
1 Introduction

Here we shall briefly recall the most important facts from basic probability
theory; for a more detailed recap, check your notes from the previous years.

1.1 Probability revision

Probability triple

A probability triple is a collection
�
⌦,F ,P

�
, where:

• ⌦ is a sample space (eg., the collection
�
H,TH,TTH, . . .

 
of all possible

results in a coin tossing experiment until the first occurence of H);

• the �-field F is the collection of all events under consideration (more pre-
cisely it is a set of subsets of ⌦ satisfying (i) ? 2 F (ii) A 2 F ) ⌦\A 2 F

& (iii) if Ak 2 F for all k � 1, then [k�1Ak 2 F ); and

• the �-additive1 probability measure P : F ! [0, 1] assigns probabilities to
all these events in a consistent way. That is,

P : A 7! P(A) 2 [0, 1] , P(;) = 0 , P(⌦) = 1, and

(Ak)k�1 2 F and Aj\Ak = ? for all j 6= k ) P([k�1Ak) =
X

k�1

P(Ak).

One immediate consequence is monotonicity:

C,D 2 F and C ✓ D =) P(C)  P(D) .

Another important property is the following continuity result:

If the events Ak 2 F , k � 1 form a monotone increasing sequence, ie.,
Ak ✓ Ak+1 for all k � 1, then we say that

Ak % A
def
=

[

j�1

Aj as k ! 1.

We then have that
P(A) = lim

k!1
P(Ak)

The proof is a straightforward, but instructive exercise.2 By taking complements,
one deduces an analogous result for monotone decreasing sequences Bk 2 F ,
k � 1 of events, ie., satisfying Bk ◆ Bk+1 for all k � 1.

Example 1.1. In the standard coin flipping experiment, let Bk be the event
{the first k results are T} ; then Bk & B ⌘ {all results are T}. If the coin
shows H with probability p > 0, then P(Bk) = (1 � p)k & 0 as k ! 1 and, by
continuity, P(B) = 0.

1also called countably additive;
2See your 2nd year notes.
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Exercise 1.2. In the setup of Example 1.1, let Ak be the event

{no H observed from k
th flip onwards}.

Show that P(Ak) = 0 for all k � 1. Verify that
�
Ak

�
k�1

is a monotone sequence
of events with the limit

A ⌘
�
at most finitely many H observed

 
.

Use the continuity property of probability measures to deduce that P(A) = 0.

Conditional probability

If A, B are events (ie., A, B 2 F) with P(B) > 0, then the conditional probability
of A given B is

P
�
A | B

� def
=

P(A \B)

P(B)
.

Notice that P( · | B ) : F ! [0, 1] is a probability measure.

Formula of total probability (partition theorem)

Events B1, B2, . . .2 F are said to form a partition of ⌦, if they are pairwise
disjoint:

Bi \Bj = ? for i 6= j,

and cover the whole ⌦, ie.,
[kBk = ⌦.

If
�
B1, B2, . . .

 
form a partition of ⌦, then for every A 2 F the following formula

of total probability holds (tacitly assuming that P
�
A | Bk

�
P(Bk) ⌘ P(A\Bk) = 0

for P(Bk) = 0):

P(A) =
X

k�1

P
�
A | Bk

�
P(Bk) .

Example 1.3. (Discrete Renewals) Consider a sequence of events that can
only occur at discrete times k = 1, 2, . . . (eg., a light bulb burns out and is
immediately replaced with a new one). Assume that the intervals X between
consecutive events have a common distribution fk = P(X = k), k � 1. Let rn
denote the probability that an event occurs at time n; ie., rn = P(An) with An =�
replacement at time n

 
; we shall also assume that a replacement also occurs

at time 0 so that r0 = 1. Since the events Bk = { first bulb burns at time k }

form a countable partition of ⌦, and P(An | Bk ) = rn�k for all n � k (with
r1 = f1), the partition theorem implies

rn =
nX

k=1

rn�k fk . (1.1)
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As f0 = 0, the RHS above is a convolution of the sequences (rn)n�0 and (fk)k�0;
the large n behaviour of rn can be analysed by taking various transforms (eg.,
generating functions) of these sequences.

