2 Branching processes

2.1 Classification and extinction

Informally, a branching process ⁷ is described as follows, where $\{p_k\}_{k\geq 0}$ is a fixed probability mass function (pmf).

- A population starts with a single ancestor who forms generation number 0.
- This initial individual splits into k offspring with probability p_k for each $k \ge 0$; the resulting offspring constitute the first generation.
- Each of the offspring in the first generation splits independently into a random number of offspring, again according to the pmf $\{p_k\}_{k\geq 0}$, and the resulting offspring constitute the second generation.
- This process continues until extinction, which occurs when all the members of a generation fail to produce offspring.

This model has a number of applications in biology (eg., it can be thought as a model of population growth), physics (chain reaction in nuclear fission), queueing theory, etc. Originally it arose from a study of the likelihood of survival of family names ("how fertile must a family be to ensure that in future generations the family name will not die out?").

Formally, let $\{Z_{n,k}\}$, $n \ge 1$, $k \ge 1$, be a family of i.i.d. random variables in \mathbb{Z}^+ , each having a common probability mass function $\{p_k\}_{k\ge 0}$. Then the branching process $(Z_n)_{n\ge 0}$ (generated by $\{p_k\}_{k\ge 0}$) is defined by setting $Z_0 = 1$, and, for $n \ge 1$,

$$Z_n \stackrel{\text{def}}{=} Z_{n,1} + Z_{n,2} + \dots + Z_{n,Z_{n-1}}, \qquad (2.1)$$

where the empty sum is interpreted as zero. Notice that Z_n is a Markov chain in \mathbb{Z}^+ . We shall use $\mathsf{P}(\cdot) \equiv \mathsf{P}_1(\cdot)$ and $\mathsf{E}(\cdot) \equiv \mathsf{E}_1(\cdot)$ to denote the corresponding probability measure and the expectation operator.⁸ If $\varphi_n(s) \equiv \mathsf{E}(s^{Z_n})$ is the generating function of Z_n , a straightforward induction based on (2.1) and (1.5) implies that

$$\varphi_0(s) \equiv s, \qquad \varphi(s) \equiv \varphi_1(s) \equiv \mathsf{E}s^{\mathbb{Z}_1},$$
$$\varphi_k(s) = \varphi_{k-1}(\varphi(s)) \equiv \varphi(\varphi_{k-1}(s)) = \underbrace{\varphi(\dots,\varphi(s)\dots)\dots}_{k \text{ times}} \quad k > 1. \tag{2.2}$$

Usually explicit calculations are hard, but at least in principle, equations (2.2) determine the distribution of Z_n for any $n \ge 0$.

Example 2.1. Let $\varphi_1(s) \equiv \varphi(s) = q + ps$ for some 0 . Then

$$\varphi_n(s) \equiv q(1+p+\dots+p^{n-1})+p^n s = 1+p^n(s-1).$$

Notice that here we have $\varphi_n(s) \to 1$ as $n \to \infty$, for all $s \in [0, 1]$. In other words, the distribution of Z_n converges to that of $Z_\infty \equiv 0$, recall Theorem 1.34.

⁷sometimes called a Galton-Watson-Bienaymé process

⁸If $Z_0 = k$, we shall explicitly write $\mathsf{P}_k(\cdot)$ and $\mathsf{E}_k(\cdot)$.

The following result is a straightforward corollary of (1.5).

Lemma 2.2. In a branching process $(Z_n)_{n\geq 0}$ with $Z_0 = 1$, let the offspring distribution have mean m. Then $\mathsf{E}(Z_n) = m^n$ for all $n \geq 1$.

