4 Martingales

4.1 Definition and some examples

A martingale is a generalized version of a "fair game".

Definition 4.1. A process $(M_n)_{n>0}$ is a martingale if

a) for every $n \ge 0$ the expectation $\mathsf{E}M_n$ is finite, equivalently, $\mathsf{E}|M_n| < \infty$;

b) for every $n \geq 0$ and all $m_n, m_{n-1}, \ldots, m_0$ we have

$$\mathsf{E}(M_{n+1} \mid M_n = m_n, \dots, M_0 = m_0) = m_n.$$
(4.1)

For those familiar with the notion of conditioning on a random variable (see next section), (4.1) can just be written as $\mathsf{E}(M_{n+1} \mid M_n, \ldots, M_0) = M_n$.

Definition 4.2. We say that $(M_n)_{n\geq 0}$ is a supermartingale ²⁴ if the equality in (4.1) holds with \leq , i.e., $\mathsf{E}(M_{n+1} | M_n, \ldots, M_0) \leq M_n$; and we say that $(M_n)_{n\geq 0}$ is a submartingale, if (4.1) holds with \geq , i.e., $\mathsf{E}(M_{n+1} | M_n, \ldots, M_0) \geq M_n$.

Example 4.3. Let $(\xi_n)_{n\geq 1}$ be independent random variables²⁵ with

 $\mathsf{E}\xi_n=0$

for all $n \geq 1$. Then the process $(M_n)_{n>0}$ defined via

$$M_n \stackrel{\text{def}}{=} M_0 + \xi_1 + \dots + \xi_n$$

is a martingale as long as the random variable M_0 is independent of $(\xi_n)_{n\geq 1}$ and $\mathsf{E}|M_0| < \infty$. For example, we will often take $M_0 = 0$ or some other deterministic constant.

Indeed, by the triangle inequality, $\mathsf{E}|M_n| \leq \mathsf{E}|M_0| + \sum_{j=1}^n \mathsf{E}|\xi_j| < \infty$ for all $n \geq 0$; on the other hand, the independence property implies

$$\mathsf{E}(M_{n+1} - M_n \mid M_n, \dots, M_0) \equiv \mathsf{E}(\xi_{n+1} \mid M_n, \dots, M_0) = \mathsf{E}\xi_{n+1} = 0.$$

Remark 4.4. Notice that if $\mathsf{E}\xi_n \geq 0$ for all $n \geq 1$, then $(M_n)_{n\geq 0}$ is a submartingale, whereas if $\mathsf{E}\xi_n \leq 0$ for all $n \geq 1$, then $(M_n)_{n\geq 0}$ is a supermartingale. More generally, if $(\xi_n)_{n\geq 1}$ are independent random variables with $\mathsf{E}|\xi_n| < \infty$ for all $n \geq 1$, then the process $M_n = M_0 + (\xi_1 - \mathsf{E}\xi_1) + \cdots + (\xi_n - \mathsf{E}\xi_n)$, $n \geq 0$, is a martingale.

Exercise 4.5. Given a sequence $(\xi_k)_{k\geq 1}$ of independent Bernoulli variables with common distribution $\mathsf{P}(\xi = 1) = p$ and $\mathsf{P}(\xi = -1) = q = 1 - p$, define the generated random walk via $X_n = \sum_{k=1}^n \xi_k$, $n \geq 0$. Show that the process $M_n = (q/p)^{X_n}$ is a martingale.

 $^{^{24}\}mathrm{If}~M_n$ traces your fortune, then "there is nothing super about a supermartingale".

²⁵Notice that we do not assume that all ξ_n have the same distribution!

Example 4.6. Let $(Z_n)_{n\geq 0}$ be a branching process with $\mathsf{E}Z_1 = m < \infty$. We have $\mathsf{E}|Z_n| < \infty$ and $\mathsf{E}(Z_{n+1} \mid Z_n, \ldots, Z_0) = mZ_n$ for all $n \geq 0$. In other words, the process $(Z_n)_{n\geq 0}$ is a martingale, a submartingale or a supermartingale depending on whether m = 1, m > 1 or m < 1.

Notice also, that for every $m \in (0, \infty)$ the process $(Z_n/m^n)_{n\geq 0}$ is a martingale.

