
4 Martingales

4.1 Definition and some examples

A martingale is a generalized version of a “fair game”.

Definition 4.1. A process (Mn)n�0 is a martingale if

a) for every n � 0 the expectation EMn is finite, equivalently, E|Mn| < 1;

b) for every n � 0 and all mn, mn�1, . . . , m0 we have

E
�
Mn+1 | Mn = mn, . . . ,M0 = m0

�
= mn . (4.1)

For those familiar with the notion of conditioning on a random variable (see
next section), (4.1) can just be written as E

�
Mn+1 | Mn, . . . ,M0

�
= Mn.

Definition 4.2. We say that (Mn)n�0 is a supermartingale 24 if the equality in
(4.1) holds with , ie., E

�
Mn+1 | Mn, . . . ,M0

�
 Mn; and we say that (Mn)n�0

is a submartingale, if (4.1) holds with �, ie., E
�
Mn+1 | Mn, . . . ,M0

�
� Mn.

Example 4.3. Let (⇠n)n�1 be independent random variables 25 with

E⇠n = 0

for all n � 1. Then the process (Mn)n�0 defined via

Mn

def
= M0 + ⇠1 + · · ·+ ⇠n

is a martingale as long as the random variable M0 is independent of (⇠n)n�1 and
E|M0| < 1. For example, we will often take M0 = 0 or some other deterministic
constant.

Indeed, by the triangle inequality, E|Mn|  E|M0| +
P

n

j=1 E|⇠j | < 1 for all
n � 0; on the other hand, the independence property implies

E
�
Mn+1 �Mn | Mn, . . . ,M0

�
⌘ E

�
⇠n+1 | Mn, . . . ,M0

�
= E⇠n+1 = 0 .

Remark 4.4. Notice that if E⇠n � 0 for all n � 1, then (Mn)n�0 is a submartin-
gale, whereas if E⇠n  0 for all n � 1, then (Mn)n�0 is a supermartingale. More
generally, if (⇠n)n�1 are independent random variables with E|⇠n| < 1 for all
n � 1, then the process Mn = M0 + (⇠1 � E⇠1) + · · · + (⇠n � E⇠n), n � 0, is a
martingale.

Exercise 4.5. Given a sequence (⇠k)k�1 of independent Bernoulli variables
with common distribution P(⇠ = 1) = p and P(⇠ = �1) = q = 1 � p, define
the generated random walk via Xn =

P
n

k=1 ⇠k, n � 0. Show that the process
Mn = (q/p)Xn is a martingale.

24If Mn traces your fortune, then “there is nothing super about a supermartingale”.
25Notice that we do not assume that all ⇠n have the same distribution!
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Example 4.6. Let (Zn)n�0 be a branching process with EZ1 = m < 1. We
have E|Zn| < 1 and E(Zn+1 | Zn, . . . , Z0) = mZn for all n � 0. In other words,
the process (Zn)n�0 is a martingale, a submartingale or a supermartingale de-
pending on whether m = 1, m > 1 or m < 1.
Notice also, that for every m 2 (0,1) the process (Zn/m

n)n�0 is a martingale.

Exercise 4.7. Let ⇢ be the extinction probability for a branching process (Zn)n�0;
show that Mn = ⇢

Zn is a martingale.

We can also construct many examples of submartingales and supermartin-
gales if we have a martingale and apply certain functions to it. This is a conse-
quence of:

Lemma 4.8 (Conditional Jensen’s inequality). Suppose that X is an integrable
random variable on (⌦,F ,P) and A 2 F with P(A) > 0.

Suppose that ' is a convex function such that '(X) is also integrable. Then

E('(X)|A) � '(E(X|A)).

Proof. This follows from the non-conditional version of Jensen’s inequality, and
using the fact that P(·|A) is a valid probability measure.

Example 4.9. Let (Xn)n�0 be a martingale. If, for some convex function f( · )
we have E

�
|f(Xn)|

�
< 1 for all n � 0, then the process f(X) :=

�
f(Xn)

�
n�0

is a submartingale.
Similarly, if for some concave f( · ) we have E

�
|f(Xn)|

�
< 1 for all n � 0,

then the process f(X) is a supermartingale.
Both these claims follow immediately from the Jensen inequalities for con-

ditional expectations.

4.2 A few remarks on conditional expectation

Recall the following basic definition:

Example 4.10. Let (⌦,F ,P) be a probability triple and let X and Y be random
variables taking values x1, x2, . . . , xm and y1, y2, . . . , yn respectively. On the
event {Y = yj} one defines the conditional probability

P
�
X = xi | Y = yj

� def
=

P(X = xi, Y = yj)

P(Y = yj)

and the conditional expectation: E
�
X | Y = yj

�
⌘
P

i
xiP

�
X = xi | Y = yj

�
.

Then the conditional expectation Z = E(X |Y ) of X given Y is defined as follows:

if Y (!) = yj , then Z(!)
def
= zj ⌘ E

�
X | Y = yj

�
.