Proof. Recall that a random variable X with values in $\mathbb{Z}_{\geq 0}$ has finite mean equal to $G'_X(1_-) := \lim_{s\uparrow 1} G'_X(s)$, if and only if this limit exists and is finite. Since Z_1 is assumed to have finite mean m, this implies that $\varphi'(1_-) := \lim_{s\uparrow 1} \varphi'(s) = m$ (where φ is the generating function of Z_1). We also know by (1.5) that the generating function of Z_n is given by φ_n which is just the composition of φ with itself n times. By the chain rule, and since $\varphi_k(1) = 1$ for all k, we see that

$$\lim_{n \to 1} \varphi'_n(1_-) = \varphi'(1_-)^n = m^n$$

implying the result. This can alternatively be shown by induction, using a conditioning argument. $\hfill \Box$

Exercise 2.3. In a branching process $(Z_n)_{n\geq 0}$ with $Z_0 = 1$, let the offspring distribution have mean m, variance σ^2 , and generating function φ . Write φ_n for the generating function of the nth generation size Z_n , $\varphi_n(s) \equiv \mathsf{E}(s^{Z_n})$.

- (a) Using (2.2) or otherwise, show that $\operatorname{Var}(Z_n) = \sigma^2 m^{n-1} (m^n 1)/(m-1)$ if $m \neq 1$ and $\operatorname{Var}(Z_n) = \sigma^2 n$ if m = 1.
- (b) Deduce that $\mathsf{E}((Z_n/m^n)^2)$ is uniformly bounded for $m \neq 1$.

This result suggests that if $m \equiv \mathsf{E}(Z_1) \neq 1$, the branching process might explode (for m > 1) or die out (for m < 1). One therefore classifies branching process as either critical (if m = 1), subcritical (m < 1), or supercritical (m > 1).

Example 2.4. It is straightforward to describe the case m < 1. Indeed, the Markov inequality (1.2) implies that

$$\mathsf{P}(Z_n > 0) = \mathsf{P}(Z_n \ge 1) \le \mathsf{E}(Z_n) = m^n,$$

so that $P(Z_n > 0) \to 0$ as $n \to \infty$ (i.e., $Z_n \to 0$ in probability). We also notice that the average total population in this case is finite, $E(\sum_{n\geq 0} Z_n) = \sum_{n\geq 0} m^n = (1-m)^{-1} < \infty$.

Definition 2.5. The extinction event \mathcal{E} is the event $\mathcal{E} = \bigcup_{n=1}^{\infty} \{Z_n = 0\}$. Since $\{Z_n = 0\} \subset \{Z_{n+1} = 0\}$ for all $n \ge 0$, the extinction probability ρ is defined as

$$\rho = \mathsf{P}(\mathcal{E}) = \lim_{n \to \infty} \mathsf{P}(Z_n = 0) \,,$$

where $P(Z_n = 0) \equiv \varphi_n(0)$ is the extinction probability before (n+1)st generation.

The following result helps to derive the extinction probability ρ without needing to compute the iterates $\varphi_n(\cdot)$ precisely. To avoid trivialities we shall assume that $p_0 = \mathsf{P}(Z = 0)$ satisfies $9 \ 0 < p_0 < 1$; notice that under this assumption $\varphi(s)$ is a strictly increasing function of $s \in [0, 1]$.

Theorem 2.6. If $0 < p_0 < 1$, then the extinction probability ρ is given by the smallest positive solution to the equation

$$s = \varphi(s) \,. \tag{2.3}$$

In particular, if $m = \mathsf{E}Z_1 \leq 1$, then $\rho = 1$; otherwise, we have $0 < \rho < 1$.

In words, if the branching process is subcritical or critical then it eventually becomes extinct with probability one. However, if it is supercritical, the process has a positive probability to survive for all time.

Remark 2.7. There is a clear probabilistic intuition behind the relation $\rho = \varphi(\rho)$. Indeed, if $\rho = \mathsf{P}_1(\mathcal{E})$ is the extinction probability starting from a single individual, $Z_0 = 1$, then by independence we get $\mathsf{P}_k(\mathcal{E}) \equiv \mathsf{P}(\mathcal{E} \mid Z_0 = k) = \rho^k$, and thus the first step decomposition for the Markov chain Z_n gives

$$\begin{split} \rho &= \mathsf{P}(\mathcal{E}) = \sum_{k \ge 0} \mathsf{P}(\mathcal{E}, Z_1 = k) = \sum_{k \ge 0} \mathsf{P}(\mathcal{E} \mid Z_1 = k) \mathsf{P}(Z_1 = k) \\ &= \sum_{k \ge 0} \rho^k \, \mathsf{P}(Z_1 = k) \equiv \mathsf{E}\big(\rho^{Z_1}\big) \equiv \varphi(\rho) \,, \end{split}$$

in agreement with (2.3).