Exercise 4.7. Let ρ be the extinction probability for a branching process $(Z_n)_{n\geq 0}$; show that $M_n = \rho^{Z_n}$ is a martingale.

We can also construct many examples of submartingales and supermartingales if we have a martingale and apply certain functions to it. This is a consequence of:

Lemma 4.8 (Conditional Jensen's inequality). Suppose that X is an integrable random variable on $(\Omega, \mathcal{F}, \mathsf{P})$ and $A \in \mathcal{F}$ with $\mathsf{P}(A) > 0$.

Suppose that φ is a convex function such that $\varphi(X)$ is also integrable. Then

$$\mathsf{E}(\varphi(X)|A) \ge \varphi(\mathsf{E}(X|A))$$

Proof. This follows from the non-conditional version of Jensen's inequality, and using the fact that $\mathsf{P}(\cdot|A)$ is a valid probability measure.

Example 4.9. Let $(X_n)_{n\geq 0}$ be a martingale. If, for some convex function $f(\cdot)$ we have $\mathsf{E}(|f(X_n)|) < \infty$ for all $n \geq 0$, then the process $f(X) := (f(X_n))_{n\geq 0}$ is a submartingale.

Similarly, if for some concave $f(\cdot)$ we have $\mathsf{E}(|f(X_n)|) < \infty$ for all $n \ge 0$, then the process f(X) is a supermartingale.

Both these claims follow immediately from the Jensen inequalities for conditional expectations.

4.2 A few remarks on conditional expectation

Recall the following basic definition:

Example 4.10. Let $(\Omega, \mathcal{F}, \mathsf{P})$ be a probability triple and let X and Y be random variables taking values x_1, x_2, \ldots, x_m and y_1, y_2, \ldots, y_n respectively. On the event $\{Y = y_j\}$ one defines the conditional probability

$$\mathsf{P}(X = x_i \mid Y = y_j) \stackrel{\text{def}}{=} \frac{\mathsf{P}(X = x_i, Y = y_j)}{\mathsf{P}(Y = y_j)}$$

and the conditional expectation: $\mathsf{E}(X \mid Y = y_j) \equiv \sum_i x_i \mathsf{P}(X = x_i \mid Y = y_j)$. Then the conditional expectation $Z = \mathsf{E}(X \mid Y)$ of X given Y is defined as follows:

$$\textit{if } Y(\omega) = y_j, \quad \textit{then} \quad Z(\omega) \stackrel{\mathsf{def}}{=} z_j \equiv \mathsf{E} \big(X \mid Y = y_j \big)$$

Notice that the value z_j is completely determined by y_j ; in other words, Z is a function of Y, and as such, a random variable. Of course, if X and Y are independent, we have $Z(\omega) \equiv \mathsf{E}X$.

Definition 4.11. If $\mathcal{D} = \{D_1, D_2, \dots, D_m\}$ is a finite partition²⁶ of Ω , the collection $\mathcal{G} = \sigma(\mathcal{D})$ of all 2^m possible subsets of Ω constructed from blocks D_i is called the σ -field generated by \mathcal{D} . A random variable Y is measurable with respect to \mathcal{G} if it is constant on every block D_i of the initial partition \mathcal{D} .

In Example 4.10 above we see that Z is constant on the events $\{Y = y_j\}$; i.e., Z is measurable w.r.t. the σ -field $\sigma(Y) \equiv \sigma(\{Y = y_j\}_j)$. Moreover, for every $G_j \equiv \{Y = y_j\}$, we have

$$\mathsf{E}(Z \ \mathbf{1}_{G_j}) = z_j \mathsf{P}(Y = y_j) = \sum_i x_i \mathsf{P}(X = x_i \mid Y = y_j) \mathsf{P}(Y = y_j)$$
$$= \sum_i x_i \mathsf{P}(X = x_i, Y = y_j) = \mathsf{E}(X \mathbf{1}_{G_j}),$$

where the last equality follows from the observation that the random variable $X1_{G_j}$ equals x_i on every event $G_j \cap \{X = x_i\} = \{Y = y_j\} \cap \{X = x_i\}$ and vanishes identically outside the set G_j .