Notice that the value zj is completely determined by yj; in other words, Z is
a function of Y , and as such, a random variable. Of course, if X and Y are
independent, we have Z(!) ⌘ EX.
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Definition 4.11. If D = {D1, D2, . . . , Dm} is a finite partition 26 of ⌦, the
collection G = �(D) of all 2m possible subsets of ⌦ constructed from blocks Di

is called the �-field generated by D. A random variable Y is measurable with
respect to G if it is constant on every block Di of the initial partition D.

In Example 4.10 above we see that Z is constant on the events {Y = yj}; ie.,
Z is measurable w.r.t. the �-field �(Y ) ⌘ �({Y = yj}j). Moreover, for every
Gj ⌘ {Y = yj}, we have

E
�
Z 1Gj ) = zjP(Y = yj) =

X

i

xiP
�
X = xi | Y = yj

�
P(Y = yj)

=
X

i

xiP
�
X = xi, Y = yj

�
= E

�
X1Gj ) ,

where the last equality follows from the observation that the random variable
X1Gj equals xi on every event Gj \ {X = xi} = {Y = yj} \ {X = xi} and
vanishes identically outside the set Gj .

Remark 4.12. The last two properties can be used to define conditional expec-
tation in general: Let (⌦,F ,P) be a probability triple, let G ✓ F be a �-field, and
let X be a rv, X : ⌦ ! R. The conditional expectation of X w.r.t. G is the
unique random variable Z such that: Z is G measurable and for every set G 2 G

we have
R
G
ZdP ⌘ E

�
Z1G) = E

�
X1G) ⌘

R
G
XdP.

Notice that when G = �(D), the definition in the remark above coincides
with Definition 4.11.

The following are the most important properties of conditional expectation:

Lemma 4.13. Let (⌦,F ,P) be a probability triple, and let G ⇢ F a �-field.
Then for all random variables X, X1, X2 and constants a1, a2, the following
properties hold:

a) If Z = E
�
X | G

�
then EZ = EX;

b) If X is G-measurable, then E
�
X | G

�
= X;

c) E
�
a1X1 + a2X2 | G

�
= a1E

�
X1 | G

�
+ a2E

�
X2 | G

�
;

d) If X � 0, then E
�
X | G

�
� 0;

e) If H and G are two �-fields in ⌦ such that H ✓ G, then

E
h
E
�
X | G

�
|H

i
= E

h
E
�
X |H

�
| G

i
= E

�
X |H

�
;

26 In the general countable setting, if D = {D1, D2, . . . } forms a denumerable (ie., infinite
countable) partition of ⌦, then the generated �-field G = �(D) consists of all possible subsets
of ⌦ which are obtained by taking countable unions of blocks of D. Similarly, a variable Y is
measurable w.r.t. G, if for every real y the event {! : Y (!)  y} belongs to G (equivalently,
can be expressed as a countable union of blocks of D.
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f) If Z is G-measurable, then E
⇥
ZX | G

⇤
= Z E(X | G).

g) If Z is independent of G, then E
⇥
Z | G

⇤
= E[Z].

If (Xk)k�1 is a sequence of random variables, we can define the generated
�-fields FX

1 , FX

2 , . . . , via

F
X

k

def
= �(X1, X2, . . . , Xk) ; (4.2)

here, the �-field F
X

k
stores all information about the process (Xn)n�1 up to

time k. Observe that these �-fields form a filtration
�
F

X

n

�
n�1

in the sense that

F
X

1 ✓ F
X

2 ✓ . . . ✓ F
X

k
✓ . . . . (4.3)

The notion of filtration is very useful when working with martingales. Indeed,
a process (Mn)n�0 is a martingale if for all n � 0, E|Mn| < 1 and E

�
Mn+1 |

F
M

n
) = Mn. We can also generalise the definition of a martingale:

Definition 4.14. (Mn)n�0 is a martingale with respect to a filtration (Fn)n�0

if for all n � 0, E(|Mn|) < 1 and

E(Mn+1|Fn) = Mn.

The original definition of martingale is sometimes referred to as “being a
martingale with respect to the natural filtration”.

We say that M is a martingale with respect to a sequence (Xn)n�0 if it is a
martingale with respect to the filtration (FX

n
)n�0.

We also notice that by repeatedly applying the tower property in claim e)
of Lemma 4.13 above to the sequence (4.3), we get the following result:

Lemma 4.15. If (Mn)n�0 is a submartingale w.r.t. (Xn)n�0, then for all in-
teger n � k � 0, we have EMn � EMk.

Remark 4.16. Changing signs, we get the inequality EMn  EMk for super-
martingales, and therefore the equality EMn = EMk for martingales.

