
3 Coupling

Two random variables, say X and Y , are coupled if they are defined on the
same probablity space. To couple two given variables X and Y means to define a
random vector

� eX, eY ) with joint probability eP( · , · ) on some probability space14

so that the marginal distribution of eX coincides with the distribution of X and
the marginal distribution of eY coincides with the distribution of Y . Recall the
following example:

Example 3.1. Fix p1, p2 2 [0, 1] such that p1  p2 and consider the following
joint distributions (we write qi = 1� pi):

(A)

0 1 eX
0 q1q2 q1p2 q1

1 p1q2 p1p2 p1

eY q2 p2

(B)

0 1 eX
0 q2 p2 � p1 q1

1 0 p1 p1

eY q2 p2

It is easy to see that in both cases 15

eX ⇠ Ber(p1) , eY ⇠ Ber(p2),

though in the first case eX and eY are independent, whereas in the second case
we have eP( eX  eY ) = 1.

3.1 Stochastic domination

If X ⇠ Ber(p), its tail probabilities P(X > a) satisfy

P(X > a) =

8
><

>:

1, a < 0 ,

p, 0  a < 1 ,

0, a � 1 .

Consequently, in the setup of Example 3.1, for the variables X ⇠ Ber(p1) and
Y ⇠ Ber(p2) with p1  p2 we have P(X > a)  P(Y > a) for all a 2 R. The
last inequality is useful enough to deserve a name:

14A priori the original variables X and Y can be defined on arbitrary probability spaces, so
that one has no reason to expect that these spaces can be “joined” in any way!

15and in fact, every convex linear combination of these two tables provides a joint distribu-
tion with the same marginals.
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Definition 3.2. [Stochastic domination] A random variable X is stochastically
smaller than a random variable Y (write X 4 Y ) if the inequality

P
�
X > x

�
 P

�
Y > x

�
(3.1)

holds for all x 2 R.

Remark 3.3. If X 4 Y and g( · ) � 0 is an arbitrary increasing function on
R, then g(X) 4 g(Y ). If, in addition, X � 0, Y � 0, and g(·) is smooth with
g(0) = 0, then

Eg(X) ⌘

Z 1

0
g
0(z)P(X > z) dz 

Z 1

0
g
0(z)P(Y > z) dz ⌘ Eg(Y ) . (3.2)

Example 3.4. If X is a random variable and a � 0 is a fixed constant, it is
immediate that Y = a + X stochastically dominates X, ie., X 4 Y : for each
x 2 R we have P(X > x)  P(X > x� a) = P(Y > x). Similarly, if a � 1 and
Z = aX � 0, then X 4 Z.

In the setup of Example 3.1, if X ⇠ Ber(p1) and Y ⇠ Ber(p2) then X is
stochastically smaller than Y (ie., X 4 Y ) if and only if p1  p2; moreover,
this is equivalent to existence of a coupling

� eX, eY ) of X and Y in which these

variables are ordered with probablity one, eP( eX  eY ) = 1. The next result
shows that this is a rather generic situation.

Lemma 3.5. A random variable X is stochastically smaller than a random
variable Y if and only if there exists a coupling

� eX, eY ) of X and Y such that
eP( eX  eY ) = 1.

Remark 3.6. Notice that one claim of Lemma 3.5 is immediate from

P(x < X) ⌘ eP
�
x < eX

�
= eP

�
x < eX  eY

�
 eP

�
x < eY

�
⌘ P

�
x < Y

�
;

the other claim requires a more advanced argument (we shall not do it here!).

Example 3.7. If X ⇠ Bin(m, p) and Y ⇠ Bin(n, p) with m  n, then X 4 Y .
Indeed, Let Z1 ⇠ Bin(m, p) and Z2 ⇠ Bin(n � m, p) be independent variables
defined on the same probability space. We then put eX = Z1 and eY = Z1+Z2 so
that eY � eX = Z2 � 0 with probability one, eP( eX  eY ) = 1, and X ⇠ eX, Y ⇠ eY .