Remark 4.12. The last two properties can be used to define conditional expectation in general: Let $(\Omega, \mathcal{F}, \mathsf{P})$ be a probability triple, let $\mathcal{G} \subseteq \mathcal{F}$ be a σ -field, and let X be a rv, $X : \Omega \to \mathbb{R}$. The conditional expectation of X w.r.t. \mathcal{G} is the unique random variable Z such that: Z is \mathcal{G} measurable and for every set $G \in \mathcal{G}$ we have $\int_G Z d\mathsf{P} \equiv \mathsf{E}(Z \mathbf{1}_G) = \mathsf{E}(X \mathbf{1}_G) \equiv \int_G X d\mathsf{P}$.

Notice that when $\mathcal{G} = \sigma(D)$, the definition in the remark above coincides with Definition 4.11.

The following are the most important properties of conditional expectation:

Lemma 4.13. Let $(\Omega, \mathcal{F}, \mathsf{P})$ be a probability triple, and let $\mathcal{G} \subset \mathcal{F}$ a σ -field. Then for all random variables X, X_1, X_2 and constants a_1, a_2 , the following properties hold:

- a) If $Z = \mathsf{E}(X | \mathcal{G})$ then $\mathsf{E}Z = \mathsf{E}X$;
- b) If X is \mathcal{G} -measurable, then $\mathsf{E}(X | \mathcal{G}) = X$;
- c) $\mathsf{E}(a_1X_1 + a_2X_2 | \mathcal{G}) = a_1\mathsf{E}(X_1 | \mathcal{G}) + a_2\mathsf{E}(X_2 | \mathcal{G});$
- d) If $X \ge 0$, then $\mathsf{E}(X | \mathcal{G}) \ge 0$;
- e) If \mathcal{H} and \mathcal{G} are two σ -fields in Ω such that $\mathcal{H} \subseteq \mathcal{G}$, then

$$\mathsf{E}\Big[\mathsf{E}(X \mid \mathcal{G}) \mid \mathcal{H}\Big] = \mathsf{E}\Big[\mathsf{E}(X \mid \mathcal{H}) \mid \mathcal{G}\Big] = \mathsf{E}(X \mid \mathcal{H});$$

²⁶ In the general countable setting, if $\mathcal{D} = \{D_1, D_2, ...\}$ forms a denumerable (i.e., infinite countable) partition of Ω , then the generated σ -field $\mathcal{G} = \sigma(\mathcal{D})$ consists of all possible subsets of Ω which are obtained by taking countable unions of blocks of \mathcal{D} . Similarly, a variable Y is measurable w.r.t. \mathcal{G} , if for every real y the event $\{\omega : Y(\omega) \leq y\}$ belongs to \mathcal{G} (equivalently, can be expressed as a countable union of blocks of \mathcal{D} .

f) If Z is \mathcal{G} -measurable, then $\mathsf{E}[ZX | \mathcal{G}] = Z \mathsf{E}(X | \mathcal{G}).$

g) If Z is independent of \mathcal{G} , then $\mathsf{E}[Z | \mathcal{G}] = \mathsf{E}[Z]$.

If $(X_k)_{k\geq 1}$ is a sequence of random variables, we can define the generated σ -fields $\mathcal{F}_1^X, \mathcal{F}_2^X, \ldots$, via

$$\mathcal{F}_k^X \stackrel{\text{def}}{=} \sigma(X_1, X_2, \dots, X_k); \qquad (4.2)$$

here, the σ -field \mathcal{F}_k^X stores all information about the process $(X_n)_{n\geq 1}$ up to time k. Observe that these σ -fields form a filtration $(\mathcal{F}_n^X)_{n\geq 1}$ in the sense that

$$\mathcal{F}_1^X \subseteq \mathcal{F}_2^X \subseteq \ldots \subseteq \mathcal{F}_k^X \subseteq \ldots$$
(4.3)

The notion of filtration is very useful when working with martingales. Indeed, a process $(M_n)_{n\geq 0}$ is a martingale if for all $n\geq 0$, $\mathsf{E}|M_n|<\infty$ and $\mathsf{E}(M_{n+1} \mid \mathcal{F}_n^M)=M_n$. We can also generalise the definition of a martingale:

Definition 4.14. $(M_n)_{n\geq 0}$ is a martingale with respect to a filtration $(\mathcal{F}_n)_{n\geq 0}$ if for all $n \geq 0$, $\mathsf{E}(|M_n|) < \infty$ and

$$\mathsf{E}(M_{n+1}|\mathcal{F}_n) = M_n.$$

The original definition of martingale is sometimes referred to as "being a martingale with respect to the natural filtration".