4.3 Martingales and stopping times

Martingales are extremely useful in studying stopping times:

Example 4.17. Let (Xk)k�1 be a sequence of i.i.d. Bernoulli random variables
with common distribution P(X1 = 1) = p, P(X1 = �1) = q = 1 � p, where
p 2 (0, 1), p 6= 1/2. For fixed k 2 {0, 1, . . . , N}, define the random walk (Sn)n�0

defined via Sn = k +
P

n

j=1 Xj, n � 0, and consider the process (Yn)n�0, where

Yn = (q/p)Sn . Clearly, Yn is an (FX

n
)n�0-martingale, so that E(Yn) = E(Y0) =

(q/p)k for all n � 0, recall Lemma 4.15.
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Let T be the first time Sn hits 0 or N . If an analogue of the above equality,
E(YT ) = E(Y0) = (q/p)k were true for (random) time T , we could find the exit
probability pk = P(S hits 0 before N |S0 = k) from the expression

E
�
YT

�
= (q/p)0pk + (q/p)N

�
1� pk

�
,

thus obtaining pk =
�
(q/p)k � (q/p)N

�
/
�
1� (q/p)N

�
.

Remark 4.18. The method used in the previous example relies on the assump-
tion E(YT ) = E(Y0) and on the formula for E(YT ) for a certain random variable
T . An important part of the theory of martingales is to study random variables
T for which the above statements are true. 27

Example 4.19. Let Sn =
P

n

k=1 Xk be the simple symmetric random walk in
{�K, . . . ,K}, generated by a sequence of i.i.d. symmetric Bernoulli r.v. Xk,
where P(X1 = ±1) = 1/2. Similarly to Example 4.17 one can study the hitting
time T of the boundary, T = inf

�
n � 0 : |Sn| = K

 
: namely, since 28

E
�
(ST )

2
�
= K

2P(ST = K) +K
2P(ST = �K) = K

2
,

the same heuristics applied to the martingale (Yn)n�0, Yn

def
=

�
Sn

�2
� n, leads

to 0 = E(Y0) = E(YT ) = E
�
(ST )2

�
� E(T ); i.e., it suggests that E(T ) = K

2.

One of our aims is to discuss general results that justify the above heuristics.
To this end, we need to carefully define what we mean by a “stopping time”.

Definition 4.20. A variable T is a stopping time for a process (Xn)n�0, if the
occurrence/non-occurrence of the event {T = n} =“we stop at time n” can be
determined by looking at the values X0, X1, . . . , Xn of the process up to time
n. Equivalently, if we have {T  n} 2 F

X

n
⌘ �(X0, . . . , Xn) for every n � 0.

Example 4.21. Let (Xn)n�0 be a stochastic process with values in S, and let
T be the hitting time of a set A ⇢ S, namely, T = min

�
n � 0 : Xn 2 A

 
. Then

T is a stopping time for (Xn)n�0.
Indeed, for every fixed n � 0, we have {T > n} ⌘ {X0 /2 A,X1 /2 A, . . . ,Xn /2

A}; therefore, the event {T > n} and its complement {T  n} both belong to
F

X

n
.
By contrast, the last time that X visits A, T̃ = max{n � 0 : Xn 2 A} is not

generally a stopping time. Because we generally cannot tell just by looking at
X0, . . . , Xn, whether the process will visit A after time n or not.

Exercise 4.22. Let k 2 N be fixed, and let S and T be stopping times for a
process (Xn)n�0. Show that the following are stopping times:

(a) T ⌘ k,

27Notice that the gambler’s ruin problem can be solved by using the methods of finite
Markov chains, so we indeed know that the result above is correct.

28the equality is correct, because P(T < 1) = 1 here!
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(b) S ^ T ⌘ min(S, T ),

(c) S _ T ⌘ max(S, T ).

Let A be a set of states, and let T = TA be the moment of the first visit to A, ie.,
T = min{n � 0 : Xn 2 A}. Consider S = SA = min{n > TA : Xn 2 A}, the
moment of the second visit to A. Show that SA is a stopping time for (Xn)n�0.
Is the variable L = max

�
n � 0 : Xn 2 A

 
a stopping time for (Xn)n�0?

Exercise 4.23. Let (Mn)n�0 be a submartingale w.r.t. (Xn)n�0, and let T be
a stopping time for (Xn)n�0. Show that the process (LT

n
)n�0,

L
T

n

def
= Mn^T ⌘

(
Mn , n  T ,

MT , n > T ,

is a submartingale w.r.t. (Xn)n�0. Deduce that if (Mn)n�0 is a martingale w.r.t.
(Xn)n�0, then the stopped process (LT

n
)n�0 is also a martingale w.r.t. (Xn)n�0.

4.4 Optional stopping theorem

The optional stopping (or sampling) theorem (OST) tells us that, under quite
general assumptions, whenever Xn is a martingale, then XT^n is a martingale
for a stopping time T . Such results are very useful in deriving inequalities and
probabilities of various events associated with such stochastic processes.