Example 3.8. If X ⇠ Poi(�) and Y ⇠ Poi(µ) with �  µ, then X 4 Y .
Indeed, Let Z1 ⇠ Poi(�) and Z2 ⇠ Poi(µ � �) be independent variables defined
on the same probability space. 16 We then put eX = Z1 and eY = Z1 +Z2 so that
eY � eX = Z2 � 0 with probability one, eP( eX  eY ) = 1, and X ⇠ eX, Y ⇠ eY .

Example 3.9. Let (Xn)n�0 be a branching process with o↵spring distribution
{pm}m�0 and X0 = 1. Let (Yn)n�0 be a branching process with the same o↵-
spring distribution and Y0 = 2. We can use stochastic domination to show that
P(Xn = 0) � P(Yn = 0) for all n.

16here and below we assume that Z ⇠ Poi(0) means that P(Z = 0) = 1.
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Indeed, it is enough to show that Xn 4 Yn for all n � 0. To this end
consider two independent branching processes, (Z 0

n
)n�0 and (Z 00

n
)n�0, having

the same o↵spring distribution {pm}m�0 and satisfying Z
0
0 = Z

00
0 = 1. We then

put eXn = Z
0
n
and eYn = Z

0
n
+ Z

00
n
for all n � 0, so that eYn � eXn = Z

00
n
� 0, ie.,

eP( eXn  eYn) = 1 and Xn ⇠ eXn, Yn ⇠ eYn for all n � 0.

Exercise 3.10. For a given o↵spring distribution {pm}m�0, let (Xn)n�0 be the
branching process with X0 = k and let (Yn)n�0 be the branching process with
Y0 = l, k < l. Show that Xn 4 Yn for all n � 0.

Exercise 3.11. Let X, Y , Z be random variables in Z+. If X 4 Y and Z is
independent of {X,Y }, show that X + Z 4 Y + Z.
Let {Xi, Yi}i=1,...,n be random variables in Z+. If the pairs (Xi, Yi) are mutually
independent and Xi 4 Yi for each i, show that X1 + · · ·+Xn 4 Y1 + · · ·+ Yn.

Exercise 3.12. Let (Xn)n�0 and (Yn)n�0 be standard branching processes with
X0 = Y0 = 1. Assume that the o↵spring distribution of X is stochastically
smaller than that of Y (X1 4 Y1), ie., for all integer k � 0, P(X1 > k|X0 =
1)  P(Y1 > k|Y0 = 1). Show that Xn 4 Yn for all n � 0.

3.2 Total variation distance

Definition 3.13. [Total Variation Distance] Let µ and ⌫ be two probability mea-
sures on the same probability space. The total variation distance between µ and
⌫ is

dTV(µ, ⌫)
def
= sup

A

��µ(A)� ⌫(A)
�� . (3.3)

If X, Y are random variables in Z+ with respective p.m.f.s {p} = {pk}k�0 and
{q} = {q`}`�0, then

dTV(X,Y )
def
= dTV({p}, {q}) = sup

A✓Z+

��P
k2A

pk �
P

k2A
qk

��.

In general if X,Y are two discrete random variables taking values in the same space
X , with P(X = x) = px,P(Y = x) = qx for x 2 X , then we define

dTV(X,Y )
def
= dTV({p}, {q}) = sup

A✓X
|

X

x2A

px �

X

x2A

qx|.

Example 3.14. If X ⇠ Ber(p1) and Y ⇠ Ber(p2) we have

dTV(X,Y ) = max
�
|p1 � p2|, |q1 � q2|

 
= |p1 � p2| =

1
2

�
|p1 � p2|+ |q1 � q2|

�
.
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Exercise 3.15. Let probability measures µ and ⌫ have respective p.m.f.s {px}

and {qy}. Show that the total variation distance between µ and ⌫ is

dTV(µ, ⌫) ⌘ dTV
�
{p}, {q}

�
=

1

2

X

z

��pz � qz

�� .

Deduce that dTV(·, ·) is a distance between probability measures17 (ie., it is non-
negative, symmetric, and satisfies the triangle inequality) such that dTV(·, ·)  1
for all probability measures µ and ⌫.

An important relation between coupling and the total variation distance is
explained by the following fact.