Random variables

Random variables are “nice” functions X : ⌦ ! R characterized by the fact that
for every a 2 R we have

�
! 2 ⌦ : X(!)  a

 
2 F . In other words, every inverse

image X
�1
�
(�1, a]

�
is an event.

For discrete random variables, ie., those attaining at most countably many val-
ues, it is often convenient to replace the previous condition with its equivalent:
for every a 2 R the set X�1

�
{a}

�
is an event.

Expectation

IfX is a discrete random variable taking values in
�
x1, x2, . . .

 
with probabilities

pk = P(X = xk) ⌘ P
�
{! 2 ⌦ : X(!) = xk}

�
,

then if
P

k�1 |xk| pk < 1, we say that X is integrable and the expectation E(X)
of X is given by

E(X)
def
=

X

k�1

xk pk ⌘

X

k�1

xk P(X = xk) .

(If
P

|xk|pk = 1 we also write E(|X|) = 1).
It is clear from this definition that if X,Y are two random variables defined

on the same probability space with P(X  Y ) = 1 then E(X)  E(Y ). In
particular:

Example 1.4. (Markov’s inequality) Suppose that X is a random variable
taking real values, and a > 0. Then

E(|X|)  E(|X|1X�a))  aP(X � a)

which rearranges to give

P(|X| � a) 
E(|X|)

a
. (1.2)

This is a very useful tool for bounding the tail probabilities of X (i.e. the LHS
above with a large).

It is also straightforward to verify that expectation is linear: if X1, . . . , Xn

are integrable random variables and a1, . . . , an 2 R then

E(
X

i

aiXi) =
X

i

aiE(Xi).
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The conditional expectation of X given B 2 F with P(B) > 0 is computed
similarly:

E
�
X | B

�
=
X

k�1

xk P(X = xk | B ) .

We then have the following result.

Partition theorem for expectations

If
�
B1, B2, . . .

 
form a partition of ⌦, then for every random variable X

E(X) =
X

k�1

E
�
X | Bk

�
P(Bk) .

In some cases, the RHS above might not be well defined (i.e., the partial sums
of the above series may not converge). However, everything is fine if

X

k�1

��E
�
X | Bk

���P(Bk) < 1

(and we have equality in the sense that both sides are equal to 1 if P(X � 0) =
1).

Recall also that for a random variable X with E(X2) < 1, we define its
variance

Var(X) = E(X2)� E(X)2.

This measures, roughly speaking, how much the random variable deviates from
its expected value. For example, if P(X = x) = 1 for some fixed value x, then
Var(X) = x

2
� (x)2 = 0.

Independence

Events A, B 2 F are independent if

P(A \B) = P(A)P(B) .

Notice that if A, B 2 F are independent and if P(A | B ) is well defined, then
P(A | B ) = P(A). Also, if B 2 F satisfies P(B) 2 {0, 1}, then for every A 2 F

the events A and B are independent.

In general, a collection of events
�
A↵

�
↵2A is independent if every finite subcol-

lection is independent, ie., for every k � 1 and all ↵1, . . . , ↵k 2 A,

P
�
A↵1 \A↵2 \ . . . \A↵k

�
= P(A↵1)P(A↵2) . . . P(A↵k) .

Two (discrete) random variables, X and Y are independent, if for all x, y,

P
�
X = x, Y = y

�
= P(X = x)P(Y = y).
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For general random variables (taking potentially uncountably many values in
R), the last condition needs to be replaced with, say,

P
�
X 2 [a, b], Y 2 [c, d]

�
= P

�
X 2 [a, b]

�
P
�
Y 2 [c, d]

�

for all finite or infinite real a, b, c, d. Recall that in the discrete case the
collection of numbers P

�
X = x, Y = y

�
is the joint distribution of the pair

(X,Y ) of random variables.
Of course, the above idea can also be used to define independence of arbitrary

collections of random variables.