Proof. Let us now give the proof of Theorem 2.6. You may find it helpful to draw a picture!

Denote $\rho_n = \mathsf{P}(Z_n = 0) \equiv \varphi_n(0)$. By continuity and strict monotonicity of $\varphi(\cdot)$ we have (recall (2.2))

$$0 < \rho_1 = \varphi(0) < \rho_2 = \varphi(\rho_1) < \dots < 1$$
,

so that the extinction probability $\rho \in (0,1]$ is the increasing limit of ρ_n as $n \to \infty$, and satisfies

$$\rho = \lim_{n} \varphi_n(0) = \lim_{n} \varphi(\varphi_{n-1}(0)) = \varphi(\lim_{n} \varphi_{n-1}(0)) = \varphi(\rho)$$

On the other hand, if $\bar{\rho}$ is any other fixed point of $\varphi(\cdot)$ in [0,1], i.e., $\bar{\rho} = \varphi(\bar{\rho})$, then $\bar{\rho} = \varphi_n(\bar{\rho}) \ge \varphi_n(0)$ for all n, meaning that $\bar{\rho} \ge \lim_{n\to\infty} \varphi_n(0) = \rho$. So, ρ is indeed the smallest positive solution to (2.3).

Next, we turn to the extinction criterion in terms of m. For this, observe that $\varphi(\cdot)$ is convex on [0, 1], since $\varphi''(s) = \mathsf{E}(Z_1(Z_1 - 1)s^{Z_1 - 2}) \ge 0$ for $s \in [0, 1]$ (actually unless $p_1 = 1 - p_0$, i.e., if there is some possibility of having more than

⁹otherwise the model is degenerate: if $p_0 = 0$, then $Z_n \ge 1$ for all $n \ge 0$ so that $\rho = 0$; if $p_0 = 1$, then $\mathsf{P}(Z_1 = 0) = \rho = 1$.

1 child, $\varphi''(s)$ is strictly positive and so φ is *strictly* convex on (0,1)). Hence if $m = \varphi'(1_-) > 1$ we must have $\varphi(s_0) < s_0$ for some $s_0 < 1$ and therefore the curves y = s and $y = \varphi(s)$ must cross at some point strictly in (0,1) (recall that $\varphi(0) = p_0 > 0$). A completely rigorous way to justify this is to define $f(s) := \varphi(s) - s$, which is continuous on $[0, s_0]$ with $f(s_0) < 0$ and f(0) > 0, so by the intermediate value theorem satisfies f(s) = 0, i.e. $\varphi(s) = s$, for some $s \in (0, s_0)$. Conversely, suppose that $m \leq 1$ and $p_1 \neq 1 - p_0$. Then the condition $m = \varphi'(1_-) \leq 1$ together with strict convexity implies that $\varphi(s) - s$ is strictly decreasing on [0, 1], from p_0 at 0 to 0 at 1, and therefore cannot be 0 for any s < 1. The case $p_1 = 1 - p_0$ give $\varphi(s) = p_0 + p_1 s$ and it is immediate that the smallest solution of $\varphi(s) = s$ in [0, 1] is at 1. This completes the proof.

Corollary 2.8. If $s \in [0,1)$, we have $\varphi_n(s) \equiv \mathsf{E}(s^{\mathbb{Z}_n}) \to \rho \in (0,1]$ as $n \to \infty$.

Remark 2.9. As a result, the distribution of Z_n converges to that of Z_∞ , where $P(Z_\infty = 0) = \rho$ and $P(Z_\infty = \infty) = 1 - \rho$.

Exercise 2.10. For a branching process with generating function $\varphi(s) = as^2 + bs + c$, where a > 0, b > 0, c > 0, $\varphi(1) = 1$, compute the extinction probability ρ and give the condition for sure extinction. Can you interpret your results?

