2 Branching processes

2.1 Classification and extinction

Informally, a branching process 7 is described as follows, where {py}r>o is a
fixed probability mass function (pmf).

e A population starts with a single ancestor who forms generation number 0.

e This initial individual splits into k& offspring with probability pj for each
k > 0; the resulting offspring constitute the first generation.

e Each of the offspring in the first generation splits independently into a
random number of offspring, again according to the pmf {px}r>0, and the
resulting offspring constitute the second generation.

e This process continues until extinction, which occurs when all the members
of a generation fail to produce offspring.

This model has a number of applications in biology (eg., it can be thought
as a model of population growth), physics (chain reaction in nuclear fission),
queueing theory, etc. Originally it arose from a study of the likelihood of survival
of family names (“how fertile must a family be to ensure that in future generations
the family name will not die out?”).

Formally, let {Z,, x}, n > 1, k > 1, be a family of i.i.d. random variables
in Z*, each having a common probability mass function {py}r>0. Then the
branching process (Z,,)n>0 (generated by {px}r>0) is defined by setting Zy = 1,

and, for n > 1,

def

Zn = 4n,1 + Zn,2 + -+ Zn,Zn,l ) (21)

where the empty sum is interpreted as zero. Notice that Z,, is a Markov chain
inZ". Weshalluse P(-) = P;(-) and E(+) = E;(-) to denote the corresponding
probability measure and the expectation operator.® If ¢, (s) = E(s?") is the
generating function of Z,,, a straightforward induction based on (2.1) and (1.5)
implies that
s, ©(s) = ¢1(s) = Es?,
er(5) = wr-1(9(5)) = p(pr-1(5)) = (.- p(s) .. ).) kE>1. (2.2)

k times

Usually explicit calculations are hard, but at least in principle, equations (2.2)
determine the distribution of Z,, for any n > 0.

Example 2.1. Let ¢1(s) = o(s) = ¢+ ps for some 0 <p=1—q<1. Then
on(s)=q(l+p+--+p" ) +p's=1+p"(s—1).

Notice that here we have ¢, (s) — 1 as n — oo, for all s € [0,1]. In other words,
the distribution of Z,, converges to that of Zo, =0, recall Theorem 1.34.

“sometimes called a Galton-Watson-Bienaymé process
81f Zy = k, we shall explicitly write Py (-) and Eg(-).
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The following result is a straightforward corollary of (1.5).

Lemma 2.2. In a branching process (Zy)n>0 with Zy = 1, let the offspring
distribution have mean m. Then E(Z,) = m™ for alln > 1.

Proof. Recall that a random variable X with values in Z>q has finite mean equal
to G (1_) :=limger1 G'x (), if and only if this limit exists and is finite. Since Z;
is assumed to have finite mean m, this implies that ¢'(1_) := limg ¢'(s) =m
(where ¢ is the generating function of Z;). We also know by (1.5) that the
generating function of Z,, is given by ,, which is just the composition of ¢ with
itself n times. By the chain rule, and since (1) = 1 for all k, we see that

. ! _ / n __ n
lsgrllson(lf) =¢'(1-)"=m",

implying the result. This can alternatively be shown by induction, using a
conditioning argument. O

Exercise 2.3. In a branching process (Z,)n>0 with Zy = 1, let the offspring

distribution have mean m, variance o2, and generating function ¢. Write @,

for the generating function of the nth generation size Z,, on(s) = E(s%n).

(a) Using (2.2) or otherwise, show that Var(Z,) = o?>m"~Y(m™ —1)/(m — 1) if
m # 1 and Var(Z,) = o?n if m = 1.

(b) Deduce that E((Z,/m™)?) is uniformly bounded for m # 1.

This result suggests that if m = E(Z;) # 1, the branching process might
explode (for m > 1) or die out (for m < 1). One therefore classifies branching
process as either critical (if m = 1), subcritical (m < 1), or supercritical (m > 1).

Example 2.4. It is straightforward to describe the case m < 1. Indeed, the
Markov inequality (1.2) implies that

P(Z, >0)=P(Z, >1) <E(Z,) =m",

so that P(Z, > 0) — 0 as n — oo (ie., Z, — 0 in probability). We also
notice that the average total population in this case is finite, E(Zn20 Zn) =
Yoo =(1- m)~1 < oo.

