
2 Branching processes

2.1 Classification and extinction

Informally, a branching process 7 is described as follows, where {pk}k�0 is a
fixed probability mass function (pmf).

• A population starts with a single ancestor who forms generation number 0.

• This initial individual splits into k o↵spring with probability pk for each
k � 0; the resulting o↵spring constitute the first generation.

• Each of the o↵spring in the first generation splits independently into a
random number of o↵spring, again according to the pmf {pk}k�0, and the
resulting o↵spring constitute the second generation.

• This process continues until extinction, which occurs when all the members
of a generation fail to produce o↵spring.

This model has a number of applications in biology (eg., it can be thought
as a model of population growth), physics (chain reaction in nuclear fission),
queueing theory, etc. Originally it arose from a study of the likelihood of survival
of family names (“how fertile must a family be to ensure that in future generations
the family name will not die out?”).

Formally, let {Zn,k}, n � 1, k � 1, be a family of i.i.d. random variables
in Z+, each having a common probability mass function {pk}k�0. Then the
branching process (Zn)n�0 (generated by {pk}k�0) is defined by setting Z0 = 1,
and, for n � 1,

Zn

def
= Zn,1 + Zn,2 + · · ·+ Zn,Zn�1 , (2.1)

where the empty sum is interpreted as zero. Notice that Zn is a Markov chain
in Z+. We shall use P( · ) ⌘ P1( · ) and E( · ) ⌘ E1( · ) to denote the corresponding
probability measure and the expectation operator. 8 If 'n(s) ⌘ E(sZn) is the
generating function of Zn, a straightforward induction based on (2.1) and (1.5)
implies that

'0(s) ⌘ s , '(s) ⌘ '1(s) ⌘ EsZ1 ,

'k(s) = 'k�1

�
'(s)

�
⌘ '

�
'k�1(s)

�
= '(. . .'(s) . . . ) . . . )| {z }

k times

k > 1. (2.2)

Usually explicit calculations are hard, but at least in principle, equations (2.2)
determine the distribution of Zn for any n � 0.

Example 2.1. Let '1(s) ⌘ '(s) = q + ps for some 0 < p = 1� q < 1. Then

'n(s) ⌘ q(1 + p+ · · ·+ p
n�1) + p

n
s = 1 + p

n(s� 1) .

Notice that here we have 'n(s) ! 1 as n ! 1, for all s 2 [0, 1]. In other words,
the distribution of Zn converges to that of Z1 ⌘ 0, recall Theorem 1.34.

7sometimes called a Galton-Watson-Bienaymé process
8If Z0 = k, we shall explicitly write Pk( · ) and Ek( · ).
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The following result is a straightforward corollary of (1.5).

Lemma 2.2. In a branching process (Zn)n�0 with Z0 = 1, let the o↵spring
distribution have mean m. Then E(Zn) = m

n for all n � 1.

Proof. Recall that a random variableX with values in Z�0 has finite mean equal
to G

0
X
(1�) := lims"1 G

0
X
(s), if and only if this limit exists and is finite. Since Z1

is assumed to have finite mean m, this implies that '0(1�) := lims"1 '
0(s) = m

(where ' is the generating function of Z1). We also know by (1.5) that the
generating function of Zn is given by 'n which is just the composition of ' with
itself n times. By the chain rule, and since 'k(1) = 1 for all k, we see that

lim
s"1

'
0
n
(1�) = '

0(1�)
n = m

n
,

implying the result. This can alternatively be shown by induction, using a
conditioning argument.

Exercise 2.3. In a branching process (Zn)n�0 with Z0 = 1, let the o↵spring
distribution have mean m, variance �2, and generating function '. Write 'n

for the generating function of the nth generation size Zn, 'n(s) ⌘ E(sZn).

(a) Using (2.2) or otherwise, show that Var(Zn) = �
2
m

n�1(mn
� 1)/(m� 1) if

m 6= 1 and Var(Zn) = �
2
n if m = 1.

(b) Deduce that E
�
(Zn/m

n)2
�
is uniformly bounded for m 6= 1.