We say that M is a martingale with respect to a sequence $(X_n)_{n\geq 0}$ if it is a martingale with respect to the filtration $(\mathcal{F}_n^X)_{n\geq 0}$.

We also notice that by repeatedly applying the tower property in claim e) of Lemma 4.13 above to the sequence (4.3), we get the following result:

Lemma 4.15. If $(M_n)_{n\geq 0}$ is a submartingale w.r.t. $(X_n)_{n\geq 0}$, then for all integer $n\geq k\geq 0$, we have $\mathsf{E}M_n\geq \mathsf{E}M_k$.

Remark 4.16. Changing signs, we get the inequality $\mathsf{E}M_n \leq \mathsf{E}M_k$ for supermartingales, and therefore the equality $\mathsf{E}M_n = \mathsf{E}M_k$ for martingales.

4.3 Martingales and stopping times

Martingales are extremely useful in studying stopping times:

Example 4.17. Let $(X_k)_{k\geq 1}$ be a sequence of i.i.d. Bernoulli random variables with common distribution $\mathsf{P}(X_1 = 1) = p$, $\mathsf{P}(X_1 = -1) = q = 1 - p$, where $p \in (0,1), p \neq 1/2$. For fixed $k \in \{0,1,\ldots,N\}$, define the random walk $(S_n)_{n\geq 0}$ defined via $S_n = k + \sum_{j=1}^n X_j$, $n \geq 0$, and consider the process $(Y_n)_{n\geq 0}$, where $Y_n = (q/p)^{S_n}$. Clearly, Y_n is an $(\mathcal{F}_n^X)_{n\geq 0}$ -martingale, so that $\mathsf{E}(Y_n) = \mathsf{E}(Y_0) = (q/p)^k$ for all $n \geq 0$, recall Lemma 4.15.

Let T be the first time S_n hits 0 or N. If an analogue of the above equality, $\mathsf{E}(Y_T) = \mathsf{E}(Y_0) = (q/p)^k$ were true for (random) time T, we could find the exit probability $\mathsf{p}_k = \mathsf{P}(S \text{ hits } 0 \text{ before } N | S_0 = k)$ from the expression

$$\mathsf{E}(Y_T) = (q/p)^0 \mathsf{p}_k + (q/p)^N (1 - \mathsf{p}_k),$$

thus obtaining $\mathbf{p}_k = \left((q/p)^k - (q/p)^N\right) / \left(1 - (q/p)^N\right)$.

Remark 4.18. The method used in the previous example relies on the assumption $\mathsf{E}(Y_T) = \mathsf{E}(Y_0)$ and on the formula for $\mathsf{E}(Y_T)$ for a certain random variable T. An important part of the theory of martingales is to study random variables T for which the above statements are true.²⁷

Example 4.19. Let $S_n = \sum_{k=1}^n X_k$ be the simple symmetric random walk in $\{-K, \ldots, K\}$, generated by a sequence of i.i.d. symmetric Bernoulli r.v. X_k , where $\mathsf{P}(X_1 = \pm 1) = 1/2$. Similarly to Example 4.17 one can study the hitting time T of the boundary, $T = \inf\{n \ge 0 : |S_n| = K\}$: namely, since ²⁸

$$\mathsf{E}((S_T)^2) = K^2 \mathsf{P}(S_T = K) + K^2 \mathsf{P}(S_T = -K) = K^2,$$

the same heuristics applied to the martingale $(Y_n)_{n\geq 0}$, $Y_n \stackrel{\text{def}}{=} (S_n)^2 - n$, leads to $0 = \mathsf{E}(Y_0) = \mathsf{E}(Y_T) = \mathsf{E}((S_T)^2) - \mathsf{E}(T)$; i.e., it suggests that $\mathsf{E}(T) = K^2$.

One of our aims is to discuss general results that justify the above heuristics. To this end, we need to carefully define what we mean by a "stopping time".