Theorem 4.24 (Optional Stopping Theorem). Let (Mn)n�0 be a martingale
w.r.t. (Xn)n�0, and let T be a stopping time for (Xn)n�0. Then the equality

E
⇥
MT

⇤
= E[M0] (4.4)

holds whenever one of the following conditions holds:

(OST-1) the stopping time T is bounded, i.e., P(T  N) = 1 for some N < 1;

(OST-2) ET < 1, and the martingale (Mn)n�0 has bounded increments, i.e.,
|Mn+1 �Mn|  K for all n and some constant K;

(OST-3) P(T < 1) = 1, and the martingale (Mn)n�0 is bounded, i.e., |Mn| 

K for all n and some constant K.

Remark 4.25. If Mn records gambler’s fortune, by (OST-3), one cannot make
money from a fair game, unless an unlimited amount of credit is available.

Remark 4.26. One can generalize (OST-3) by replacing the condition of bound-
edness, |Mn|  K, by that of uniform integrability for the martingale (Mn)n�0:
a sequence of random variables (Yn)n�0 is uniformly integrable if

lim
K!1

sup
n�0

E
�
|Yn|1{|Yn|>K}

�
= 0 . (4.5)
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Example 4.27. Let the SSRW (Sn)n�0 be generated as in Example 4.19. Put

H
def
= inf{n � 0 : Sn = 1} .

Since this RW is recurrent, 29 we deduce that P(H < 1) = 1. However, the
(OST) does not apply, as 0 = E(S0) 6= E(SH) ⌘ 1. It is an instructive Exercise
to check which conditions in each of the above (OST) are violated.

We now give the proof of Theorem 4.24.

Proof. Let us first assume that T satisfies (OST-1); that is, there is some N < 1

with 0  T  N . Then the decomposition

MT =
NX

n=0

MT 1{T=n} =
NX

n=0

Mn1{T=n} = M0 +
N�1X

n=0

�
Mn+1 �Mn

�
1{T>n}

holds. Now for each 0  n  N � 1, (a) of Lemma 4.13 allows us to rewrite
E
�
(Mn+1 �Mn)1{T>n}

�
as

E
�
E
�
(Mn+1 �Mn)1{T>n}| F

X

n

��
= E

�
1{T>n}E

�
Mn+1 �Mn| F

X

n

��

where we have used that {T > n} is FX

n
-measurable (by definition of a stopping

time). Since M is a martingale, E
�
Mn+1 �Mn| F

X

n

�
= 0 and hence E

�
(Mn+1 �

Mn)1{T>n}
�
= 0 for each n. Linearity of expectation then implies that E(MT ) =

E(M0) as required.
Now let us assume that T satisfies (OST-2). For fixed n, min(T, n) = T ^ n

is clearly a bounded stopping time (it is less than n with probability one), so
by (OST-1) we have that EMT^n = EM0 for all n � 0. We now want to take a
limit as n ! 1. For this we write

|MT �MT^n| =
��
X

k>n

(Mk �Mn)1{T=k}| =
��
X

k>n

�
Mk �Mk�1

�
1{T�k}

��

(in particular, noting that this gives |MT |  KT when n = 0 and so MT is inte-
grable). Taking expectations then gives that E(|MT �MT^n|)  K

P
k>n

P(T �

k) which tends to 0 as n ! 1. Hence E(MT ) = limn!1 E(MT^n) = limn!1 E(M0) =
E(M0).

Finally, we can assume (OST-3) and deduce the result in a similar way. The
strategy is the same, but instead of writing MT �MT^n as a telescoping sum,
we note that |MT �MT^n|  2K1{T>n} so that

��EMT � EMT^n

��  2KP(T > n) ! 0 as n ! 1 .

Remark 4.28. For those who are familiar with the dominated convergence
theorem. In (OST-3) it is su�cient to assume that

��Mn^T

��  K for all n � 0
and P(T < 1) = 1. Indeed, by the dominated convergence theorem we deduce
that then

��MT

��  K, so that the argument in the proof above applies.

29alternatively, recall the result in Example 1.26.
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With suitable martingales (OST) gives very powerful results.
The following instructive example is due to D. Williams:

Example 4.29. (ABRACADABRA) A monkey types symbols at random, one
per unit time, on a typewriter having 26 keys. How long on average will it take
him to produce the sequence ‘ABRACADABRA’?

Solution To compute the expected time, imagine a sequence of gamblers,
each initially having £1, playing at a fair gambling casino. Gambler arriving
just before time n (n � 1) bets £1 on the event {nth letter will be A}. If he
loses, he leaves. If he wins, he receives £26 all of which he bets on the event
{n + 1 st letter will be B}. If he loses, he leaves. If he wins, he receives £262

all of which he bets on the event {n + 2 nd letter will be R} and so on through
the whole ABRACADABRA sequence.