Definition 2.5. The extinction event £ is the event € = U2, {Z, = 0}. Since
{Zn = O} C {Zn+1 = O} for all n > 0, the extinction probability p is defined as

p="P(E)= lim P(Z,=0),

n—oo

where P(Z, = 0) = ¢,(0) is the extinction probability before (n + 1)st genera-
tion.
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The following result helps to derive the extinction probability p without
needing to compute the iterates o, () precisely. To avoid trivialities we shall
assume that py = P(Z = 0) satisfies® 0 < py < 1; notice that under this
assumption p(s) is a strictly increasing function of s € [0, 1].

Theorem 2.6. If 0 < py < 1, then the extinction probability p is given by the
smallest positive solution to the equation

s=p(s). (2.3)
In particular, if m = EZy; <1, then p = 1; otherwise, we have 0 < p < 1.

In words, if the branching process is subcritical or critical then it eventually
becomes extinct with probability one. However, if it is supercritical, the process
has a positive probability to survive for all time.

Remark 2.7. There is a clear probablistic intuition behind the relation p =
o(p). Indeed, if p = P1(E) is the extinction probability starting from a single
individual, Zy = 1, then by independence we get Pr(E) = P(E | Zog = k) = p¥,
and thus the first step decomposition for the Markov chain Z, gives

p=PE)=) P& Zi=k) =Y PE|Z =kP(Z =k)

k>0 k>0
=Y P"P(Z=k) =E(p”) = ¢(p),
k>0

in agreement with (2.3).

Proof. Let us now give the proof of Theorem 2.6. You may find it helpful to draw
a picture!

Denote p,, = P(Z, = 0) = ¢,(0). By continuity and strict monotonicity of
©(+) we have (recall (2.2))

0<pr=p(0)<p2=p(p)<--<1,

so that the extinction probability p € (0,1] is the increasing limit of p,, as
n — 0o, and satisfies

p = 1lim ¢, (0) = limp(pn-1(0)) = ¢(lim ¢, —1(0)) = ¢(p).

On the other hand, if p is any other fixed point of ¢(-) in [0,1], ie., 5 = ¢(p),
then p = ¢, (p) > ¢, (0) for all n, meaning that p > lim,, o ©n(0) = p. So, p
is indeed the smallest positive solution to (2.3).

Next, we turn to the extinction criterion in terms of m. For this, observe
that (- ) is convex on [0, 1], since ¢”'(s) = E(Z1(Z; —1)s%172) > 0 for s € [0,1]
(actually unless p; = 1 —py, i.e., if there is some possibility of having more than

9otherwise the model is degenerate: if pg = 0, then Z, > 1 for all n > 0 so that p = 0; if
po =1, then P(Z; =0)=p=1.
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1 child, ¢"(s) is strictly positive and so ¢ is strictly convex on (0,1)). Hence
if m=¢'(1_) > 1 we must have ¢(sg) < so for some sy < 1 and therefore the
curves y = s and y = ¢(s) must cross at some point strictly in (0,1) (recall
that ¢(0) = pg > 0). A completely rigorous way to justify this is to define
f(s) := p(s) — s, which is continuous on [0, sp] with f(sg) < 0 and f(0) > 0,
so by the intermediate value theorem satisfies f(s) = 0, i.e. ¢(s) = s, for some
s € (0,50). Conversely, suppose that m < 1 and p; # 1—pg. Then the condition
m = ¢'(1_) <1 together with strict convexity implies that ¢(s) — s is strictly
decreasing on [0, 1], from pg at 0 to 0 at 1, and therefore cannot be 0 for any
s < 1. The case p1 = 1 — po give p(s) = po + p1s and it is immediate that the
smallest solution of ¢(s) = s in [0, 1] is at 1. This completes the proof. O

Corollary 2.8. If s € [0,1), we have ¢, (s) = E(s?*) — p € (0,1] as n — 0.
Remark 2.9. As a result, the distribution of Z,, converges to that of Z., where

P(Zoo =0)=p and P(Zox = c0) =1 —p.

Exercise 2.10. For a branching process with generating function ¢(s) = as? +
bs + ¢, where a > 0, b >0, ¢ > 0, (1) = 1, compute the extinction probability
p and give the condition for sure extinction. Can you interpret your results?

Exercise 2.11. Let (Z,)n>0 be a branching process with generating function
©(s) = Es?t satisfying 0 < ©(0) < 1. Let

be the generating function of

Zn = i Zlm
k=0

the total population size up to time n.