Exercise 2.11. Let $(Z_n)_{n\geq 0}$ be a branching process with generating function $\varphi(s) \equiv \mathsf{E}s^{Z_1}$ satisfying $0 < \varphi(0) < 1$. Let

$$\bar{\varphi}_n(u) \stackrel{\mathsf{def}}{=} \mathsf{E}(u^{\bar{Z}_n})$$

be the generating function of

$$\bar{Z}_n = \sum_{k=0}^n Z_k,$$

the total population size up to time n.

- (a) Show that $\bar{\varphi}_{n+1}(u) = u \varphi(\bar{\varphi}_n(u))$ for all $n \ge 0$ and $u \ge 0$.
- (b) If $u \in (0,1)$, show that $\bar{\varphi}_n(u) \to \bar{\varphi}(u) \stackrel{\text{def}}{=} \mathsf{E}(u^{\bar{Z}})$ as $n \to \infty$, where \bar{Z} is the total population size, $\sum_{k\geq 0} Z_k$, of $(Z_n)_{n\geq 0}$. Show that the limiting generating function $\bar{\varphi}(u)$ is given by the smallest positive solution s to the equation $s = u\varphi(s)$.
- (c) Let the process $(Z_n)_{n\geq 0}$ be subcritical $(\varphi'(1_-) < 1)$ with offspring distribution having exponential tails $(\varphi(s) < \infty$ for some s > 1). Show that for some u > 1 the equation $s = u\varphi(s)$ has positive solutions s, the smallest of which coincides with $\bar{\varphi}(u) = \mathsf{E}(u^{\bar{Z}})$.
- (d) Let the process $(Z_n)_{n\geq 0}$ be supercritical $(\mathsf{E}Z_1 > 1)$ with $0 < \mathsf{P}(Z_1 = 0) < 1$ and let u > 1 be such that the equation $s = u\varphi(s)$ has positive solutions s. Show that $\overline{\varphi}_n(u) \to \infty$, in agreement with the fact that with positive probability the process $(Z_n)_{n>0}$ survives forever, $\mathsf{P}(\overline{Z} = \infty) > 0$.

(e) In the setting of part d), let $\hat{\varphi}_n(u) \stackrel{\text{def}}{=} \mathsf{E}(u^{\bar{Z}_n} \mathbf{1}_{Z_n=0})$, the generating function of the total population on the event that the process $(Z_n)_{n\geq 0}$ dies out by time n. Show that $\hat{\varphi}_{n+1}(u) = u\varphi(\hat{\varphi}_n(u))$ for all $n \geq 0$ and $u \geq 0$. Deduce that for each u > 1 such that the fixed point equation $s = u\varphi(s)$ has positive solutions s, we have $\hat{\varphi}_n(u) \to \mathsf{E}(u^{\bar{Z}} \mathbf{1}_{\bar{Z} < \infty})$, where the latter coincides with the smallest positive s satisfying $s = u\varphi(s)$.

We now turn to classification of states for the Markov chain Z_n in \mathbb{Z}^+ . Of course, since 0 is an absorbing state, it is recurrent.

Lemma 2.12. If $p_1 = \mathsf{P}(Z_1 = 1) \neq 1$, then every state $k \in \mathbb{N}$ is transient. As a result,

$$\mathsf{P}(Z_n \to \infty) = 1 - \mathsf{P}(Z_n \to 0) = 1 - \rho.$$

Proof. We first show that every $k \in \mathbb{N}$ is transient. If $p_0 = 0$, then Z_n is a non-decreasing Markov chain (ie., $Z_{n+1} \geq Z_n$), so that for every $k \in \mathbb{N}$ the first passage probability f_{kk} satisfies

 $f_{kk} = \mathsf{P}(Z_{n+1} = k \mid Z_n = k) = \mathsf{P}_k(Z_1 = k) = (p_1)^k < 1.$

On the other hand, for $p_0 \in (0, 1]$ we have

$$f_{kk} \le \mathsf{P}(Z_{n+1} \ne 0 \mid Z_n = k) = \mathsf{P}_k(Z_1 \ne 0) = 1 - \mathsf{P}_k(Z_1 = 0) = 1 - (p_0)^k < 1.$$

This means that

 $\mathsf{P}(Z_n = k \text{ i.o.}) = \lim_{m \to \infty} \mathsf{P}(Z_n \text{ returns to } k \text{ at least } m \text{ times}) \le \lim_{m \to \infty} f_{kk}^{m-1} = 0$

and the state k is transient.