Let Xn denote the total winnings of the casino after the nth day. Since all
bets are fair the process (Xn)n�0 is a martingale with mean zero. Let N denote
the time until the sequence ABRACADABRA appears. At time N , gambler N�10
would have won £2611 � 1, gambler N � 3 would have won £264 � 1, gambler
N would have won £26� 1 and all other N � 3 gamblers would have lost their
initial fortune. Therefore,

XN = N � 3� (2611 � 1)� (264 � 1)� (26� 1) = N � 2611 � 264 � 26

and since (OST-2) can be applied (check this!), we deduce the E(XN ) = E(X0) =
0, that is

E(N) = 26 + 264 + 2611 .

Remark 4.30. Notice that the answer could also be obtained by considering
a finite state Markov chain Xn on the state space of 12 strings representing
the longest possible intersection of the tail of the typed text with the target word
ABRACADABRA, ie.,

�
ABRACADABRA,ABRACADABR, . . . ,ABRA,ABR,AB,A,?

 
,

as there N is just the hitting time of the state ABRACADABRA from the initial
condition X0 = ?.

Exercise 4.31. Use an appropriate (OST) to carefully derive the probability pk
in Example 4.17.

Exercise 4.32. Use an appropriate (OST) to carefully derive the expectation
E(T ) in Example 4.19.

Exercise 4.33. Consider the simple symmetric random walk (Sn)n�0, gen-
erated by a sequence of i.i.d. Bernoulli r.v. Xk with P(X1 = ±1) = 1/2,
ie., Sn =

P
n

k=1 Xk. For integer a < 0 < b, let T be the stopping time
T = inf

�
n � 0 : Sn /2 (a, b)

 
⌘ inf

�
n � 0 : Sn 2 {a, b}

 
.

(a) Show that (Sn)n�0 is a martingale and use an appropriate (OST) to find
P(ST = a) and P(ST = b).
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(b) Show that (Mn)n�0 defined via Mn = (Sn)2 � n is a martingale w.r.t. the
process (Sn)n�0.

(c) For fixed integer K > 0, carefully apply an appropriate (OST) to Mn and
prove that E(T ^K) = E

⇥
(ST^K)2

⇤
.

(d) Deduce that E(T ) = �ab.

Exercise 4.34. A coin showing heads with probability p is tossed repeatedly. Let
w be a fixed sequence of outcomes such as ‘HTH’, and let N denote the number
of (independent) tosses until the word w is observed. Using an appropriate
martingale, find the expectation EN for each of the following sequences: ‘HH’,
‘HTH’, ‘HHTTHH’.

Lemma 4.35. Let (Yn)n�0 be a supermartingale w.r.t. a sequence (Xn)n�0 and
let Hn 2 F

X

n�1 = �(X0, . . . , Xn�1) satisfy 0  Hn  cn, where the constant cn
might depend on n. Then the process Wn = W0 +

P
n

m=1 Hm

�
Ym � Ym�1

�
,

n � 0, is a supermartingale w.r.t. (Xn)n�0.

Proof. Following the proof of the optional stopping theorem, we observe that
since (Yn)n�0 is a supermartingale w.r.t. (Xn)n�0,

E
�
Hm(Ym � Ym�1)

�
= E

⇥
Hm E(Ym � Ym�1 | Fm�1)

⇤
 0 .

Example 4.36. If (Yn)n�0 describes the stock price process, and Hm is the
number of stocks held during the time (m� 1,m] (decided when the price Ym�1

is known), then Wn describes the fortune of an investor at time n. As (Wn)n�0

is a supermartingale w.r.t. (Xn)n�0, we have EWn  EW0 for all n � 0.

Remark 4.37. The famous “doubling martingale” corresponds to doubling the
bet size until one wins, ie., to taking Hm = 2m�11{T>m}, where T is the first
moment when the price goes up, ie., T = min{m > 0 : Ym � Ym�1 = 1}.
Since the stopped process (Wn^T )n�0 is a supermartingale, for all n � 0 we
have E(Wn^T )  E(W0), ie., on average, the doubling strategy does not produce
money if one bets against a (super)martingale.

Example 4.38. [Wald’s equation] Let (Sn)n�0 be a random walk generated by a
sequence (Xn)n�0 of i.i.d. steps with E|X| < 1 and E(X) = m. If T is a stopping
time for (Xn)n�0 with E(T ) < 1, then the optional stopping theorem implies that
ST is integrable and

E(ST � S0) = mE(T ).

To show this, first notice that Sn � nEX = Sn � mn is a martingale and for
every n � 0 the variable T ^ n is a bounded stopping time. By (OST-1), we have

E(S0) = E
�
Sn^T �m(n ^ T )

�
. (4.6)
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This rearranges to
E
�
Sn^T � S0

�
= mE(n ^ T )

for every n. Now, the RHS converges to E(T ) as n ! 1 since |E(T )�E(n^T )| 
E(T1{T>n}) =

P
k>n

kP(T = k), where the tail sums on the right go to zero
as n ! 1 by the assumption that T is integrable. Next, by writing |ST | =P

k�0 |Xk|1{T�k} as a telescoping sum, where E(|Xk|1{T�k}) = P(T � k)E(|X1|)

and
P

k
P(T � k) < 1, we see that |ST | is integrable. 30 Similarly, we can bound

E(|ST � ST^n|)  E(|X1|)
P

k>n
P(T � k) which tends to 0 as n ! 1. This

implies that E(ST^n) ! E(ST ) as n ! 1, and combining the above completes
the argument.

