = 1. Then the fraction Mn = Xn/(n + 2) of green balls is a martingale
w.r.t. the filtration (FXn )n≥0.

Indeed, as |Mn| ≤ 1 we have E|Mn| ≤ 1 for all n ≥ 0, and since

P(Xn+1 = k + 1 | Xn = k) =
k

n+ 2
, P(Xn+1 = k | Xn = k) = 1− k

n+ 2
,

we get E
(
Xn+1 | FXn

)
= n+3

n+2 Xn, equivalently, E(Mn+1 | FXn ) = Mn.

Exercise 4.40. Show that P(Mn = k
n+2 ) = 1

n+1 for 1 ≤ k ≤ n+ 1, ie., Mn is

uniformly distributed in
{

1
n+2 ,

2
n+2 , . . . ,

n+1
n+2

}
.

Exercise 4.40 suggests that in the limit n → ∞ the distribution of Mn

becomes uniform in (0, 1):

Exercise 4.41. Show that lim
n→∞

P
(
Mn < x

)
= x for every x ∈ (0, 1).

In view of Exercise 4.40, a natural question is: does the proportion Mn of
green balls fluctuate between 0 and 1 infinitely often or does it eventually settle
down to a particular value? The following example shows that the latter is true.
Our argument is based upon the following observation: if a real sequence yn does
not converge, for some real a, b with −∞ < a < b <∞ the sequence yn must go
from the region below a to the region above b (and back) infinitely often.

30Here we are really using the monotone convergence theorem: if 0 ≤ Zn ≤ Z for every n
and Zn ↑ Z as n→∞, then E(Zn)→ E(Z) as n→∞.
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Example 4.42. For fixed n ≥ 0 let Mn < a ∈ (0, 1), and let N = min{k > n :
Mn > b} for some b ∈ (a, 1). Since Nm = N ∧m is a bounded stopping time,
by (OST-1) we have EMNm

= EMn < a if only m > n. On the other hand,

EMNm
≥ E

(
MNm

1N≤m
)
≡ E

(
MN1N≤m

)
> bP(N ≤ m) .

In other words, P(N ≤ m) < a
b and consequently P(N < ∞) ≤ a

b < 1, ie.,
the fraction Mn of green balls ever gets above level b with probability at most a

b .
Suppose that at certain moment N ∈ (n,∞) the fraction of green balls became
bigger than b. Then a similar argument shows that with probability at most
(1− b)/(1− a) the value Mn becomes smaller than a at a later moment.

Put S0 = min{n ≥ 0 : Mn < a}, and then, inductively, for k ≥ 0,

Tk = min
{
n > Sk : Mn > b

}
, Sk+1 = min

{
n > Tk : Mn < a} . (4.7)

The argument above implies that

P(Sk <∞) ≤
k∏
j=1

(
P(Tj−1 <∞ | Sj−1 <∞)P(Sj <∞ | Tj−1 <∞)

)
(4.8)

with the RHS bounded above by
(
a
b

)k( 1−b
1−a
)k → 0 as k → ∞. As a result, the

probability of infinitely many crossing (ie., Sk <∞ for all k ≥ 0) vanishes.
Clearly, the argument above applies to all strips (a, b) ⊂ (0, 1) with rational

endpoints. Thus, with probability one,31 trajectories of Mn eventually converge
to a particular value.32

Exercise 4.43. Write U(a,b) for the total number of upcrossings of the strip (a, b)
by the process (Mn)n≥0. By using the approach of Example 4.42 and noticing
that

{
U(a,b) ≥ m

}
⊂
{
Sm−1 <∞

}
or otherwise, show that EU(a,b) <∞.

The argument in Example 4.42 also works in general. Let (Mn)n≥0 be a
martingale w.r.t. filtration (FXn )n≥0. For real a, b with −∞ < a < b < ∞ let
U(a,b) be the total number of upcrossings of the strip (a, b). The following result
(or some of its variants) is often referred to as Doob’s Upcrossing Lemma:

Lemma 4.44. Let the martingale (Mn)n≥0 have uniformly bounded expecta-
tions, ie., for some constant K and all n ≥ 0, E|Mn| < K <∞. If U(a,b) is the
number of upcrossings of a strip (a, b), then EU(a,b) <∞.

Proof. With stopping times as in (4.7), put Hn = 1 if Sm < n ≤ Tm and
put Hn = 0 otherwise. Then the process Wn =

∑n
k=1Hk(Mk −Mk−1) is a

martingale w.r.t. (Mn)n≥0, cf. Lemma 4.35. It is easy to check that Wn ≥
(b− a)Un − |Mn − a| (draw the picture!), where Un = max{m ≥ 0 : Tm ≤ n} is
the number of upcrossings of the strip (a, b) up to time n. As a result

0 = EW0 = EWn ≥ (b− a) EUn − E|Mn − a| ≥ (b− a) EUn − (K + |a|) ,

so that EUn ≤ (K + |a|)/(b− a) for all n ≥ 0, and thus EU(a,b) <∞.
31If Mn does not converge, it must cross at least one of countably many strips (a, b) with

rational points infinitely many times.
32which is random and depends on the trajectory
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Theorem 4.45. Let (Mn)n≥0 be a martingale as in Lemma 4.44. Then there
exists a random variable M∞ such that Mn →M∞ with probability one.