(a) Show that i1 (u) =up(@,(w)) for alln >0 and u > 0.

(b) If u € (0,1), show that @,(u) — @(u) *f E(u?) as n — oo, where Z
is the total population size, Y ;<o Zk, of (Zn)n>0. Show that the limiting
generating function @(u) is given by the smallest positive solution s to the
equation s = up(s).

(¢) Let the process (Zy)n>0 be subcritical (¢'(1_) < 1) with offspring distribu-
tion having exponential tails (p(s) < oo for some s > 1). Show that for
some u > 1 the equation s = up(s) has positive solutions s, the smallest of
which coincides with @(u) = E(u?).

(d) Let the process (Zy)n>0 be supercritical (EZy > 1) with 0 < P(Z; =0) < 1
and let w > 1 be such that the equation s = up(s) has positive solutions
s. Show that @,(u) — oo, in agreement with the fact that with positive
probability the process (Zy,)n>0 survives forever, P(Z = o) > 0.
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(e) In the setting of part d), let @, (u) aef E(uZ” 12“,:0), the generating function

of the total population on the event that the process (Zy)n>o dies out by
time n. Show that ¢p41(u) = up(@n(u)) for alln >0 and uw > 0. Deduce
that for each w > 1 such that the fized point equation s = up(s) has positive
solutions s, we have $p(u) — E(uZ 17-00), where the latter coincides with
the smallest positive s satisfying s = up(s).

We now turn to classification of states for the Markov chain Z,, in Z*. Of
course, since 0 is an absorbing state, it is recurrent.

Lemma 2.12. Ifp; = P(Z; = 1) # 1, then every state k € N is transient. As
a result,
P(Z, - )=1-P(Z, = 0)=1—p.

Proof. We first show that every k € N is transient. If pg = 0, then Z, is a
non-decreasing Markov chain (ie., Z, 11 > Z,), so that for every k € N the first
passage probability fix satisfies

fik =P(Zns1=k| Z,=k) =Pi(Z1=k) = (p)* < 1.
On the other hand, for pg € (0, 1] we have
Jik SP(Zn1 #0| Zn = k) =Pp(Z1 £0) =1 = Pi(Z1 =0) =1 — (po)* < 1.
This means that

P(Z, =k io.) = lim P(Z, returns to k at least m times) < lim f/z ' =0
m—oo m—0oo
and the state k is transient.
Fix arbitrary K > 0. Since the states 1, 2, ..., K are transient, we see that
P({Z,=0}U{Z, > K}) — 1 as n — oo and therefore

P(Zy —0or Z, —+00) =1.

As the LHS above equals P(Z,, — 0) + P(Z,, — 00), the result follows from the
observation that P(Z,, — 0) = P(€) = p. O

Exercise 2.13. For a supercritical branching process (Zy)n>0, let Ty = min{n >
0 : Z, = 0} be its extinction time and let p = P(Ty < o0) > 0 be its

extinction probability. Define (Z,)>0 as Z, conditioned on extinction, te.,
Ly = (Zn ‘ Ty < OO)

~

(a) Show that the transition probabilities Py, of (Z,)n>0 and the transition prob-
abilities py,, of the original process (Zy)n>o are related via Py = payp?™",
z,y > 0.

(b) Deduce that the generating functions @(s) = E; [52'} and ¢(s) = Eq1[s7]
are related via'® (s) = %np(ps), 0<s<1.

10 Geometrically, the graph of this generating function is a rescaled version of that of ¢(-).
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(c¢) If the offspring distribution of (Zy)n>0 is Poi(A\) with A\ > 1, use the fized
point equation p = e*P~Y) to show that B(s) = e~ je., that the off-
spring distribution for (Z,)n>o0 is just Poi(Ap).

Exercise 2.14. Let (Z,)n>0 be a supercritical branching process with offspring
distribution {py}r>0, offspring generating function ¢(s) and extinction proba-
bility p € [0,1).

(a) If Zy = 1, let py be the probability that conditioned on survival the first
generation has exactly k individuals with an infinite line of descent. Show

that
1 > n
- . 1— k 'rLfk.
P 1pnzkp,<k>( p)p

(b) Let (Zp)n>o count only those individuals in (Zy)n>0, who conditioned on

survival have an infinite line of descent. Show that (Z,)n>0 is a branching
process with offspring generating function'’

P(s) = 1flp<<ﬂ((1 —p)s+p) — p> )

Exercise 2.15. Let (Z,,)n>0 be a subcritical branching process whose generating
function ¢(s) = E(s?) is finite for some s > 1, ie., the offspring distribution
has finite exponential moments in a neighbourhood of the origin.