4.5 Martingale convergence theorem

This subsection is optional and will not be examined.

The following example has a number of important applications.

Example 4.39 (Pólya’s urn). An urns contains one green and one red ball. At
every step a ball is selected at random, and then replaced together with another
ball of the same colour. Let Xn be the number of green balls after nth draw,
X0 = 1. Then the fraction Mn = Xn/(n + 2) of green balls is a martingale
w.r.t. the filtration (FX

n
)n�0.

Indeed, as |Mn|  1 we have E|Mn|  1 for all n � 0, and since

P(Xn+1 = k + 1 | Xn = k) =
k

n+ 2
, P(Xn+1 = k | Xn = k) = 1�

k

n+ 2
,

we get E
�
Xn+1 | F

X

n

�
= n+3

n+2 Xn, equivalently, E(Mn+1 | F
X

n
) = Mn.

Exercise 4.40. Show that P(Mn = k

n+2 ) =
1

n+1 for 1  k  n+ 1, ie., Mn is

uniformly distributed in
�

1
n+2 ,

2
n+2 , . . . ,

n+1
n+2

 
.

Exercise 4.40 suggests that in the limit n ! 1 the distribution of Mn

becomes uniform in (0, 1):

Exercise 4.41. Show that lim
n!1

P
�
Mn < x

�
= x for every x 2 (0, 1).

In view of Exercise 4.40, a natural question is: does the proportion Mn of
green balls fluctuate between 0 and 1 infinitely often or does it eventually settle
down to a particular value? The following example shows that the latter is true.
Our argument is based upon the following observation: if a real sequence yn does
not converge, for some real a, b with �1 < a < b < 1 the sequence yn must go
from the region below a to the region above b (and back) infinitely often.

30Here we are really using the monotone convergence theorem: if 0  Zn  Z for every n
and Zn " Z as n ! 1, then E(Zn) ! E(Z) as n ! 1.
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Example 4.42. For fixed n � 0 let Mn < a 2 (0, 1), and let N = min{k > n :
Mn > b} for some b 2 (a, 1). Since Nm = N ^m is a bounded stopping time,
by (OST-1) we have EMNm = EMn < a if only m > n. On the other hand,

EMNm � E
�
MNm1Nm

�
⌘ E

�
MN1Nm

�
> bP(N  m) .

In other words, P(N  m) <
a

b
and consequently P(N < 1) 

a

b
< 1, ie.,

the fraction Mn of green balls ever gets above level b with probability at most a

b
.

Suppose that at certain moment N 2 (n,1) the fraction of green balls became
bigger than b. Then a similar argument shows that with probability at most
(1� b)/(1� a) the value Mn becomes smaller than a at a later moment.

Put S0 = min{n � 0 : Mn < a}, and then, inductively, for k � 0,

Tk = min
�
n > Sk : Mn > b

 
, Sk+1 = min

�
n > Tk : Mn < a} . (4.7)

The argument above implies that

P(Sk < 1) 
kY

j=1

⇣
P(Tj�1 < 1 | Sj�1 < 1)P(Sj < 1 | Tj�1 < 1)

⌘
(4.8)

with the RHS bounded above by
�
a

b

�k� 1�b

1�a

�k
! 0 as k ! 1. As a result, the

probability of infinitely many crossing (ie., Sk < 1 for all k � 0) vanishes.
Clearly, the argument above applies to all strips (a, b) ⇢ (0, 1) with rational

endpoints. Thus, with probability one,31 trajectories of Mn eventually converge
to a particular value.32

Exercise 4.43. Write U(a,b) for the total number of upcrossings of the strip (a, b)
by the process (Mn)n�0. By using the approach of Example 4.42 and noticing
that

�
U(a,b) � m

 
⇢
�
Sm�1 < 1

 
or otherwise, show that EU(a,b) < 1.

The argument in Example 4.42 also works in general. Let (Mn)n�0 be a
martingale w.r.t. filtration (FX

n
)n�0. For real a, b with �1 < a < b < 1 let

U(a,b) be the total number of upcrossings of the strip (a, b). The following result
(or some of its variants) is often referred to as Doob’s Upcrossing Lemma:

Lemma 4.44. Let the martingale (Mn)n�0 have uniformly bounded expecta-
tions, ie., for some constant K and all n � 0, E|Mn| < K < 1. If U(a,b) is the
number of upcrossings of a strip (a, b), then EU(a,b) < 1.