Definition 4.20. A variable T is a stopping time for a process $(X_n)_{n\geq 0}$, if the occurrence/non-occurrence of the event $\{T = n\} =$ "we stop at time n" can be determined by looking at the values X_0, X_1, \ldots, X_n of the process up to time n. Equivalently, if we have $\{T \leq n\} \in \mathcal{F}_n^X \equiv \sigma(X_0, \ldots, X_n)$ for every $n \geq 0$.

Example 4.21. Let $(X_n)_{n\geq 0}$ be a stochastic process with values in S, and let T be the hitting time of a set $A \subset S$, namely, $T = \min\{n \geq 0 : X_n \in A\}$. Then T is a stopping time for $(X_n)_{n\geq 0}$.

Indeed, for every fixed $n \ge 0$, we have $\{T > n\} \equiv \{X_0 \notin A, X_1 \notin A, \dots, X_n \notin A\}$; therefore, the event $\{T > n\}$ and its complement $\{T \le n\}$ both belong to \mathcal{F}_n^X .

By contrast, the last time that X visits A, $\tilde{T} = \max\{n \ge 0 : X_n \in A\}$ is not generally a stopping time. Because we generally cannot tell just by looking at X_0, \ldots, X_n , whether the process will visit A after time n or not.

Exercise 4.22. Let $k \in \mathbb{N}$ be fixed, and let S and T be stopping times for a process $(X_n)_{n\geq 0}$. Show that the following are stopping times:

(a) $T \equiv k$,

 $^{^{27}}$ Notice that the gambler's ruin problem can be solved by using the methods of finite Markov chains, so we indeed know that the result above is correct.

 $^{^{28}\}text{the equality is correct, because $\mathsf{P}(T<\infty)=1$ here!}$

(b) $S \wedge T \equiv \min(S, T)$,

(c)
$$S \lor T \equiv \max(S, T)$$
.

Let A be a set of states, and let $T = T_A$ be the moment of the first visit to A, i.e., $T = \min\{n \ge 0 : X_n \in A\}$. Consider $S = S_A = \min\{n > T_A : X_n \in A\}$, the moment of the second visit to A. Show that S_A is a stopping time for $(X_n)_{n\ge 0}$. Is the variable $L = \max\{n \ge 0 : X_n \in A\}$ a stopping time for $(X_n)_{n\ge 0}$?

Exercise 4.23. Let $(M_n)_{n\geq 0}$ be a submartingale w.r.t. $(X_n)_{n\geq 0}$, and let T be a stopping time for $(X_n)_{n\geq 0}$. Show that the process $(L_n^T)_{n\geq 0}$,

$$L_n^T \stackrel{\text{def}}{=} M_{n \wedge T} \equiv \begin{cases} M_n \,, & n \leq T \,, \\ M_T \,, & n > T \,, \end{cases}$$

is a submartingale w.r.t. $(X_n)_{n\geq 0}$. Deduce that if $(M_n)_{n\geq 0}$ is a martingale w.r.t. $(X_n)_{n\geq 0}$, then the stopped process $(L_n^T)_{n\geq 0}$ is also a martingale w.r.t. $(X_n)_{n\geq 0}$.

4.4 Optional stopping theorem

The optional stopping (or sampling) theorem (OST) tells us that, under quite general assumptions, whenever X_n is a martingale, then $X_{T \wedge n}$ is a martingale for a stopping time T. Such results are very useful in deriving inequalities and probabilities of various events associated with such stochastic processes.

Theorem 4.24 (Optional Stopping Theorem). Let $(M_n)_{n\geq 0}$ be a martingale w.r.t. $(X_n)_{n\geq 0}$, and let T be a stopping time for $(X_n)_{n\geq 0}$. Then the equality

$$\mathsf{E}[M_T] = \mathsf{E}[M_0] \tag{4.4}$$

holds whenever one of the following conditions holds:

- (OST-1) the stopping time T is bounded, i.e., $P(T \le N) = 1$ for some $N < \infty$;
- (OST-2) ET < ∞ , and the martingale $(M_n)_{n\geq 0}$ has bounded increments, i.e., $|M_{n+1} - M_n| \leq K$ for all n and some constant K;
- (OST-3) $P(T < \infty) = 1$, and the martingale $(M_n)_{n \ge 0}$ is bounded, i.e., $|M_n| \le K$ for all n and some constant K.