This result suggests that if m ⌘ E(Z1) 6= 1, the branching process might
explode (for m > 1) or die out (for m < 1). One therefore classifies branching
process as either critical (if m = 1), subcritical (m < 1), or supercritical (m > 1).

Example 2.4. It is straightforward to describe the case m < 1. Indeed, the
Markov inequality (1.2) implies that

P(Zn > 0) = P(Zn � 1)  E(Zn) = m
n
,

so that P(Zn > 0) ! 0 as n ! 1 (ie., Zn ! 0 in probability). We also
notice that the average total population in this case is finite, E

�P
n�0 Zn

�
=P

n�0 m
n = (1�m)�1

< 1.

Definition 2.5. The extinction event E is the event E = [
1
n=1

�
Zn = 0

 
. Since�

Zn = 0
 
⇢
�
Zn+1 = 0

 
for all n � 0, the extinction probability ⇢ is defined as

⇢ = P(E) = lim
n!1

P
�
Zn = 0

�
,

where P
�
Zn = 0

�
⌘ 'n(0) is the extinction probability before (n+ 1)st genera-

tion.
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The following result helps to derive the extinction probability ⇢ without
needing to compute the iterates 'n( · ) precisely. To avoid trivialities we shall
assume that p0 = P(Z = 0) satisfies 9 0 < p0 < 1; notice that under this
assumption '(s) is a strictly increasing function of s 2 [0, 1].

Theorem 2.6. If 0 < p0 < 1, then the extinction probability ⇢ is given by the
smallest positive solution to the equation

s = '(s) . (2.3)

In particular, if m = EZ1  1, then ⇢ = 1; otherwise, we have 0 < ⇢ < 1.

In words, if the branching process is subcritical or critical then it eventually
becomes extinct with probability one. However, if it is supercritical, the process
has a positive probability to survive for all time.

Remark 2.7. There is a clear probablistic intuition behind the relation ⇢ =
'(⇢). Indeed, if ⇢ = P1(E) is the extinction probability starting from a single
individual, Z0 = 1, then by independence we get Pk(E) ⌘ P(E | Z0 = k) = ⇢

k,
and thus the first step decomposition for the Markov chain Zn gives

⇢ = P(E) =
X

k�0

P(E , Z1 = k) =
X

k�0

P(E | Z1 = k)P(Z1 = k)

=
X

k�0

⇢
k P(Z1 = k) ⌘ E

�
⇢
Z1
�
⌘ '(⇢) ,

in agreement with (2.3).

Proof. Let us now give the proof of Theorem 2.6. You may find it helpful to draw
a picture!

Denote ⇢n = P
�
Zn = 0

�
⌘ 'n(0). By continuity and strict monotonicity of

'( · ) we have (recall (2.2))

0 < ⇢1 = '(0) < ⇢2 = '(⇢1) < · · · < 1 ,

so that the extinction probability ⇢ 2 (0, 1] is the increasing limit of ⇢n as
n ! 1, and satisfies

⇢ = lim
n

'n(0) = lim
n

'('n�1(0)) = '(lim
n

'n�1(0)) = '(⇢).

On the other hand, if ⇢̄ is any other fixed point of '( · ) in [0, 1], ie., ⇢̄ = '(⇢̄),
then ⇢̄ = 'n(⇢̄) � 'n(0) for all n, meaning that ⇢̄ � limn!1 'n(0) = ⇢. So, ⇢
is indeed the smallest positive solution to (2.3).

Next, we turn to the extinction criterion in terms of m. For this, observe
that '( · ) is convex on [0, 1], since '00(s) = E(Z1(Z1�1)sZ1�2) � 0 for s 2 [0, 1]
(actually unless p1 = 1�p0, i.e., if there is some possibility of having more than

9otherwise the model is degenerate: if p0 = 0, then Zn � 1 for all n � 0 so that ⇢ = 0; if
p0 = 1, then P(Z1 = 0) = ⇢ = 1.
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1 child, '00(s) is strictly positive and so ' is strictly convex on (0, 1)). Hence
if m = '