Fix arbitrary K > 0. Since the states 1, 2, ..., K are transient, we see that $\mathsf{P}(\{Z_n = 0\} \cup \{Z_n > K\}) \to 1 \text{ as } n \to \infty \text{ and therefore}$

$$\mathsf{P}(Z_n \to 0 \text{ or } Z_n \to \infty) = 1$$

As the LHS above equals $\mathsf{P}(Z_n \to 0) + \mathsf{P}(Z_n \to \infty)$, the result follows from the observation that $\mathsf{P}(Z_n \to 0) \equiv \mathsf{P}(\mathcal{E}) = \rho$.

Exercise 2.13. For a supercritical branching process $(Z_n)_{n\geq 0}$, let $T_0 = \min\{n \geq 0 : Z_n = 0\}$ be its extinction time and let $\rho = \mathsf{P}(T_0 < \infty) > 0$ be its extinction probability. Define $(\widehat{Z}_n)_{\geq 0}$ as Z_n conditioned on extinction, i.e., $\widehat{Z}_n = (Z_n \mid T_0 < \infty)$.

- (a) Show that the transition probabilities \hat{p}_{xy} of $(\widehat{Z}_n)_{n\geq 0}$ and the transition probabilities p_{xy} of the original process $(Z_n)_{n\geq 0}$ are related via $\hat{p}_{xy} = p_{xy}\rho^{y-x}$, $x, y \geq 0$.
- (b) Deduce that the generating functions $\widehat{\varphi}(s) \equiv \mathsf{E}_1[s^{\widehat{Z}_1}]$ and $\varphi(s) \equiv \mathsf{E}_1[s^{Z_1}]$ are related via¹⁰ $\widehat{\varphi}(s) = \frac{1}{\rho}\varphi(\rho s), \ 0 \le s \le 1$.

 $^{^{10}}$ Geometrically, the graph of this generating function is a rescaled version of that of $\varphi(\cdot).$

(c) If the offspring distribution of $(Z_n)_{n\geq 0}$ is $\operatorname{Poi}(\lambda)$ with $\lambda > 1$, use the fixed point equation $\rho = e^{\lambda(\rho-1)}$ to show that $\widehat{\varphi}(s) = e^{\lambda\rho(s-1)}$, i.e., that the offspring distribution for $(\widehat{Z}_n)_{n\geq 0}$ is just $\operatorname{Poi}(\lambda\rho)$.

Exercise 2.14. Let $(Z_n)_{n\geq 0}$ be a supercritical branching process with offspring distribution $\{p_k\}_{k\geq 0}$, offspring generating function $\varphi(s)$ and extinction probability $\rho \in [0, 1)$.

(a) If $Z_0 = 1$, let \tilde{p}_k be the probability that conditioned on survival the first generation has exactly k individuals with an infinite line of descent. Show that

$$\tilde{p}_k = \frac{1}{1-\rho} \sum_{n=k}^{\infty} p_n \binom{n}{k} (1-\rho)^k \rho^{n-k}.$$

(b) Let $(Z_n)_{n\geq 0}$ count only those individuals in $(Z_n)_{n\geq 0}$, who conditioned on survival have an infinite line of descent. Show that $(\widetilde{Z}_n)_{n\geq 0}$ is a branching process with offspring generating function¹⁰

$$\widetilde{\varphi}(s) = \frac{1}{1-\rho} \Big(\varphi \big((1-\rho)s + \rho \big) - \rho \Big).$$

Exercise 2.15. Let $(Z_n)_{n\geq 0}$ be a subcritical branching process whose generating function $\varphi(s) = \mathsf{E}(s^{Z_1})$ is finite for some s > 1, i.e., the offspring distribution has finite exponential moments in a neighbourhood of the origin.