(a) Using the result of Exercise 2.11 or otherwise, show that the total population
size Z = Zk,>0 Z. satisfies E(uZ) < oo for some u > 1.

(b) Suppose that for each 1 < i < Z, individual i produces wealth of size Wi,
where W; are independent random variables with common distribution sat-
isfying E(SW) < oo for some s > 1. Show that for some u > 1 we have
E(uW) < oo, where W = Wy + -+ + Wy is the total wealth generated
by (Z7L)7L20~

2.2 Critical case m =1

The following example is one of very few for which the computation in the
critical case m = E(Z1) = 1 can be done explicitly.

Example 2.16. Consider the so-called linear-fractional case, where the off-
spring distribution is given by p; = 2-G+D | § > 0. Then the offspring generat-
ing function is p(s) = 3.5 57 /29 = (2—8)7! and a straightforward induction
gives (check this!)

ke(bevs_ ko ks y
Sok(s)—(k+1)_k5_k+1+k(k+1)n12>:1(k+1) ’
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so that P(Z, =0) = ¢i(0) = k/(k+1), P(Z, >0)=1/(k+1), and
P(Zk:m|zk>o):%+1(ki+l)m71, m>1,
ie., (Zi | Zx > 0) has geometric distribution with success probability 1/(k +1).
Remark 2.17. For each k > 0, by the partition theorem,
1=E(Zy) =E(Z, | Zy > 0)P(Zy > 0) + E(Zy | Zt = 0) P(Zr = 0),
so that in the previous example we have

1

=k+1,

ie., conditional on survival, the average generation size grows linearly with time.
The following example is known as the general linear-fractional case:

Exercise 2.18. For fited b > 0 and p € (0,1), consider a branching process
with offspring distribution p; = bp!=t, i >1, and pg =1 — Z;’>1 Dj-

(a) Show that for b € (0,1 — p) the distribution above is well defined; find the
corresponding po, and show that

1—-b—0p bs
o(s) =

1—p 1—ps’
(b) Find b for which the branching process is critical and show that then

kp—(kp+p—1)s

pi(s) =E(s™) = (1—p+kp)—kps’

(¢) Deduce that (Zy | Zi > 0) is geometrically distributed with parameter
1—
kp+ llip :
Straightforward computer experiments show that a similar linear growth of
E(Zk | Z > O) takes place for other critical offspring distributions, eg., the one
with ¢(s) = (1+ s2)/2.

Theorem 2.19. If the offspring distribution of the branching process (Zy)k>0
has mean m = 1 and finite variance 0 > 0, then kP(Zx > 0) — 2 as k — oo;
equivalently,

1 o?

Remark 2.20. This general result suggests that, conditional on survival, a gen-
eral critical branching process exhibits linear intermittent behaviour; ' namely,
with small probability (of order 2/(ko?)) the values of Zy, are of order k.

as k — oo. (2.4)

Hntermittency follows from the criticality condition, 1 = E(Zy | Z > 0)P(Zg > 0); it is
the linearity which is surprising here!
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Our argument is based on the following general fact: !2

Lemma 2.21. Let (yn)n>0 be a real-valued sequence. If for some constant a
we have Yn11 — Yn — @ asn — 00, then n”ty, — a as n — oc.

Proof. By changing the variables y, — y!, = y, — na if necessary, we can and
shall assume that a = 0. Fix arbitrary 6 > 0 and find K > 0 such that for
n > K we have |ynt1 — yn| < 8. Decomposing, for n > K,

n—1

Un — YK = (yj+1 - yj) we deduce that |y, — yx| < d(n — K) so that the

claim followsifrom the estimate

I e R R E E 1)
n n n n
provided n is chosen sufficiently large. O

Proof. (of Theorem 2.19). We only derive the second claim of the theorem,
(2.4). By assumptions and Taylor’s theorem (here we are also using Theorem
1.16) the offspring generating function ¢ satisfies

1—(s)=(1-3)+ %2(1 —5)2+ R(s)(1 — 5)? where R(s) — 0 as s 1 1.