0(1�) > 1 we must have '(s0) < s0 for some s0 < 1 and therefore the
curves y = s and y = '(s) must cross at some point strictly in (0, 1) (recall
that '(0) = p0 > 0). A completely rigorous way to justify this is to define
f(s) := '(s) � s, which is continuous on [0, s0] with f(s0) < 0 and f(0) > 0,
so by the intermediate value theorem satisfies f(s) = 0, i.e. '(s) = s, for some
s 2 (0, s0). Conversely, suppose that m  1 and p1 6= 1�p0. Then the condition
m = '

0(1�)  1 together with strict convexity implies that '(s) � s is strictly
decreasing on [0, 1], from p0 at 0 to 0 at 1, and therefore cannot be 0 for any
s < 1. The case p1 = 1� p0 give '(s) = p0 + p1s and it is immediate that the
smallest solution of '(s) = s in [0, 1] is at 1. This completes the proof.

Corollary 2.8. If s 2 [0, 1), we have 'n(s) ⌘ E
�
s
Zn
�
! ⇢ 2 (0, 1] as n ! 1.

Remark 2.9. As a result, the distribution of Zn converges to that of Z1, where
P(Z1 = 0) = ⇢ and P(Z1 = 1) = 1� ⇢.

Exercise 2.10. For a branching process with generating function '(s) = as
2 +

bs + c, where a > 0, b > 0, c > 0, '(1) = 1, compute the extinction probability
⇢ and give the condition for sure extinction. Can you interpret your results?

Exercise 2.11. Let (Zn)n�0 be a branching process with generating function
'(s) ⌘ EsZ1 satisfying 0 < '(0) < 1. Let

'̄n(u)
def
= E

�
u
Z̄n
�

be the generating function of

Z̄n =
nX

k=0

Zk,

the total population size up to time n.

(a) Show that '̄n+1(u) = u'
�
'̄n(u)

�
for all n � 0 and u � 0.

(b) If u 2 (0, 1), show that '̄n(u) ! '̄(u)
def
= E

�
u
Z̄
�
as n ! 1, where Z̄

is the total population size,
P

k�0 Zk, of (Zn)n�0. Show that the limiting
generating function '̄(u) is given by the smallest positive solution s to the
equation s = u'(s).

(c) Let the process (Zn)n�0 be subcritical ('0(1�) < 1) with o↵spring distribu-
tion having exponential tails ('(s) < 1 for some s > 1). Show that for
some u > 1 the equation s = u'(s) has positive solutions s, the smallest of
which coincides with '̄(u) = E

�
u
Z̄
�
.

(d) Let the process (Zn)n�0 be supercritical (EZ1 > 1) with 0 < P(Z1 = 0) < 1
and let u > 1 be such that the equation s = u'(s) has positive solutions
s. Show that '̄n(u) ! 1, in agreement with the fact that with positive
probability the process (Zn)n�0 survives forever, P(Z̄ = 1) > 0.
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(e) In the setting of part d), let '̂n(u)
def
= E

�
u
Z̄n1Zn=0

�
, the generating function

of the total population on the event that the process (Zn)n�0 dies out by
time n. Show that '̂n+1(u) = u'

�
'̂n(u)

�
for all n � 0 and u � 0. Deduce

that for each u > 1 such that the fixed point equation s = u'(s) has positive
solutions s, we have '̂n(u) ! E

�
u
Z̄1Z̄<1

�
, where the latter coincides with

the smallest positive s satisfying s = u'(s).

We now turn to classification of states for the Markov chain Zn in Z+. Of
course, since 0 is an absorbing state, it is recurrent.

Lemma 2.12. If p1 = P(Z1 = 1) 6= 1, then every state k 2 N is transient. As
a result,

P(Zn ! 1) = 1� P(Zn ! 0) = 1� ⇢ .

Proof. We first show that every k 2 N is transient. If p0 = 0, then Zn is a
non-decreasing Markov chain (ie., Zn+1 � Zn), so that for every k 2 N the first
passage probability fkk satisfies

fkk = P
�
Zn+1 = k | Zn = k

�
= Pk(Z1 = k) = (p1)

k
< 1 .

On the other hand, for p0 2 (0, 1] we have

fkk  P
�
Zn+1 6= 0 | Zn = k

�
= Pk(Z1 6= 0) = 1� Pk(Z1 = 0) = 1� (p0)

k
< 1 .