Proof. If Mn does not converge, for some rational a, b with −∞ < a < b < ∞
we must have U(a,b) =∞. However, by Lemma 4.44, EU(a,b) <∞ implying that
P(U(a,b) = ∞) = 0. As the number of such pairs (a, b) is countable, the result
follows.

Exercise 4.46. Let (Xk)k≥1 be independent variables with

P
(
X =

3

2

)
= P

(
X =

1

2

)
=

1

2
.

Put Mn = X1 · . . . ·Xn with M0 = 1. Show that Mn is an (FXn )n≥0 martingale.
Deduce that Mn →M∞ with probability one. Can you compute E(M∞)?

4.6 Additional problems

Exercise 4.47. Let (ηn)n≥1 be independent positive random variables with
Eηn = 1 for all n ≥ 1. If a random variable M0 > 0 is independent of (ηn)n≥0

and EM0 < ∞, then the process (Mn)n≥0 defined via Mn = M0

∏n
j=1 ηj is a

martingale w.r.t. (ηn)n≥1.

Interpreting ηn − 1 as the (fractional) change in the value of a stock during the
nth time interval, the martingale (Mn)n≥0 can be used to model stock prices.
Two often used examples are:

Discrete Black-Sholes model: take ηj = eζj , where ζj is Gaussian, ζj ∼ N (µ, σ2);

Binomial model: take ηj = (1 + a)e−r and ηj = (1 + a)−1e−r with probabilities
p and 1− p respectively.

Exercise 4.48. Let (Sn)n≥0 be the random walk from Example 4.19. Find
constants a, b, c such that the process (Sn)4 +an(Sn)2 +bn2 +cn is an (Xn)n≥0-
martingale. Use the heuristc in Example 4.19 to predict the value of the second
moment E(T 2) of the exit time T .

Exercise 4.49. A standard symmetric dice is tossed repeatedly. Let N be the
number of (independent) tosses until a fixed pattern is observed. Using an ap-
propriate martingale, find EN for the sequences ‘123456’ and ‘123321’.

Exercise 4.50. Suppose that the process in Example 4.39 is modified as follows:
for a fixed integer c > 1, every time a random ball is selected, it is replaced
together with other c balls of the same colour. If, as before, Xn denotes the total
number of green balls after n draws, show that the the fraction Mn = Xn

2+nc of

green balls forms a martingale w.r.t. (FXn )n≥0.
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Exercise 4.51. Find the large-n limit of the distribution of the martingale
(Mn)n≥0 from Exercise 4.50.

Exercise 4.52. Let (Xn)n≥0 be a birth-and-death process in S = {0, 1, . . . },
ie., a Markov chain in S with transition probabilities p00 = r0, p01 = p0, and
pm,m−1 = qm, pm,m = rm, pm,m+1 = pm for m > 0, while pm,k = 0 for all

other pairs (m, k) ∈ S2. Let X0 = x, and for y ≥ 0 denote Ty
def
= min{n ≥ 0 :

Xn = y}.

(a) Show that the process
(
ϕ(Xn)

)
n≥0

with ϕ(z)
def
=

z∑
y=1

y−1∏
x=1

qx
px

is a martingale.

(b) Show that for all 0 ≤ a < X0 = x < b we have

P
(
Tb < Ta

)
=
(
ϕ(x)− ϕ(a)

)
/
(
ϕ(b)− ϕ(a)

)
.

Deduce that state 0 is recurrent iff ϕ(b)→∞ as b→∞.

(c) Now suppose that pm ≡ p, qm ≡ q = 1− p, and rm = 0 for m > 0, whereas
p0 = p and r0 = q. Show that in this case the result in part b) above becomes

P
(
Tb < Ta

)
=
(
(q/p)a − (q/p)x

)
/
(
(q/p)a − (q/p)b

)
.

(d) Find P
(
Tb < Ta

)
if in the setup of part c) one has p = q = 1/2.

Exercise 4.53. Let (ξk)k≥1 be i.i.d. random variables with P(ξ = 1) = p < 1
2 ,

P(ξ = −1) = q = 1−p, and Eξ > 0. Let (Sn)n≥0 be the generated random walk,
Sn = x+ ξ1 + · · ·+ ξn, and let T0 = min{n ≥ 0 : Sn = 0} be the hitting time of
0. Deduce that for all x > 0, P(T0 < ∞) = (q/p)x. Compare this to the result
of Example 1.26.