Remark 4.25. If M_n records gambler's fortune, by (OST-3), one cannot make money from a fair game, unless an unlimited amount of credit is available.

Remark 4.26. One can generalize (OST-3) by replacing the condition of boundedness, $|M_n| \leq K$, by that of uniform integrability for the martingale $(M_n)_{n\geq 0}$: a sequence of random variables $(Y_n)_{n\geq 0}$ is uniformly integrable if

$$\lim_{K \to \infty} \sup_{n \ge 0} \mathsf{E} \left(|Y_n| \mathbf{1}_{\{|Y_n| > K\}} \right) = 0.$$
(4.5)

Example 4.27. Let the SSRW $(S_n)_{n\geq 0}$ be generated as in Example 4.19. Put

$$H \stackrel{\text{def}}{=} \inf\{n \ge 0 : S_n = 1\}$$

Since this RW is recurrent,²⁹ we deduce that $P(H < \infty) = 1$. However, the (OST) does not apply, as $0 = E(S_0) \neq E(S_H) \equiv 1$. It is an instructive Exercise to check which conditions in each of the above (OST) are violated.

We now give the proof of Theorem 4.24.

Proof. Let us first assume that T satisfies (OST-1); that is, there is some $N < \infty$ with $0 \le T \le N$. Then the decomposition

$$M_T = \sum_{n=0}^{N} M_T \mathbf{1}_{\{T=n\}} = \sum_{n=0}^{N} M_n \mathbf{1}_{\{T=n\}} = M_0 + \sum_{n=0}^{N-1} (M_{n+1} - M_n) \mathbf{1}_{\{T>n\}}$$

holds. Now for each $0 \le n \le N - 1$, (a) of Lemma 4.13 allows us to rewrite $\mathsf{E}((M_{n+1} - M_n)\mathbf{1}_{\{T > n\}})$ as

$$\mathsf{E}\big(\mathsf{E}\big((M_{n+1}-M_n)\mathbf{1}_{\{T>n\}}|\mathcal{F}_n^X\big)\big) = \mathsf{E}\big(\mathbf{1}_{\{T>n\}}\mathsf{E}\big(M_{n+1}-M_n|\mathcal{F}_n^X\big)\big)$$

where we have used that $\{T > n\}$ is \mathcal{F}_n^X -measurable (by definition of a stopping time). Since M is a martingale, $\mathsf{E}(M_{n+1} - M_n | \mathcal{F}_n^X) = 0$ and hence $\mathsf{E}((M_{n+1} - M_n)\mathbf{1}_{\{T > n\}}) = 0$ for each n. Linearity of expectation then implies that $\mathsf{E}(M_T) = \mathsf{E}(M_0)$ as required.

Now let us assume that T satisfies (OST-2). For fixed n, $\min(T, n) = T \wedge n$ is clearly a bounded stopping time (it is less than n with probability one), so by (OST-1) we have that $\mathsf{E}M_{T\wedge n} = \mathsf{E}M_0$ for all $n \geq 0$. We now want to take a limit as $n \to \infty$. For this we write

$$|M_T - M_{T \wedge n}| = \left| \sum_{k > n} (M_k - M_n) \mathbf{1}_{\{T = k\}} \right| = \left| \sum_{k > n} (M_k - M_{k-1}) \mathbf{1}_{\{T \ge k\}} \right|$$

(in particular, noting that this gives $|M_T| \leq KT$ when n = 0 and so M_T is integrable). Taking expectations then gives that $\mathsf{E}(|M_T - M_{T \wedge n}|) \leq K \sum_{k>n} \mathsf{P}(T \geq k)$ which tends to 0 as $n \to \infty$. Hence $\mathsf{E}(M_T) = \lim_{n \to \infty} \mathsf{E}(M_{T \wedge n}) = \lim_{n \to \infty} \mathsf{E}(M_0) = \mathsf{E}(M_0)$.

Finally, we can assume (OST-3) and deduce the result in a similar way. The strategy is the same, but instead of writing $M_T - M_{T \wedge n}$ as a telescoping sum, we note that $|M_T - M_{T \wedge n}| \leq 2K \mathbb{1}_{\{T > n\}}$ so that

$$|\mathsf{E}M_T - \mathsf{E}M_{T \wedge n}| \le 2K\mathsf{P}(T > n) \to 0$$
 as $n \to \infty$.