Since ¢, (0) = P(Z, = 0) — 1 as n — oo this means in particular that 1 —

Pn41(0) = 1= @(0n(0) = 1= 0n(0) + (1 = 9(0)*(5 + 7)) with 7, =
R(p,(0)) = 0 as n — oo. Setting

1 E(Z,)

10 P(Z,>0)  EZnlZn>0)

Yn

we therefore have

1 1
It o (0 1= (1= 0n(0)) (02 /24 1)

which we can rewrite as

(1= en(0)(0?/2+0) 1
1= ¢n(0) 1= (1=¢n(0))(0?/2+10)

for each n. It therefore follows that 1,41 — yn — 02 /2 as n — oo and hence

2
Yo _ E(Zn]2, >0)  o°
n n 2

as well (by the Lemma). This completes the proof. O

12Compare the result to Cesaro limits of real sequences: if (ak)k>1 is a real-valued sequence,

and s, = a1 + -+ -+ ayp is its nth partial sum, then %Sn are called the Cesaro averages for the
sequence (ag)r>1. Lemma 2.21 claims that if ay — a as k — oo, then the sequence of its
Cesaro averages also converges to a. The converse is, of course, false. (Find a counterexample!)
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Remark 2.22. With a bit of extra work '3 one can generalize the above proof

to show that )

limn_l( ! — ! )—U—
n—so0 1—pn(s) 1-s/ 2

for any s € [0,1] and use this relation to derive the convergence in distribution:

Theorem 2.23. IfEZ, = 1 and Var(Z,) = 0% € (0,00), then for every z > 0

we have
Zk 2z

fim (% > 212> 0) = el )
ie., the distribution of (klek | Zk > 0) is approximately exponential with
parameter 2/a2.
Remark 2.24. In the setup of Example 2.16, we have
k o\™ 1 \m
Pz >m|2c>0) = (=) =(1-—=)
(2 >m| 2> 0) = (377 k+1
so that P(Zk >kz | Zy > 0) — e~ % as k — ooy in other words, for large k the
distribution of (klek | Zy > 0) is approximately Exp(1).

Exercise 2.25. Let (Z,)n>0 be the critical branching process from Exercise
2.18, namely, the one whose offspring distribution is given by (p;j)j>o0.

pi=bp ', i=1,  po=1-> p;,
i1

where b > 0 and p € (0,1) are fized parameters. Show that the result of Theorem
2.283 holds: for every z > 0

z

Zy, 2z
lim P(—A’ >z | Zy > 0) = Cxp{f—},
k—o00 k o2

where Var(Z1) = 0% € (0, 00).

2.3 Non-homogeneous case

If the offspring distribution changes with time, the previous approach must be
modified. Let v, (u) be the generating function of the offspring distribution of
a single ancestor in the (n — 1)st generation,

P (u) = E(uZ" | Zyyo1 = 1)

(so in the cases considered up to now, 1, = ¢ for every n). Then the generating
function ¢, (u) = E(u?" | Zy = 1) of the population size at time n given a single
ancestor at time 0, can be defined recursively as follows:

wo(u) =u, on(u) = gon,l(wn(u)) , Vn>1.

Lusing the fact that every s € (0, 1) satisfies 0 < s < ¢ (0) < 1 for some k > 1;
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If o = E(Zy | Zn—1 = 1) = 9,(1) denotes the average offspring size in the nth
generation given a single ancestor in the previous generation, then

mp = E(Zn | ZO = 1) = 12 .. Up—1Mn -

It is natural to call the process (Z,)n>0 supercritical if m,, — oo and subcritical
if m,, — 0 as n — oo.

Exercise 2.26. A strain of phototrophic bacteria uses light as the main source
of energy. As a result individual organisms reproduce with probability mass
function pg = 1/4, p1 = 1/4 and py = 1/2 per unit of time in light environment,
and with probability mass function pg = 1—p, p1 = p (with some p > 0) per unit
of time in dark environment. A colony of such bacteria is grown in a laboratory,
with alternating light and dark unit time intervals.

a) Model this experiment as a time non-homogeneous branching process (Zy,)n>0
and describe the generating function of the population size at the end of the nth
interval.

b) Characterise all values of p for which the branching process Z, is subcritical
and for which it is supercritical.

¢) Let (Dy)p>0 be the original process observed at the end of each even interval,

Dy, aef Zsg. Find the generating function of (Dy)r>0 and derive the condition

for sure extinction. Compare your result with that of part b).
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