Example 3.16. [Maximal Coupling] Let random variables X and Y be such
that P(X = x) = px and P(Y = y) = qy. Define the coupling

� eX, eY
�
via18

bP
� eX = eY = z

�
= min

�
pz, qz

�
, (3.4)

bP
� eX = x, eY = y

�
=

�
px �min(px, qx)

� �
qy �min(py, qy)

�

dTV
�
{p}, {q}

� , x 6= y . (3.5)

Exercise 3.17. Show that
X

x

�
px �min(px, qx)

�
=
X

y

�
qy �min(py, qy)

�
= dTV

�
{p}, {q}

�
,

and deduce that (3.4) is indeed a coupling of X and Y (ie., that (3.4) defines
a probability distribution with correct marginals).

Example 3.18. Consider X ⇠ Ber(p1) and Y ⇠ Ber(p2) with p1  p2. It is a
straightforward exercise to check that the second table in Example 3.1 provides
the maximal coupling of X and Y . We notice also that in this case

bP
� eX 6= eY

�
= p2 � p1 = dTV(X,Y ) .

Lemma 3.19. Let bP( · , · ) be the maximal coupling (3.4) of X and Y . Then

for every other coupling eP( · , · ) of X and Y we have

eP
� eX 6= eY

�
� bP

� eX 6= eY
�
= dTV

� eX, eY
�
. (3.6)

Proof. Summing the inequalities eP
� eX = eY = z

�
 min(pz, qz) we deduce

eP
� eX 6= eY

�
� 1�

X

z

min(pz, qz) =
X

z

�
pz �min(pz, qz)

�
= dTV

�
{p}, {q}

�
,

in view of Exercise 3.17 and Example 3.18.
17so that all probability measures form a metric space for this distance!
18By Exercise 3.15, if dTV

�
{p}, {q}

�
= 0, we have pz = qz for all z, and thus all o↵-diagonal

terms in (3.4) vanish.
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Remark 3.20. Notice that according to (3.6),

eP
� eX = eY

�
 bP

� eX = eY
�
= 1� dTV

� eX, eY
�
,

ie., the probability that eX = eY is maximised under the optimal coupling bP(· , ·).

Example 3.21. The maximal coupling of X ⇠ Ber(p) and Y ⇠ Poi(p) satisfies

bP
� eX = eY = 0

�
= 1� p , bP

� eX = eY = 1
�
= pe

�p
,

and bP
� eX = eY = x

�
= 0 for all x > 1. As a result,

dTV
� eX, eY

�
⌘ bP

� eX 6= eY
�
= 1� bP

� eX = eY
�
= p

�
1� e

�p
�
 p

2
. (3.7)

Is either of the variables X and Y stochastically dominated by the other?

3.3 Applications to convergence

3.3.1 Coupling of Markov chains

Coupling is a very useful tool for proving convergence towards equilibrium for
various processes, including Markov chains and random walks. The following
example uses the independent coupling19 of two random walks on a complete
graph.

Example 3.22. On the complete graph Km on m vertices, consider the random
walk (Xn)n�0 with X0 = x, such that at every step it jumps to any of the vertices
of Km uniformly at random (excluding the current one). To show that eventually
(Xn)n�0 forgets its initial distribution, one couples (Xn)n�0 with another copy
(Yn)n�0, Y0 = y, of this random walk, and shows that for large n both processes
coincide with large probability.

To do this, we treat the pair ( eXn,
eYn)n�0 as a two-component random walk

on Km⇥Km with the following jump probabilities: the transition (x, y) 7! (x0
, y

0)
occurs with probability

p̃(x,y)(x0,y0) =

(
1

m2 , if x 6= y ,

1
m
, if x = y and x

0 = y
0 ,

and set p̃(x,y)(x0,y0) = 0 otherwise (ie., if x = y and x
0
6= y

0). It is straightforward
to check that this is a correct coupling:20

X

y0

p̃(x,y)(x0,y0) = m·
1

m2
= px,x0 ,

X

y0

p̃(x,x)(x0,y0) = p̃(x,x)(x0,x0) =
1

m
= px,x0 .