Remark 4.28. For those who are familiar with the dominated convergence theorem. In (OST-3) it is sufficient to assume that $|M_{n\wedge T}| \leq K$ for all $n \geq 0$ and $P(T < \infty) = 1$. Indeed, by the dominated convergence theorem we deduce that then $|M_T| \leq K$, so that the argument in the proof above applies.

²⁹alternatively, recall the result in Example 1.26.

With suitable martingales (OST) gives very powerful results. The following instructive example is due to D. Williams:

Example 4.29. (ABRACADABRA) A monkey types symbols at random, one per unit time, on a typewriter having 26 keys. How long on average will it take him to produce the sequence 'ABRACADABRA'?

Solution To compute the expected time, imagine a sequence of gamblers, each initially having £1, playing at a fair gambling casino. Gambler arriving just before time n ($n \ge 1$) bets £1 on the event {nth letter will be A}. If he loses, he leaves. If he wins, he receives £26 all of which he bets on the event {n + 1 st letter will be B}. If he loses, he leaves. If he wins, he receives £26² all of which he bets on the event {n + 2 nd letter will be R} and so on through the whole ABRACADABRA sequence.

Let X_n denote the total winnings of the casino after the nth day. Since all bets are fair the process $(X_n)_{n\geq 0}$ is a martingale with mean zero. Let N denote the time until the sequence ABRACADABRA appears. At time N, gambler N-10would have won $\pounds 26^{11} - 1$, gambler N - 3 would have won $\pounds 26^4 - 1$, gambler N would have won $\pounds 26 - 1$ and all other N - 3 gamblers would have lost their initial fortune. Therefore,

$$X_N = N - 3 - (26^{11} - 1) - (26^4 - 1) - (26 - 1) = N - 26^{11} - 26^4 - 26$$

and since (OST-2) can be applied (check this!), we deduce the $E(X_N) = E(X_0) = 0$, that is

$$\mathsf{E}(N) = 26 + 26^4 + 26^{11} \,.$$

Remark 4.30. Notice that the answer could also be obtained by considering a finite state Markov chain X_n on the state space of 12 strings representing the longest possible intersection of the tail of the typed text with the target word ABRACADABRA, ie., {ABRACADABRA, ABRACADABR, ..., ABRA, ABR, AB, A, \emptyset }, as there N is just the hitting time of the state ABRACADABRA from the initial condition $X_0 = \emptyset$.

Exercise 4.31. Use an appropriate (OST) to carefully derive the probability p_k in Example 4.17.

Exercise 4.32. Use an appropriate (OST) to carefully derive the expectation E(T) in Example 4.19.

Exercise 4.33. Consider the simple symmetric random walk $(S_n)_{n\geq 0}$, generated by a sequence of i.i.d. Bernoulli r.v. X_k with $\mathsf{P}(X_1 = \pm 1) = 1/2$, i.e., $S_n = \sum_{k=1}^n X_k$. For integer a < 0 < b, let T be the stopping time $T = \inf\{n \geq 0 : S_n \notin (a, b)\} \equiv \inf\{n \geq 0 : S_n \in \{a, b\}\}.$

(a) Show that $(S_n)_{n\geq 0}$ is a martingale and use an appropriate (OST) to find $P(S_T = a)$ and $P(S_T = b)$.

- (b) Show that $(M_n)_{n\geq 0}$ defined via $M_n = (S_n)^2 n$ is a martingale w.r.t. the process $(S_n)_{n\geq 0}$.
- (c) For fixed integer K > 0, carefully apply an appropriate (OST) to M_n and prove that $\mathsf{E}(T \wedge K) = \mathsf{E}[(S_{T \wedge K})^2]$.
- (d) Deduce that E(T) = -ab.

Exercise 4.34. A coin showing heads with probability p is tossed repeatedly. Let w be a fixed sequence of outcomes such as 'HTH', and let N denote the number of (independent) tosses until the word w is observed. Using an appropriate martingale, find the expectation EN for each of the following sequences: 'HH', 'HTH', 'HHTTHH'.