This means that

P(Zn = k i.o.) = lim
m!1

P(Zn returns to k at least m times)  lim
m!1

f
m�1
kk

= 0

and the state k is transient.
Fix arbitrary K > 0. Since the states 1, 2, . . . , K are transient, we see that

P
�
{Zn = 0} [ {Zn > K}

�
! 1 as n ! 1 and therefore

P
�
Zn ! 0 or Zn ! 1

�
= 1 .

As the LHS above equals P(Zn ! 0) + P(Zn ! 1), the result follows from the
observation that P(Zn ! 0) ⌘ P(E) = ⇢.

Exercise 2.13. For a supercritical branching process (Zn)n�0, let T0 = min{n �

0 : Zn = 0} be its extinction time and let ⇢ = P(T0 < 1) > 0 be its
extinction probability. Define ( bZn)�0 as Zn conditioned on extinction, ie.,
bZn =

�
Zn | T0 < 1

�
.

(a) Show that the transition probabilities p̂xy of ( bZn)n�0 and the transition prob-
abilities pxy of the original process (Zn)n�0 are related via p̂xy = pxy⇢

y�x,
x, y � 0.

(b) Deduce that the generating functions b'(s) ⌘ E1

⇥
s
bZ1
⇤
and '(s) ⌘ E1

⇥
s
Z1
⇤

are related via10 b'(s) = 1
⇢
'(⇢s), 0  s  1.

10 Geometrically, the graph of this generating function is a rescaled version of that of '(·).
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(c) If the o↵spring distribution of (Zn)n�0 is Poi(�) with � > 1, use the fixed
point equation ⇢ = e

�(⇢�1) to show that b'(s) = e
�⇢(s�1), ie., that the o↵-

spring distribution for ( bZn)n�0 is just Poi(�⇢).

Exercise 2.14. Let (Zn)n�0 be a supercritical branching process with o↵spring
distribution {pk}k�0, o↵spring generating function '(s) and extinction proba-
bility ⇢ 2 [0, 1).

(a) If Z0 = 1, let p̃k be the probability that conditioned on survival the first
generation has exactly k individuals with an infinite line of descent. Show
that

p̃k =
1

1� ⇢

1X

n=k

pn

✓
n

k

◆
(1� ⇢)k⇢n�k

.

(b) Let ( eZn)n�0 count only those individuals in (Zn)n�0, who conditioned on

survival have an infinite line of descent. Show that ( eZn)n�0 is a branching
process with o↵spring generating function10

e'(s) = 1

1� ⇢

⇣
'
�
(1� ⇢)s+ ⇢

�
� ⇢

⌘
.

Exercise 2.15. Let (Zn)n�0 be a subcritical branching process whose generating
function '(s) = E(sZ1) is finite for some s > 1, ie., the o↵spring distribution
has finite exponential moments in a neighbourhood of the origin.

(a) Using the result of Exercise 2.11 or otherwise, show that the total population
size Z̄ =

P
k�0 Zk satisfies E

�
u
Z̄
�
< 1 for some u > 1.

(b) Suppose that for each 1  i  Z̄, individual i produces wealth of size Wi,
where Wi are independent random variables with common distribution sat-
isfying E

�
s
W
�
< 1 for some s > 1. Show that for some u > 1 we have

E
�
u
W
�
< 1, where W = W1 + · · · + WZ̄ is the total wealth generated

by (Zn)n�0.

2.2 Critical case m = 1

The following example is one of very few for which the computation in the
critical case m = E(Z1) = 1 can be done explicitly.

Example 2.16. Consider the so-called linear-fractional case, where the o↵-
spring distribution is given by pj = 2�(j+1), j � 0. Then the o↵spring generat-
ing function is '(s) =

P
j�0 s

j
/2j+1 = (2�s)�1 and a straightforward induction

gives (check this!)

'k(s) =
k � (k � 1)s

(k + 1)� ks
=

k

k + 1
+

1

k(k + 1)

X

m�1

⇣
ks

k + 1

⌘m

,
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so that P(Zk = 0) = 'k(0) = k/(k + 1), P(Zk > 0) = 1/(k + 1), and

P
�
Zk = m | Zk > 0

�
=

1

k + 1

⇣
k

k + 1

⌘m�1
, m � 1 ,

ie., (Zk | Zk > 0
�
has geometric distribution with success probability 1/(k + 1).