Proof. With stopping times as in (4.7), put Hn = 1 if Sm < n  Tm and
put Hn = 0 otherwise. Then the process Wn =

P
n

k=1 Hk(Mk � Mk�1) is a
martingale w.r.t. (Mn)n�0, cf. Lemma 4.35. It is easy to check that Wn �

(b� a)Un � |Mn � a| (draw the picture!), where Un = max{m � 0 : Tm  n} is
the number of upcrossings of the strip (a, b) up to time n. As a result

0 = EW0 = EWn � (b� a)EUn � E|Mn � a| � (b� a)EUn � (K + |a|) ,

so that EUn  (K + |a|)/(b� a) for all n � 0, and thus EU(a,b) < 1.
31If Mn does not converge, it must cross at least one of countably many strips (a, b) with

rational points infinitely many times.
32which is random and depends on the trajectory
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Theorem 4.45. Let (Mn)n�0 be a martingale as in Lemma 4.44. Then there
exists a random variable M1 such that Mn ! M1 with probability one.

Proof. If Mn does not converge, for some rational a, b with �1 < a < b < 1

we must have U(a,b) = 1. However, by Lemma 4.44, EU(a,b) < 1 implying that
P(U(a,b) = 1) = 0. As the number of such pairs (a, b) is countable, the result
follows.

Exercise 4.46. Let (Xk)k�1 be independent variables with

P
⇣
X =

3

2

⌘
= P

⇣
X =

1

2

⌘
=

1

2
.

Put Mn = X1 · . . . ·Xn with M0 = 1. Show that Mn is an (FX

n
)n�0 martingale.

Deduce that Mn ! M1 with probability one. Can you compute E(M1)?

4.6 Additional problems

Exercise 4.47. Let (⌘n)n�1 be independent positive random variables with
E⌘n = 1 for all n � 1. If a random variable M0 > 0 is independent of (⌘n)n�0

and EM0 < 1, then the process (Mn)n�0 defined via Mn = M0
Q

n

j=1 ⌘j is a
martingale w.r.t. (⌘n)n�1.

Interpreting ⌘n � 1 as the (fractional) change in the value of a stock during the
nth time interval, the martingale (Mn)n�0 can be used to model stock prices.
Two often used examples are:

Discrete Black-Sholes model: take ⌘j = e
⇣j , where ⇣j is Gaussian, ⇣j ⇠ N (µ,�2);

Binomial model: take ⌘j = (1 + a)e�r and ⌘j = (1 + a)�1
e
�r with probabilities

p and 1� p respectively.

Exercise 4.48. Let (Sn)n�0 be the random walk from Example 4.19. Find
constants a, b, c such that the process (Sn)4+an(Sn)2+bn

2+cn is an (Xn)n�0-
martingale. Use the heuristc in Example 4.19 to predict the value of the second
moment E(T 2) of the exit time T .

Exercise 4.49. A standard symmetric dice is tossed repeatedly. Let N be the
number of (independent) tosses until a fixed pattern is observed. Using an ap-
propriate martingale, find EN for the sequences ‘123456’ and ‘123321’.

Exercise 4.50. Suppose that the process in Example 4.39 is modified as follows:
for a fixed integer c > 1, every time a random ball is selected, it is replaced
together with other c balls of the same colour. If, as before, Xn denotes the total
number of green balls after n draws, show that the the fraction Mn = Xn

2+nc
of

green balls forms a martingale w.r.t. (FX

n
)n�0.
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Exercise 4.51. Find the large-n limit of the distribution of the martingale
(Mn)n�0 from Exercise 4.50.

Exercise 4.52. Let (Xn)n�0 be a birth-and-death process in S = {0, 1, . . . },
ie., a Markov chain in S with transition probabilities p00 = r0, p01 = p0, and
pm,m�1 = qm, pm,m = rm, pm,m+1 = pm for m > 0, while pm,k = 0 for all

other pairs (m, k) 2 S
2. Let X0 = x, and for y � 0 denote Ty

def
= min{n � 0 :

Xn = y}.

(a) Show that the process
�
'(Xn)

�
n�0

with '(z)
def
=

zP
y=1

y�1Q
x=1

qx

px
is a martingale.

(b) Show that for all 0  a < X0 = x < b we have

P
�
Tb < Ta

�
=
�
'(x)� '(a)

�
/
�
'(b)� '(a)

�
.

Deduce that state 0 is recurrent i↵ '(b) ! 1 as b ! 1.

(c) Now suppose that pm ⌘ p, qm ⌘ q = 1� p, and rm = 0 for m > 0, whereas
p0 = p and r0 = q. Show that in this case the result in part b) above becomes

P
�
Tb < Ta

�
=
�
(q/p)a � (q/p)x

�
/
�
(q/p)a � (q/p)b

�
.

(d) Find P
�
Tb < Ta

�
if in the setup of part c) one has p = q = 1/2.