- (a) Using the result of Exercise 2.11 or otherwise, show that the total population size $\overline{Z} = \sum_{k>0} Z_k$ satisfies $\mathsf{E}(u^{\overline{Z}}) < \infty$ for some u > 1.
- (b) Suppose that for each $1 \leq i \leq \overline{Z}$, individual *i* produces wealth of size W_i , where W_i are independent random variables with common distribution satisfying $\mathsf{E}(s^W) < \infty$ for some s > 1. Show that for some u > 1 we have $\mathsf{E}(u^{\overline{W}}) < \infty$, where $\overline{W} = W_1 + \cdots + W_{\overline{Z}}$ is the total wealth generated by $(Z_n)_{n\geq 0}$.

2.2 Critical case m = 1

The following example is one of very few for which the computation in the critical case $m = \mathsf{E}(Z_1) = 1$ can be done explicitly.

Example 2.16. Consider the so-called linear-fractional case, where the offspring distribution is given by $p_j = 2^{-(j+1)}$, $j \ge 0$. Then the offspring generating function is $\varphi(s) = \sum_{j\ge 0} s^j/2^{j+1} = (2-s)^{-1}$ and a straightforward induction gives (check this!)

$$\varphi_k(s) = \frac{k - (k-1)s}{(k+1) - ks} = \frac{k}{k+1} + \frac{1}{k(k+1)} \sum_{m>1} \left(\frac{ks}{k+1}\right)^m,$$

so that $P(Z_k = 0) = \varphi_k(0) = k/(k+1)$, $P(Z_k > 0) = 1/(k+1)$, and

$$\mathsf{P}(Z_k = m \mid Z_k > 0) = \frac{1}{k+1} \left(\frac{k}{k+1}\right)^{m-1}, \qquad m \ge 1,$$

ie., $(Z_k | Z_k > 0)$ has geometric distribution with success probability 1/(k+1). Remark 2.17. For each $k \ge 0$, by the partition theorem,

$$1 = \mathsf{E}(Z_k) = \mathsf{E}(Z_k \mid Z_k > 0) \mathsf{P}(Z_k > 0) + \mathsf{E}(Z_k \mid Z_k = 0) \mathsf{P}(Z_k = 0),$$

so that in the previous example we have

$$\mathsf{E}(Z_k \mid Z_k > 0) = \frac{1}{\mathsf{P}(Z_k > 0)} = k + 1,$$

ie., conditional on survival, the average generation size grows linearly with time.

The following example is known as the general linear-fractional case:

Exercise 2.18. For fixed b > 0 and $p \in (0,1)$, consider a branching process with offspring distribution $p_j = b p^{j-1}, j \ge 1$, and $p_0 = 1 - \sum_{j \ge 1} p_j$.

(a) Show that for $b \in (0, 1 - p)$ the distribution above is well defined; find the corresponding p_0 , and show that

$$\varphi(s) = \frac{1-b-p}{1-p} + \frac{bs}{1-ps}$$

(b) Find b for which the branching process is critical and show that then

$$\varphi_k(s) = \mathsf{E}\left(s^{Z_k}\right) = \frac{kp - (kp + p - 1)s}{(1 - p + kp) - kps};$$

(c) Deduce that $(Z_k \mid Z_k > 0)$ is geometrically distributed with parameter $\frac{1-p}{kp+1-p}$.

Straightforward computer experiments show that a similar linear growth of $\mathsf{E}(Z_k \mid Z_k > 0)$ takes place for other critical offspring distributions, eg., the one with $\varphi(s) = (1 + s^2)/2$.

Theorem 2.19. If the offspring distribution of the branching process $(Z_k)_{k\geq 0}$ has mean m = 1 and finite variance $\sigma^2 > 0$, then $k \mathsf{P}(Z_k > 0) \to \frac{2}{\sigma^2}$ as $k \to \infty$; equivalently,

$$\frac{1}{k}\mathsf{E}(Z_k \mid Z_k > 0) \to \frac{\sigma^2}{2} \quad as \ k \to \infty.$$
(2.4)

Remark 2.20. This general result suggests that, conditional on survival, a general critical branching process exhibits linear intermittent behaviour;¹¹ namely, with small probability (of order $2/(k\sigma^2)$) the values of Z_k are of order k.