Exercise 1.5. Let D be the result of a single roll of a standard fair dice. Next,
flip a fair coin D times, and let H be the total number of ‘heads’ observed. Write
the joint distribution of the pair (D,H). Are D and H independent?

Example 1.6. If X and Y are independent discrete random variables, and f ,
g : R ! R are arbitrary functions, then f(X) and g(Y ) are independent ran-
dom variables and E

⇥
f(X)g(Y )

⇤
= Ef(X) · Eg(Y ). For example, E(sX+Y ) =

E(sX)E(sY ) for |s|  1.

Notice that knowing the joint distribution of a random vector (X,Y ), we can de-
rive the so-called marginal distributions of its components X and Y . The inverse
operation of constructing the joint distribution of a vector from its marginal dis-
tributions is not well posed, and often has no unique answer (see below).

Example 1.7. Let X ⇠ Ber±1(p1), ie., P(X = 1) = 1 � P(X = �1) = p1 and
let Y be a Ber±1(p2) random variable, ie., P(Y = 1) = 1 � P(Y = �1) = p2.
Without loss of generality we may assume that p1  p2. Then both of the below
are valid joint distributions with given marginals (write qi = 1� pi, i = 1, 2):

(A)

�1 1 X

�1 q1q2 q1p2 q1

1 p1q2 p1p2 p1

Y q2 p2

(B)

�1 1 X

�1 q2 p2 � p1 q1

1 0 p1 p1

Y q2 p2

In (A) the variables X and Y are independent, whereas in (B) they are not in-
dependent. This demonstrates that we cannot re-construct the joint distribution
of X and Y knowing only their individual distributions.

As we shall see below, this flexibility in constructing several variables on a
common probability space (or “coupling”) often allows for intuitive and clear
probabilistic arguments.
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Example 1.8. Let (wX

n
)n�0 be the random walk generated by independent copies

of X ⇠ Ber±1(p1); wX

0 = 0. Similarly, let (wY

n
)n�0 be the random walk gener-

ated by independent copies of Y ⇠ Ber±1(p2); wY

0 = 0. If p1 < p2, then the law
of large numbers implies that 1

n
w

X

n
grows linearly with slope 2p1 � 1, whereas

1
n
w

Y

n
grows linearly with slope 2p2 � 1 > 2p1 � 1. In other words, for times

n large enough the trajectories of (wX

n
)n�0 will lie below those of (wY

n
)n�0. In

fact, using the joint distribution from Example 1.7 (B), one can construct a
joint distribution for the entire trajectories of these random walks such that the
inequality w

X

n
 w

Y

n
holds for all times n � 0, and not only for n large enough.

This is useful. For example, as a result, for every monotone increasing function
f : R ! R one has

f
�
w

X

n

�
 f

�
w

Y

n

�
for all n � 0, and therefore Ef

�
w

X

n

�
 Ef

�
w

Y

n

�
.

1.2 Generating functions: key properties

Lengthy calculations arising from even quite straightforward counting problems
can be simplified by using generating functions. Recall that the generating
function of a real sequence (ak)k�0 is

G(s) = Ga(s)
def
=

1X

k=0

ak s
k (1.3)

(defined whenever the sum on the RHS converges). Similarly, the (probability)
generating function of a random variable X with values in

Z+ def
= {0, 1, . . . }

is just the generating function of its probability mass function:

G(s) ⌘ GX(s)
def
= E

�
s
X
�
=

1X

k=0

s
kP(X = k) . (1.4)

Notice that each probability generating function satisfies

|GX(s)|  GX(1) =
1X

k=0

P(X = k)  1 ,

i.e., is well defined and finite for all (complex) s with |s|  1. In particular,
GX(s) can be di↵erentiated term-by-term any number of times in the open unit
disk |s| < 1.