Exercise 4.53. Let (⇠k)k�1 be i.i.d. random variables with P(⇠ = 1) = p <
1
2 ,

P(⇠ = �1) = q = 1�p, and E⇠ > 0. Let (Sn)n�0 be the generated random walk,
Sn = x+ ⇠1 + · · ·+ ⇠n, and let T0 = min{n � 0 : Sn = 0} be the hitting time of
0. Deduce that for all x > 0, P(T0 < 1) = (q/p)x. Compare this to the result
of Example 1.26.

Exercise 4.54. Let (Zn)n�0 be a homogeneous branching process with Z0 = 1,
m = EZ1 > 0 and finite variance �2 = Var(Z1). Show that Mn = Zn/m

n is a
martingale.

(a) Let m > 1. By using Exercise 2.3 or otherwise show that E(Mn) is uniformly
bounded. Deduce that Mn ! M1 almost surely. What can you say about
EM1?

(b) What happens if m  1? Compute E(M1).

Hint: Recall Exercise 4.56.

Exercise 4.55. Let (Xn)n�0 be a sequence of i.i.d. Bernoulli random variables
with P(X = 1) = p and P(X = �1) = 1� p = q. Let (Sn)n�0 be the generated
random walk with S0 = x > 0, and let T = min{n � 0 : Sn = 0} be the hitting
time of the origin. Example 1.26 suggests that E(T ) = x/(q�p) < 1 for q > p.
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1. Use (4.6) to deduce that (q � p)E(n ^ T ) = E
�
S0 � Sn^T

�
 E(S0) = x;

then take n ! 1 to show that E(T ) < 1;

2. Use the Wald equation to deduce that indeed E(T ) = x

q�p
. Can you give a

heuristic explanation of this result?

3. Argue, without using the Wald equation, that E(T ) = cx for some con-
stant c.

4. Use the Wald equation and an argument by contradiction to show that if
p � q, then E(T ) = 1 for all x > 0.

Exercise 4.56. Let a variable Y satisfy E(Y 2) < 1. Show that E|Y | < 1.
Hint Notice that Var(|Y |) � 0.

Exercise 4.57. Let (Xn)n�0 be an irreducible Markov chain in S = {0, 1, . . . }
with bounded jumps, and let a function ' : S ! R+ satisfy '(x) ! 1 as
x ! 1. Let K � 0 be such that

Ex'(X1)
def
= E

⇥
'(X1)|X0 = x

⇤
 '(x)

for all x � K.

(a) If the function '(x) is monotone, show that the set of states {0, 1, . . . ,K},
and thus the whole space S is recurrent for (Xn)n�0.
Hint If HK = min

�
n � 0 : 0  Xn  K}, show that '(Xn^HK ) is a

supermartingale. Deduce that if TM = min
�
n � 0 : Xn � M}, then '(x) �

'(M)P(TM < HK).

(b) Argue that the result holds for '(x) � 0 not necessarily monotone, but only
satisfying '(x) ! 1 as x ! 1.

Hint With TM as above, show that '⇤
M

def
= min{'(x) : x � M} ! 1 as

M ! 1.

Exercise 4.58. Let (Xk)k�1 be independent variables with P(X = ±1) = 1
2 .

Show that the process

Mn =
nX

k=1

1

k
Xk

is a martingale w.r.t. (FX

n
)n�0 and that E

⇥
(Mn)2

⇤
< K < 1 for some con-

stant K and all n � 0. By using Exercise 4.56 or otherwise, deduce that with
probability one, Mn ! M1 for some random variable M1. In other words, the
random sign harmonic series converges with probability one.

Exercise 4.59. [Wright-Fischer model] Thinking of a population of N haploid
individuals who have one copy of each of their chromosomes, consider a fixed
population of N genes that can be of two types A or a. In the simplest version of
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this model the population at time n+1 is obtained by sampling with replacement
from the population at time n. If we let Xn to be the number of A alleles at
time n, then Xn is a Markov chain with transition probability

pij =

✓
N

j

◆⇣
i

N

⌘j⇣
1�

i

N

⌘N�j

.

Starting from i of the A alleles and N � i of a alleles, what is the probability
that the population fixates in the all A state? Hint You can use the heuristics of
Example 4.17 but need to justify your computation!

Exercise 4.60. Let (Xn)n�0 be a Markov chain with a (countable) state space
S and the transition matrix P, and let h(x, n) be a function of the state x and
time n such that 33

h(x, n) =
X

y

pxyh(y, n+ 1) .

Show that (Mn)n�0 with Mn = h(Xn, n) is a martingale w.r.t. (Xn)n�0.

Exercise 4.61. Let (Xn)n�0 be a Markov chain with a (countable) state space
S and the transition matrix P. If  is a right eigenvector of P corresponding
to the eigenvalue � > 0, ie., P = � , show that the process Mn = �

�n
 
�
Xn

�

is a martingale w.r.t. (Xn)n�0.

33This result is useful, eg., if h(x, n) = x2 � cn or h(x, n) = exp{x� cn} for a suitable c.
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