¹¹Intermittency follows from the criticality condition, $1 = \mathsf{E}(Z_k \mid Z_k > 0)\mathsf{P}(Z_k > 0)$; it is the linearity which is surprising here!

Our argument is based on the following general fact: ¹²

Lemma 2.21. Let $(y_n)_{n\geq 0}$ be a real-valued sequence. If for some constant a we have $y_{n+1} - y_n \to a$ as $n \to \infty$, then $n^{-1}y_n \to a$ as $n \to \infty$.

Proof. By changing the variables $y_n \mapsto y'_n = y_n - na$ if necessary, we can and shall assume that a = 0. Fix arbitrary $\delta > 0$ and find K > 0 such that for $n \ge K$ we have $|y_{n+1} - y_n| \le \delta$. Decomposing, for n > K,

 $y_n - y_K = \sum_{j=K}^{n-1} (y_{j+1} - y_j)$ we deduce that $|y_n - y_K| \le \delta(n-K)$ so that the claim follows from the estimate

$$\left|\frac{y_n}{n}\right| \le \left|\frac{y_n - y_K}{n}\right| + \left|\frac{y_K}{n}\right| \le \delta + \left|\frac{y_K}{n}\right| \le 2\delta,$$

provided n is chosen sufficiently large.

Proof. (of Theorem 2.19). We only derive the second claim of the theorem, (2.4). By assumptions and Taylor's theorem (here we are also using Theorem 1.16) the offspring generating function φ satisfies

$$1 - \varphi(s) = (1 - s) + \frac{\sigma^2}{2}(1 - s)^2 + R(s)(1 - s)^2 \text{ where } R(s) \to 0 \text{ as } s \uparrow 1.$$

Since $\varphi_n(0) = \mathsf{P}(Z_n = 0) \to 1$ as $n \to \infty$ this means in particular that $1 - \varphi_{n+1}(0) = 1 - \varphi(\varphi_n(0)) = 1 - \varphi_n(0) + (1 - \varphi_n(0))^2(\frac{\sigma^2}{2} + r_n))$ with $r_n := R(\varphi_n(0)) \to 0$ as $n \to \infty$. Setting

$$y_n = \frac{1}{1 - \varphi_n(0)} = \frac{\mathsf{E}(Z_n)}{\mathsf{P}(Z_n > 0)} = \mathsf{E}(Z_n | Z_n > 0)$$

we therefore have

$$y_{n+1} - y_n = \frac{1}{1 - \varphi_n(0)} \frac{1}{1 - (1 - \varphi_n(0))(\sigma^2/2 + r_n)} - 1$$

which we can rewrite as

$$\frac{(1-\varphi_n(0))(\sigma^2/2+r_n)}{1-\varphi_n(0)}\frac{1}{1-(1-\varphi_n(0))(\sigma^2/2+r_n)}$$

for each n. It therefore follows that $y_{n+1} - y_n \to \sigma^2/2$ as $n \to \infty$ and hence

$$\frac{y_n}{n} = \frac{\mathsf{E}(Z_n | Z_n > 0)}{n} \to \frac{\sigma^2}{2}$$

as well (by the Lemma). This completes the proof.

¹²Compare the result to Cesàro limits of real sequences: if $(a_k)_{k\geq 1}$ is a real-valued sequence, and $s_n = a_1 + \cdots + a_n$ is its *n*th partial sum, then $\frac{1}{n}s_n$ are called the *Cesàro* averages for the sequence $(a_k)_{k\geq 1}$. Lemma 2.21 claims that if $a_k \to a$ as $k \to \infty$, then the sequence of its Cesàro averages also converges to *a*. The converse is, of course, false. (Find a counterexample!)

Remark 2.22. With a bit of extra work 13 one can generalize the above proof to show that

$$\lim_{n \to \infty} n^{-1} \left(\frac{1}{1 - \varphi_n(s)} - \frac{1}{1 - s} \right) = \frac{\sigma^2}{2}$$

for any $s \in [0, 1]$ and use this relation to derive the convergence in distribution:

Theorem 2.23. If $\mathsf{E}Z_1 = 1$ and $\mathsf{Var}(Z_1) = \sigma^2 \in (0, \infty)$, then for every $z \ge 0$ we have

$$\lim_{k \to \infty} \mathsf{P}\Big(\frac{Z_k}{k} > z \mid Z_k > 0\Big) = \exp\left\{-\frac{2z}{\sigma^2}\right\},\,$$

ie., the distribution of $(k^{-1}Z_k | Z_k > 0)$ is approximately exponential with parameter $2/\sigma^2$.