Generating functions are very useful when studying sums of independent
random variables. Indeed, Example 1.6 implies the following important fact:

Example 1.9. If X and Y are independent random variables with values in Z+

and Z = X + Y , then their generating functions satisfy

GZ(s) = GX+Y (s) = GX(s)GY (s)

for all s such that the RHS is well defined.
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Example 1.10. Let X,X1, . . . , Xn be independent identically distributed ran-
dom variables3 with values in {0, 1, 2, . . . } and let Sn = X1+ · · ·+Xn. Suppose
that GX(s) is well-defined. Then

GSn(s) = GX1(s) . . . GXn(s) ⌘
⇥
GX(s)

⇤n
.

Example 1.11. Let X,X1, X2, . . . be i.i.d. with values in {0, 1, 2, . . . } and let
N � 0 be an integer-valued random variable independent of {Xk}k�1. Then
SN = X1 + · · ·+XN has generating function

GSN = GN �GX (1.5)

This is a straightforward application of the partition theorem for expectations.
Alternatively, the result follows from the standard properties of conditional ex-
pectation:

E
�
s
SN

�
= E

⇣
E
�
s
SN | N

�⌘
= E

⇣⇥
GX(s)

⇤N⌘
= GN

�
GX(s)

�
.

In general, we say a sequence c = (cn)n�0 is the convolution of a = (ak)k�0

and b = (bm)m�0 (write c = a ? b), if 4

cn =
nX

k=0

ak bn�k , n � 0 . (1.6)

Exercise 1.12. If c = a? b, show that the generating functions Gc, Ga, and Gb

satisfy Gc = Ga ⇥Gb.

Exercise 1.13. In the setup of Example 1.3, let Gf and Gr be the generating
functions of the sequences f = (fk)k�1 and r = (rn)n�0. Show that Gr(s) =
1/(1�Gf (s)) for all |s|  1.

Why do we care? If the generating function Ga of (an)n�0 is analytic in a
neighbourhood of the origin, then there is a one-to-one correspondence between
Ga and (an)n�0. Namely, ak can be recovered from Ga via 5

ak =
1

k!

d
k

dsk
Ga(s)

��
s=0

or ak =
1

2⇡i

I

|z|=⇢

Ga(z)

zk+1
dz , (1.7)

for suitable ⇢ > 0. This result is often referred to as the uniqueness property of
generating functions.

3from now on we shall often abbreviate this to just i.i.d.
4If X and Y are independent variables in Z+ and Z = X + Y , their p.m.f.s satisfy this

equation.
5if a power series Ga(s) is finite for |s| < r with r > 0, then it can be di↵erentiated in

the disk |s| < r; recall that each probability generating function is analytic in the unit disk
|s| < 1.
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Example 1.14. Let X ⇠ Poi(�) and Y ⇠ Poi(µ) be independent. A straight-
forward computation gives GX(s) = e

�(s�1) for all s so that if Z = X + Y ,
Example 1.9 implies that

GZ(s) = GX(s)GY (s) = e
�(s�1)

e
µ(s�1)

⌘ e
(�+µ)(s�1)

.

This means that Z is Poi(�+ µ) distributed.

A similar argument can be used in the following exercise.

Exercise 1.15. If X ⇠ Bin(n, p) and Y ⇠ Bin(m, p) are independent, show that
X + Y ⇠ Bin(n+m, p).

Another useful property of probability generating functions is that they can
be used to compute moments:

Theorem 1.16. If X has generating function GX , then

E
�
X(X � 1) . . . (X � k + 1)

�
= G

(k)
X

(1)

where G
(k)(1) is the shorthand for G

(k)(1�) ⌘ lims"1 G
(k)(s), the limiting value

of the kth derivative of G(s) at s = 1. Since s
k
G

(k)(s) is increasing in s, the
RHS above is either +1, or finite. In the latter case, X(X�1) . . . (X�k+1) is
integrable and the equality above holds. In the former, X(X � 1) . . . (X � k+1)
is not integrable.

Exercise 1.17. Prove Theorem 1.16.