Remark 2.17. For each k � 0, by the partition theorem,

1 = E(Zk) = E
�
Zk | Zk > 0

�
P(Zk > 0) + E

�
Zk | Zk = 0

�
P(Zk = 0) ,

so that in the previous example we have

E
�
Zk | Zk > 0

�
=

1

P(Zk > 0)
= k + 1 ,

ie., conditional on survival, the average generation size grows linearly with time.

The following example is known as the general linear-fractional case:

Exercise 2.18. For fixed b > 0 and p 2 (0, 1), consider a branching process
with o↵spring distribution pj = b p

j�1, j � 1, and p0 = 1�
P

j�1 pj.

(a) Show that for b 2 (0, 1 � p) the distribution above is well defined; find the
corresponding p0, and show that

'(s) =
1� b� p

1� p
+

bs

1� ps
;

(b) Find b for which the branching process is critical and show that then

'k(s) = E
�
s
Zk
�
=

kp� (kp+ p� 1)s

(1� p+ kp)� kps
;

(c) Deduce that (Zk | Zk > 0
�
is geometrically distributed with parameter

1�p

kp+1�p
.

Straightforward computer experiments show that a similar linear growth of
E
�
Zk | Zk > 0

�
takes place for other critical o↵spring distributions, eg., the one

with '(s) = (1 + s
2)/2.

Theorem 2.19. If the o↵spring distribution of the branching process (Zk)k�0

has mean m = 1 and finite variance �2
> 0, then k P(Zk > 0) ! 2

�2 as k ! 1;
equivalently,

1

k
E(Zk | Zk > 0

�
!

�
2

2
as k ! 1. (2.4)

Remark 2.20. This general result suggests that, conditional on survival, a gen-
eral critical branching process exhibits linear intermittent behaviour; 11 namely,
with small probability (of order 2/(k�2)) the values of Zk are of order k.

11Intermittency follows from the criticality condition, 1 = E(Zk | Zk > 0
�
P(Zk > 0); it is

the linearity which is surprising here!
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Our argument is based on the following general fact: 12

Lemma 2.21. Let (yn)n�0 be a real-valued sequence. If for some constant a

we have yn+1 � yn ! a as n ! 1, then n
�1

yn ! a as n ! 1.

Proof. By changing the variables yn 7! y
0
n
= yn � na if necessary, we can and

shall assume that a = 0. Fix arbitrary � > 0 and find K > 0 such that for
n � K we have |yn+1 � yn|  �. Decomposing, for n > K,

yn � yK =
n�1P
j=K

�
yj+1 � yj

�
we deduce that |yn � yK |  �(n � K) so that the

claim follows from the estimate
���
yn

n

��� 
���
yn � yK

n

���+
���
yK

n

���  � +
���
yK

n

���  2� ,

provided n is chosen su�ciently large.

Proof. (of Theorem 2.19). We only derive the second claim of the theorem,
(2.4). By assumptions and Taylor’s theorem (here we are also using Theorem
1.16) the o↵spring generating function ' satisfies

1� '(s) = (1� s) +
�
2

2
(1� s)2 +R(s)(1� s)2 where R(s) ! 0 as s " 1.

Since 'n(0) = P(Zn = 0) ! 1 as n ! 1 this means in particular that 1 �

'n+1(0) = 1 � '('n(0)) = 1 � 'n(0) + (1 � 'n(0))2(
�
2

2 + rn)) with rn :=
R('n(0)) ! 0 as n ! 1. Setting

yn =
1

1� 'n(0)
=

E(Zn)

P(Zn > 0)
= E(Zn|Zn > 0)

we therefore have

yn+1 � yn =
1

1� 'n(0)

1

1� (1� 'n(0))(�2/2 + rn)
� 1

which we can rewrite as

(1� 'n(0))(�2
/2 + rn)

1� 'n(0)

1

1� (1� 'n(0))(�2/2 + rn)

for each n. It therefore follows that yn+1 � yn ! �
2
/2 as n ! 1 and hence

yn

n
=

E(Zn|Zn > 0)

n
!