Notice that the walks ( eXn)n�0 and (eYn)n�0 run independently until they meet,
and from that moment onwards they move together. For x 6= y, denote

T
def
= min{n � 0 : eXn = eYn} . (3.8)

19Recall the first table in Example 3.1.
20the argument for the other marginal is similar;
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By a straightforward induction, it is easy to see that

eP(T > n) =
1

m

�
1�

m� 2

(m� 1)2
�n

,

ie., T is (basically) a geometric random variable. Since eXn and eYn coincide

after they meet, and eP, eXn,
eYn gives a coupling of (Xn, Yn) for every n we have

that
dTV(Xn, Yn)  eP( eXn 6= eYn) = eP(T > n) ,

by ( (3.6)). It therefore only remains to observe that the RHS above is exponen-

tially small, eP(T > n) 
�
1 � 1

m

�n
 e

�n/m. In other words, the random walk
(Xn)n�0 forgets its initial state X0 = x at least exponentially fast.

Notice that if (Yn)n�0 starts from the equilibrium (ie., its initial position is
selected in Km uniformly at random), our argument shows that for every initial
state x and every state j we have |P(Xn = j) � 1

m
|  e

�n/m, ie., convergence
towards the equilibrium distribution is at least exponentially fast.21

The next example is important for computer science.

Example 3.23. [Random walk on a hypercube] An n-dimensional hypercube is
just Hn ⌘ {0, 1}n, a graph whose vertex set is the collection of all n-sequences
made of 0 and 1 (there are 2n of them) and whose edges connect vertices which
di↵er at a single position. The “lazy” random walk (Wk)k�0 on Hn is defined
as follows: if Wk = v 2 Hn, select m, 1  m  n, uniformly at random and flip
a fair coin. If the coin shows heads, set the mth coordinate of v to 1, otherwise
set it to 0. The walk (Wk)k�0 is aperiodic and irreducible; as k increases, it
tends to forget its initial state.

Exercise 3.24. Let (Wk)k�0 be the random walk on the hypercube Hn, recall
Example 3.23. Use Example 3.22 to study its distribution for large k.

Exercise 3.25. Let (⇠j)j�1 be independent variables with P(⇠ = 1) = 1�P(⇠ =
�1) = px and let (⌘j)j�1 be independent variables with P(⌘ = 1) = 1 � P(⌘ =
�1) = py. Define simple random walks (Xn)n�0 and (Yn)n�0 on Z via Xn =
x+

P
n

j=1 ⇠j and Yn = y +
P

n

j=1 ⌘j.

a) Show that the random walk (Xn)n�0 on Z forgets its initial state x; namely,
for px = py and y � x = 2k, construct a coupling of (Xn)n�0 and (Yn)n�0

similar to that of Example 3.22.

b) Show that the random walk (Xn)n�0 monotonously depends on px; namely,
for x  y and px  py, use the ideas from Example 3.1 to construct a monotone

coupling of (Xn)n�0 and (Yn)n�0, ie., such that eP
� eXn  eYn

�
= 1 for all n � 0.

21?? gives a more precise information about this convergence.
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Example 3.26. [Random-to-top shu✏ing] For many practical purposes it is
important to generate a random permutation of a collection of cards 1, 2, . . . ,
m. One way is to define a Markov chain (Xn)n�0 in the space of all possible
permutations (so at any time n, Xn will be a permutation of {1, . . . ,m}), and
run it until the stationary distribution is reached. The stationary distribution is
as usual the uniform distribution on all possible permutations.

One of the simplest algorithms—the random-to-top shu✏ing—is defined as
follows: for a given state Xn = (�(1), . . . ,�(m)) of the chain, find the jth card
by position (with j taken uniformly at random between 1 and m) and put it at
the top of the deck to get the new state Xn+1 = (�(j), . . . ,�(j�1),�(j+1), . . . ).
Note that we could take the jth card by value instead, and then the new state
would be (j, . . . ,�(k � 1),�(k + 1), . . . ) for the unique k such that �(k) = j.
Since j is chosen uniformly at random, this gives the same algorithm (a Markov
chain with the same transition probabilities).

To study the approach to stationarity, one couples two copies of the Markov
chain, (Xn)n�0 and (Yn)n�0, one starting from a fixed state, and other starting
from equilibrium, and shu✏es until both configurations Xn and Yn agree.