Remark 1.18. The quantity E
�
X(X � 1) . . . (X � k + 1)

�
is called the kth

factorial moment of X. Notice also that

Var(X) = G
00
X
(1) +G

0
X
(1)�

�
G

0
X
(1)

�2
. (1.8)

Remark 1.19. Notice that lims%1 GX(s) ⌘ lims%1 E(sX) = P(X < 1). This
allows us to check whether the random variable X is finite, if we do not know
this apriori. See Example 1.26 below.

Remark 1.20. The fact that a probability generating function is finite at u = 1
(or has a finite left derivative there) does not, in general, imply any regularity
beyond the unit disk. Indeed, let X be a random variable satisfying

P(X = k) = 1
k(k+1) for all k � 1,

and let GX be its generating function. It is easy to check that GX(1) = 1
while E(X) = G

0
X
(1�) = 1, and thus |GX(u)|  GX(1) = 1 if |u|  1 but

GX(u) = 1 for all |u| > 1.

Exercise 1.21. Let P(X = k) = 4/
�
k(k + 1)(k + 2)

�
for k � 1. Show that the

generating function GX(u) = E(uX) satisfies GX(1) = 1, G
0
X
(1�) = 2 < 1,

but G00
X
(1�) = 1. Notice that in this case |G

0
X
(u)|  2 uniformly in |u| < 1

while GX(u) = 1 for all |u| > 1.
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Exercise 1.22. Following the approach of Exercise 1.21 or otherwise, for m 2 N
find a generating function G, which is continuous and bounded on the closed unit
disk |u|  1 together with derivatives up to order m, while G(u) = 1 for all
|u| > 1.

Exercise 1.23. Let SN = X1+ . . .+XN be a random sum of random variables,
whose generating function is GSN (u) ⌘ GN

�
GX(u)

�
, recall Example 1.11. Use

Theorem 1.16 to express E
�
SN

�
and Var

�
SN

�
in terms of E(X), E(N), Var(X)

and Var(N). Check your result for E
�
SN

�
and Var

�
SN

�
by directly applying the

partition theorem for expectations.

Exercise 1.24. A bird lays N eggs, each being pink with probability p and blue
otherwise. Assuming that N ⇠ Poi(�), find the distribution of the total number
K of pink eggs.

Exercise 1.25. Suppose that in a population, each mature individual produces
immature o↵spring according to a probability generating function F .

(a) Assume that we start with a population of k immature individuals, each of
which grows to maturity with probability p and then reproduces, indepen-
dently of other individuals. Find the probability generating function of the
number of immature individuals in the next generation.

(b) Find the probability generating function of the number of mature individuals
in the next generation, given that there are k mature individuals in the parent
generation.

(c) Show that the distributions in a) and b) above have the same mean, but not
necessarily the same variance. You might prefer to first consider the case
k = 1, and then generalise.

The next example is very important for applications.

Example 1.26. Let Xk, k � 1 be i.i.d. with the common distribution

P(Xk = 1) = p , P(Xk = �1) = q = 1� p .

Define the simple random walk (Sn)n�0 via S0 = 0 and Sn = X1 + · · ·+Xn for
n � 1 and let

T
def
= inf

�
n � 1 : Sn = 1

 

be the first time this random walk hits 1.
To calculate the generating function GT , write pk = P(T = k), so that

GT (s) ⌘ E(sT ) =
P

k�0 s
k
pk. Conditioning on the outcome of the first step,

and applying the partition theorem for expectations, we get

GT (s) ⌘ E
�
s
T
�
= E

�
s
T
| X1 = 1

�
p+ E

�
s
T
| X1 = �1

�
q = ps+ qsE

�
s
T2
�
,
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where T2 is the time of the first visit to state 1 starting from S0 = �1. By
partitioning on the time T1 of the first visit to 0, it follows that

P(T2 = m) =
m�1X

k=1

P
�
T1 = k, T2 = m

�
.

where of course, on the event {S0 = �1},

P(T2 = m | S0 = �1) ⌘ P
�
S1 < 1, . . . , Sm�1 < 1, Sm = 1 | S0 = �1

�

P(T1 = k | S0 = �1) ⌘ P
�
S1 < 0, . . . , Sk�1 < 0, Sk = 0 | S0 = �1

�
.