�
2

2

as well (by the Lemma). This completes the proof.
12Compare the result to Cesàro limits of real sequences: if (ak)k�1 is a real-valued sequence,

and sn = a1 + · · · + an is its nth partial sum, then 1
n sn are called the Cesàro averages for the

sequence (ak)k�1. Lemma 2.21 claims that if ak ! a as k ! 1, then the sequence of its
Cesàro averages also converges to a. The converse is, of course, false. (Find a counterexample!)
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Remark 2.22. With a bit of extra work 13 one can generalize the above proof
to show that

lim
n!1

n
�1
⇣ 1

1� 'n(s)
�

1

1� s

⌘
=
�
2

2

for any s 2 [0, 1] and use this relation to derive the convergence in distribution:

Theorem 2.23. If EZ1 = 1 and Var(Z1) = �
2
2 (0,1), then for every z � 0

we have

lim
k!1

P
⇣
Zk

k
> z | Zk > 0

⌘
= exp

n
�
2z

�2

o
,

ie., the distribution of
�
k
�1

Zk | Zk > 0
�
is approximately exponential with

parameter 2/�2.

Remark 2.24. In the setup of Example 2.16, we have

P
�
Zk > m | Zk > 0

�
=
⇣

k

k + 1

⌘m

=
⇣
1�

1

k + 1

⌘m

,

so that P
�
Zk > kz | Zk > 0

�
! e

�z as k ! 1; in other words, for large k the
distribution of

�
k
�1

Zk | Zk > 0
�
is approximately Exp(1).

Exercise 2.25. Let (Zn)n�0 be the critical branching process from Exercise
2.18, namely, the one whose o↵spring distribution is given by (pj)j�0,

pj = b p
j�1

, j � 1 , p0 = 1�
X

j�1

pj ,

where b > 0 and p 2 (0, 1) are fixed parameters. Show that the result of Theorem
2.23 holds: for every z � 0

lim
k!1

P
⇣
Zk

k
> z | Zk > 0

⌘
= exp

n
�
2z

�2

o
,

where Var(Z1) = �
2
2 (0,1).

2.3 Non-homogeneous case

If the o↵spring distribution changes with time, the previous approach must be
modified. Let  n(u) be the generating function of the o↵spring distribution of
a single ancestor in the (n� 1)st generation,

 n(u) = E
�
u
Zn | Zn�1 = 1

�

(so in the cases considered up to now,  n = ' for every n). Then the generating
function 'n(u) = E

�
u
Zn | Z0 = 1

�
of the population size at time n given a single

ancestor at time 0, can be defined recursively as follows:

'0(u) ⌘ u , 'n(u) = 'n�1

�
 n(u)

�
, 8n � 1 .

13using the fact that every s 2 (0, 1) satisfies 0 < s < 'k(0) < 1 for some k � 1;
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If µn = E(Zn | Zn�1 = 1) =  
0
n
(1) denotes the average o↵spring size in the nth

generation given a single ancestor in the previous generation, then

mn ⌘ E
�
Zn | Z0 = 1

�
= µ1µ2 . . . µn�1µn .

It is natural to call the process (Zn)n�0 supercritical if mn ! 1 and subcritical
if mn ! 0 as n ! 1.

Exercise 2.26. A strain of phototrophic bacteria uses light as the main source
of energy. As a result individual organisms reproduce with probability mass
function p0 = 1/4, p1 = 1/4 and p2 = 1/2 per unit of time in light environment,
and with probability mass function p0 = 1�p, p1 = p (with some p > 0) per unit
of time in dark environment. A colony of such bacteria is grown in a laboratory,
with alternating light and dark unit time intervals.

a) Model this experiment as a time non-homogeneous branching process (Zn)n�0

and describe the generating function of the population size at the end of the nth
interval.

b) Characterise all values of p for which the branching process Zn is subcritical
and for which it is supercritical.

c) Let (Dk)k�0 be the original process observed at the end of each even interval,

Dk

def
= Z2k. Find the generating function of (Dk)k�0 and derive the condition

for sure extinction. Compare your result with that of part b).
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