Exercise 4.54. Let (Zn)n≥0 be a homogeneous branching process with Z0 = 1,
m = EZ1 > 0 and finite variance σ2 = Var(Z1). Show that Mn = Zn/m

n is a
martingale.

(a) Let m > 1. By using Exercise 2.3 or otherwise show that E(Mn) is uniformly
bounded. Deduce that Mn → M∞ almost surely. What can you say about
EM∞?

(b) What happens if m ≤ 1? Compute E(M∞).

Hint: Recall Exercise 4.56.

Exercise 4.55. Let (Xn)n≥0 be a sequence of i.i.d. Bernoulli random variables
with P(X = 1) = p and P(X = −1) = 1− p = q. Let (Sn)n≥0 be the generated
random walk with S0 = x > 0, and let T = min{n ≥ 0 : Sn = 0} be the hitting
time of the origin. Example 1.26 suggests that E(T ) = x/(q−p) <∞ for q > p.
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1. Use (4.6) to deduce that (q − p)E(n ∧ T ) = E
(
S0 − Sn∧T

)
≤ E(S0) = x;

then take n→∞ to show that E(T ) <∞;

2. Use the Wald equation to deduce that indeed E(T ) = x
q−p . Can you give a

heuristic explanation of this result?

3. Argue, without using the Wald equation, that E(T ) = cx for some con-
stant c.

4. Use the Wald equation and an argument by contradiction to show that if
p ≥ q, then E(T ) =∞ for all x > 0.

Exercise 4.56. Let a variable Y satisfy E(Y 2) < ∞. Show that E|Y | < ∞.
Hint Notice that Var(|Y |) ≥ 0.

Exercise 4.57. Let (Xn)n≥0 be an irreducible Markov chain in S = {0, 1, . . . }
with bounded jumps, and let a function ϕ : S → R+ satisfy ϕ(x) → ∞ as
x→∞. Let K ≥ 0 be such that

Exϕ(X1)
def
= E

[
ϕ(X1)|X0 = x

]
≤ ϕ(x)

for all x ≥ K.

(a) If the function ϕ(x) is monotone, show that the set of states {0, 1, . . . ,K},
and thus the whole space S is recurrent for (Xn)n≥0.
Hint If HK = min

{
n ≥ 0 : 0 ≤ Xn ≤ K}, show that ϕ(Xn∧HK

) is a

supermartingale. Deduce that if TM = min
{
n ≥ 0 : Xn ≥M}, then ϕ(x) ≥

ϕ(M)P(TM < HK).

(b) Argue that the result holds for ϕ(x) ≥ 0 not necessarily monotone, but only
satisfying ϕ(x)→∞ as x→∞.

Hint With TM as above, show that ϕ∗M
def
= min{ϕ(x) : x ≥ M} → ∞ as

M →∞.

Exercise 4.58. Let (Xk)k≥1 be independent variables with P(X = ±1) = 1
2 .

Show that the process

Mn =

n∑
k=1

1

k
Xk

is a martingale w.r.t. (FXn )n≥0 and that E
[
(Mn)2

]
< K < ∞ for some con-

stant K and all n ≥ 0. By using Exercise 4.56 or otherwise, deduce that with
probability one, Mn →M∞ for some random variable M∞. In other words, the
random sign harmonic series converges with probability one.

Exercise 4.59. [Wright-Fischer model] Thinking of a population of N haploid
individuals who have one copy of each of their chromosomes, consider a fixed
population of N genes that can be of two types A or a. In the simplest version of
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this model the population at time n+1 is obtained by sampling with replacement
from the population at time n. If we let Xn to be the number of A alleles at
time n, then Xn is a Markov chain with transition probability

pij =

(
N

j

)( i
N

)j(
1− i

N

)N−j
.

Starting from i of the A alleles and N − i of a alleles, what is the probability
that the population fixates in the all A state? Hint You can use the heuristics of
Example 4.17 but need to justify your computation!

Exercise 4.60. Let (Xn)n≥0 be a Markov chain with a (countable) state space
S and the transition matrix P, and let h(x, n) be a function of the state x and
time n such that 33

h(x, n) =
∑
y

pxyh(y, n+ 1) .

Show that (Mn)n≥0 with Mn = h(Xn, n) is a martingale w.r.t. (Xn)n≥0.

Exercise 4.61. Let (Xn)n≥0 be a Markov chain with a (countable) state space
S and the transition matrix P. If ψ is a right eigenvector of P corresponding
to the eigenvalue λ > 0, ie., Pψ = λψ, show that the process Mn = λ−nψ

(
Xn

)
is a martingale w.r.t. (Xn)n≥0.

33This result is useful, eg., if h(x, n) = x2 − cn or h(x, n) = exp{x− cn} for a suitable c.
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