Notice that by translation invariance the last probability is just P(T = k | S0 =
0) = pk. We also observe that

P
�
T2 = m | T1 = k

�
= P

�
first hit 1 from 0 after m� k steps

�
⌘ pm�k .

The partition theorem now implies that

P(T2 = m) =
m�1X

k=1

P
�
T2 = m | T1 = k

�
P(T1 = k) ⌘

m�1X

k=1

pk pm�k =
mX

k=0

pk pm�k ,

ie., GT2(s) =
�
GT (s)

�2
. We deduce that GT (s) solves the quadratic equation

' = ps+ qs'
2, so that 6

GT (s) =
1�

p
1� 4pqs2

2qs
=

2ps

1 +
p
1� 4pqs2

.

Finally this allows us to deduce that

P(T < 1) ⌘ GT (1) =
1� |p� q|

2q
=

(
1 , p � q ,

p/q , p < q .

In particular, E(T ) = 1 for p < q (because P(T = 1) = (q � p)/q > 0). For
p � q we obtain

E(T ) ⌘ G
0
T
(1) =

1� |p� q|

2q|p� q|
=

(
1

p�q
, p > q ,

1 , p = q ,

ie., E(T ) < 1 if p > q and E(T ) = 1 otherwise.
Notice that at criticality (p = q = 1/2), the variable T is finite with proba-

bility 1, but has infinite expectation.

Example 1.27. In a sequence of independent Bernoulli experiments with suc-
cess probability p 2 (0, 1), let D be the first time that two consecutive successful

6by recalling the fact that GT (s) ! 0 as s ! 0;
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outcomes have occured (i.e., if two successes occured in the first two experiments,
then D would be equal to 2).

To find the generating function of D, there are two good methods, and both
involve deriving a recursion relation.

Method 1: For n � 2 let us write dn = P(D = n), and consider the events

• A := {(n� 2) failures followed by 2 successes},

• Ak := {first failure immediately preceeded by a success occurs at experiment k}
for k = 2, . . . , n� 2, and

• B = (A [
S

n�2
k=2 Ak)c.

These form a partition of the probability space, since they are disjoint by con-
struction, and the definition of B means that they cover the whole space. Note
that for {D = n} to occur, it must be that one of A or A2, . . . , An�2 oc-
curs, so that P({D = n} \ B) = 0. Also it is clear that A ⇢ {D = n} so
P({D = n} \A) = P(A) = q

n�2
p
2. Thus we can write

dn = P(D = n) = q
n�2

p
2 +

n�2X

k=2

P({D = n} \Ak)

and we are left to calculate P({D = n} \ Ak) for k = 2, . . . , n � 2. For this,
we observe that for {D = n} \ Ak to occur, it must be that the first (k � 2)
experiments are failures, the (k � 1)st is a success, the kth is a failure again,
and then for the new sequence of experiments starting from the (k + 1)st, the
first time that 2 consecutive successes are seen is (n � k). By independence of
the experiments, the probability of this happening is just qk�2

pqdn�k. Hence we
obtain

dn = q
n�2

p
2 +

n�2X

k=2

q
k�2

pq dn�k ,

and a standard method implies that

GD(s) =
p
2
s
2

1� qs
+

pqs
2

1� qs
GD(s) , or GD(s) =

p
2
s
2

1� qs� pqs2
.

A straightforward computation gives G
0
D
(1) = 1+p

p2 , so that on average it takes
42 tosses of a standard symmetric dice until the first two consecutive sixes appear.