Remark 2.24. In the setup of Example 2.16, we have

$$\mathsf{P}(Z_k > m \mid Z_k > 0) = \left(\frac{k}{k+1}\right)^m = \left(1 - \frac{1}{k+1}\right)^m$$

so that $P(Z_k > kz \mid Z_k > 0) \to e^{-z}$ as $k \to \infty$; in other words, for large k the distribution of $(k^{-1}Z_k \mid Z_k > 0)$ is approximately Exp(1).

Exercise 2.25. Let $(Z_n)_{n\geq 0}$ be the critical branching process from Exercise 2.18, namely, the one whose offspring distribution is given by $(p_j)_{j>0}$,

$$p_j = b p^{j-1}, \quad j \ge 1, \qquad p_0 = 1 - \sum_{j \ge 1} p_j,$$

where b > 0 and $p \in (0, 1)$ are fixed parameters. Show that the result of Theorem 2.23 holds: for every $z \ge 0$

$$\lim_{k \to \infty} \mathsf{P}\Big(\frac{Z_k}{k} > z \mid Z_k > 0\Big) = \exp\Big\{-\frac{2z}{\sigma^2}\Big\},\,$$

where $\operatorname{Var}(Z_1) = \sigma^2 \in (0, \infty)$.

2.3 Non-homogeneous case

If the offspring distribution changes with time, the previous approach must be modified. Let $\psi_n(u)$ be the generating function of the offspring distribution of a single ancestor in the (n-1)st generation,

$$\psi_n(u) = \mathsf{E}\left(u^{Z_n} \mid Z_{n-1} = 1\right)$$

(so in the cases considered up to now, $\psi_n = \varphi$ for every n). Then the generating function $\varphi_n(u) = \mathsf{E}(u^{Z_n} \mid Z_0 = 1)$ of the population size at time n given a single ancestor at time 0, can be defined recursively as follows:

$$\varphi_0(u) \equiv u$$
, $\varphi_n(u) = \varphi_{n-1}(\psi_n(u))$, $\forall n \ge 1$.

¹³using the fact that every $s \in (0, 1)$ satisfies $0 < s < \varphi_k(0) < 1$ for some $k \ge 1$;

If $\mu_n = \mathsf{E}(Z_n \mid Z_{n-1} = 1) = \psi'_n(1)$ denotes the average offspring size in the *n*th generation given a single ancestor in the previous generation, then

$$m_n \equiv \mathsf{E}(Z_n \mid Z_0 = 1) = \mu_1 \mu_2 \dots \mu_{n-1} \mu_n \,.$$

It is natural to call the process $(Z_n)_{n\geq 0}$ supercritical if $m_n \to \infty$ and subcritical if $m_n \to 0$ as $n \to \infty$.

Exercise 2.26. A strain of phototrophic bacteria uses light as the main source of energy. As a result individual organisms reproduce with probability mass function $p_0 = 1/4$, $p_1 = 1/4$ and $p_2 = 1/2$ per unit of time in light environment, and with probability mass function $p_0 = 1-p$, $p_1 = p$ (with some p > 0) per unit of time in dark environment. A colony of such bacteria is grown in a laboratory, with alternating light and dark unit time intervals.

a) Model this experiment as a time non-homogeneous branching process $(Z_n)_{n\geq 0}$ and describe the generating function of the population size at the end of the nth interval.

b) Characterise all values of p for which the branching process Z_n is subcritical and for which it is supercritical.

c) Let $(D_k)_{k\geq 0}$ be the original process observed at the end of each even interval, $D_k \stackrel{\text{def}}{=} Z_{2k}$. Find the generating function of $(D_k)_{k\geq 0}$ and derive the condition for sure extinction. Compare your result with that of part b).