Exercise 3.27. Let (Xn)n�0 and (Yn)n�0 be random-to-top shu✏ing (RTTS)
Markov chains, recall Example 3.26. Suppose that a random card in Xn (by
position) is chosen, say of value j, and then put at the top to get Xn+1. In Yn

find the (randomly positioned) card with number j and also move it to the top
to get Yn+1. Let T := min{k � 0 : Yk = Xk} be the coupling time for (Xn)n�0

and (Yn)n�0.

a) Show that the described algorithm provides a coupling22 of the RTTS (by
position) for (Xn)n�0 and the RTTS (by value) for (Yn)n�0.

b) Describe the distribution of T .

3.3.2 The Law of rare events

This subsection is optional and will not be examined.

The convergence result in Exercise 1.33 can also be derived using coupling:

Theorem 3.28. Let X =
P

n

k=1 Xk, where Xk ⇠ Ber(pk) are independent
random variables. Let, further, Y ⇠ Poi(�), where � =

P
n

k=1 pk. Then the
maximal coupling of X and Y satisfies

dTV
� eX, eY

�
⌘ bP

� eX 6= eY
�


nX

k=1

�
pk

�2
.

Proof. Write Y =
P

n

k=1 Yk, where Yk ⇠ Poi(pk) are independent rv’s. Of course,
P
�P

n

k=1 Xk 6=
P

n

k=1 Yk

�


P
n

k=1 P(Xk 6= Yk) for every joint distribution of

(Xk)nk=1 and (Yk)nk=1. Let bPk be the maximal coupling for the pair {Xk, Yk},

22try coupling RTTS (by value) and RTTS (by value) chains!
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and let bP0 be the maximal coupling for two sums. Notice that the LHS above
is not smaller than dTV

� eX, eY
�
⌘ bP0

� eX 6= eY
�
; on the other hand, using the

(independent) product measure P = bP1 ⇥ · · ·⇥ bPn on the right we deduce that

then the RHS becomes just
P

n

k=1
bPk

� eXk 6= eYk

�
. The result now follows from

(3.7).

Exercise 3.29. Let X ⇠ Bin(n, �

n
) and Y ⇠ Poi(�) for some � > 0. Show that

1

2

��P(X = k)� P(Y = k)
��  dTV

� eX, eY
�


�
2

n
for every k � 0. (3.9)

Deduce that for every fixed k � 0, we have P(X = k) ! �
k

k! e
�� as n ! 1.

Remark 3.30. Notice that (3.9) implies that if X ⇠ Bin(n, p) and Y ⇠ Poi(np)
then for every k � 0 the probabilities P(X = k) and P(Y = k) di↵er by at most
2np2. In particular, if n = 10 and p = 0.01 the discrepancy between any pair of
such probabilities is bounded above by 0.002, ie., they coincide in the first two
decimal places.

3.4 Additional problems

Exercise 3.31. In the setting of Example 3.1 show that every convex linear
combination of tables T1 and T2, ie., each table of the form T↵ = ↵T1+(1�↵)T2

with ↵ 2 [0, 1], gives an example of a coupling of X ⇠ Ber(p1) and Y ⇠ Ber(p2).
Can you find all possible couplings for these variables?

Exercise 3.32. Generalise the inequality (3.2) 1to a broader class of functions
g( · ) and verify that if X 4 Y , then E(X2k+1)  E(Y 2k+1), EetX  EetY with
t > 0, EsX  EsY with s > 1 etc.

Exercise 3.33. Let ⇠ ⇠ U(0, 1) be a standard uniform random variable. For
fixed p 2 (0, 1), define X = 1⇠<p. Show that X ⇠ Ber(p), a Bernoulli random
variable with parameter p. Now suppose that X = 1⇠<p1 and Y = 1⇠<p2 for some
0 < p1  p2 < 1 and ⇠ as above. Show that X 4 Y and that P(X  Y ) = 1.
Compare your construction to the second table in Example 3.1.

Exercise 3.34. Let X ⇠ Geom(p) and Y ⇠ Geom(r) be two geometric random
variables. If 0 < p  r < 1, are X and Y stochastically ordered? Justify your
answer.

Exercise 3.35. Let X ⇠ �(a,�) and Y ⇠ �(b,�) be two gamma random vari-
ables.23 If 0 < a  b < 1, are X and Y stochastically ordered? Justify your
answer.

23The density of Z ⇠ �(a,�) is �a

�(a)x
a�1e��x (x > 0); notice that �(1,�) is just Exp(�).
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