Method 2: we derive a recursion relation directly for the generating func-
tion, by conditioning on the result of the first experiment. That is, we use the
partition theorem for expectation to write

E(sD) = E(sD | failure )P(failure) + E(sD | success )P(success)

= sE(sD�1
| failure )q + sE(sD�1

| success )p.
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Now, E(sD�1
| failure ) = E(sD) since the new sequence of experiments start-

ing from the 2nd have the same distribution as the whole sequence, and observ-
ing a failure for the first experiment means we are still just asking for the first
time that two consecutive successes are observed in this new sequence. How-
ever, this is not the case for E(sD�1

| success ) since if we have already seen one
success this could be the first one in a consecutive pair. So for this conditional
expectation we will condition again, but now on the result of the 2nd experi-
ment. If it is a success then s

D�1 will be s with conditional probability one,
and if it is a failure then we will be starting from scratch again. Thus we obtain
that E(sD�1

| success ) = ps + qsE(sD). Putting this all together and writing
E(sD) = GD(s) we see that

GD(s) = qsGD(s) + p
2
s
2 + pqs

2
GD(s)

and can rearrange to reach the same conclusion as for method 1.

Exercise 1.28. In a sequence of independent Bernoulli experiments with suc-
cess probability p 2 (0, 1), let M be the first time that m consecutive successful
outcomes have occured. Using the approach of Example 1.27 or otherwise, find
the generating function of M .

Exercise 1.29. In the setup of Example 1.27, show that d0 = d1 = 0, d2 = p
2,

d3 = qp
2, and, conditioning on the value of the first outcome, that dn = q dn�1+

pq dn�2 for n � 3. Use these relations to re-derive the generating function GD.

Exercise 1.30. Use the method of Exercise 1.29, to derive an alternative so-
lution to Exercise 1.28. Compare the resulting expectation to that in Example
1.27.

Exercise 1.31. A biased coin showing ‘heads’ with probability p 2 (0, 1) is
flipped repeatedly. Let Cw be the first time that the word w appears in the
observed sequence of results. Find the generating function of Cw and the expec-
tation E

⇥
Cw

⇤
for each of the following words: HH, HT, TH and TT.

Example 1.32. If Xn ⇠ Bin(n, p) with p = pn satisfying n · pn ! � as n ! 1,
then GXn(s) ⌘

�
1 + pn(s � 1)

�n
! exp{�(s � 1)} for every fixed s 2 [0, 1], so

that the distribution of Xn converges to that of X ⇠ Poi(�).

Exercise 1.33. For each n � 1 let Yn =
P

n

k=1 X
(n)
k

, where X
(n)
k

are indepen-
dent Bernoulli random variables,

p
(n)
k

def
= P(X(n)

k
= 1) = 1� P(X(n)

k
= 0).

Assume that
�
(n) def

= max
1kn

p
(n)
k

! 0

13



as n ! 1 and that for a positive constant � we have

E(Yn) ⌘
nX

k=1

p
(n)
k

! �.

Using generating functions or otherwise, show that the distribution of Yn con-
verges to that of a Poi(�) random variable. This result is known as the law of
rare events.

More generally, we have the following continuity result:

Theorem 1.34. For every fixed n, suppose that the sequence a0,n, a1,n, . . . is
a probability distribution, ie., ak,n � 0 and

P
k�0 ak,n = 1, and let Gn be the

corresponding generating function, Gn(s) =
P

k�0 ak,ns
k for all s such that the

RHS converges. In order that for every fixed k

lim
n!1

ak,n = ak

it is necessary and su�cient that lim
n!1

Gn(s) = Ga(s) for every fixed s 2 [0, 1),

where Ga(s) =
P

k�0 aks
k, the generating function of the limiting sequence (ak).

Remark 1.35. In the probabilistic context, the convergence above:

ak,n ⌘ P(Xn = k)
n!1
! P(X = k) = ak for each k,

is known as convergence in distribution.

Why do we care? In applications one often needs to describe the distribution of
a random variable, which is obtained as a result of some limiting approach (or
approximation). Then Theorem 1.34 can help to simplify the argument. This
method is similar to proving the central limit theorem using moment generating
functions E(exp

�
tXn

 
) ⌘ Gn(et). Notice that Gn(et) exists for some t > 0 only

if the sequence ak,n ⌘ P(Xn = k) decays su�ciently fast, recall Remark 1.20
above.

14