Lemma 4.35. Let $(Y_n)_{n\geq 0}$ be a supermartingale w.r.t. a sequence $(X_n)_{n\geq 0}$ and let $H_n \in \mathcal{F}_{n-1}^X = \sigma(X_0, \ldots, X_{n-1})$ satisfy $0 \leq H_n \leq c_n$, where the constant c_n might depend on n. Then the process $W_n = W_0 + \sum_{m=1}^n H_m(Y_m - Y_{m-1})$, $n \geq 0$, is a supermartingale w.r.t. $(X_n)_{n\geq 0}$.

Proof. Following the proof of the optional stopping theorem, we observe that since $(Y_n)_{n\geq 0}$ is a supermartingale w.r.t. $(X_n)_{n\geq 0}$,

$$\mathsf{E}(H_m(Y_m - Y_{m-1})) = \mathsf{E}[H_m \,\mathsf{E}(Y_m - Y_{m-1} \,|\, \mathcal{F}_{m-1})] \le 0\,.$$

Example 4.36. If $(Y_n)_{n\geq 0}$ describes the stock price process, and H_m is the number of stocks held during the time (m-1,m] (decided when the price Y_{m-1} is known), then W_n describes the fortune of an investor at time n. As $(W_n)_{n\geq 0}$ is a supermartingale w.r.t. $(X_n)_{n\geq 0}$, we have $\mathsf{E}W_n \leq \mathsf{E}W_0$ for all $n \geq 0$.

Remark 4.37. The famous "doubling martingale" corresponds to doubling the bet size until one wins, i.e., to taking $H_m = 2^{m-1} \mathbb{1}_{\{T > m\}}$, where T is the first moment when the price goes up, i.e., $T = \min\{m > 0 : Y_m - Y_{m-1} = 1\}$. Since the stopped process $(W_{n \wedge T})_{n \geq 0}$ is a supermartingale, for all $n \geq 0$ we have $\mathsf{E}(W_{n \wedge T}) \leq \mathsf{E}(W_0)$, i.e., on average, the doubling strategy does not produce money if one bets against a (super)martingale.

Example 4.38. [Wald's equation] Let $(S_n)_{n\geq 0}$ be a random walk generated by a sequence $(X_n)_{n\geq 0}$ of i.i.d. steps with $\mathsf{E}|X| < \infty$ and $\mathsf{E}(X) = m$. If T is a stopping time for $(X_n)_{n\geq 0}$ with $\mathsf{E}(T) < \infty$, then the optional stopping theorem implies that S_T is integrable and

$$\mathsf{E}(S_T - S_0) = m \,\mathsf{E}(T).$$

To show this, first notice that $S_n - nEX = S_n - mn$ is a martingale and for every $n \ge 0$ the variable $T \wedge n$ is a bounded stopping time. By (OST-1), we have

$$\mathsf{E}(S_0) = \mathsf{E}(S_{n \wedge T} - m(n \wedge T)). \tag{4.6}$$

This rearranges to

$$\mathsf{E}(S_{n\wedge T} - S_0) = m\mathsf{E}(n\wedge T)$$

for every n. Now, the RHS converges to $\mathsf{E}(T)$ as $n\to\infty$ since $|\mathsf{E}(T)-\mathsf{E}(n\wedge T)|\leq\mathsf{E}(T1_{\{T>n\}})=\sum_{k>n}k\mathsf{P}(T=k),$ where the tail sums on the right go to zero as $n\to\infty$ by the assumption that T is integrable. Next, by writing $|S_T|=\sum_{k\geq 0}|X_k|1_{\{T\geq k\}}$ as a telescoping sum, where $\mathsf{E}(|X_k|1_{\{T\geq k\}})=\mathsf{P}(T\geq k)\mathsf{E}(|X_1|)$ and $\sum_k\mathsf{P}(T\geq k)<\infty,$ we see that $|S_T|$ is integrable. 30 Similarly, we can bound $\mathsf{E}(|S_T-S_{T\wedge n}|)\leq\mathsf{E}(|X_1|)\sum_{k>n}\mathsf{P}(T\geq k)$ which tends to 0 as $n\to\infty.$ This implies that $\mathsf{E}(S_{T\wedge n})\to\mathsf{E}(S_T)$ as $n\to\infty,$ and combining the above completes the argument.

4.5 Martingale convergence theorem

This subsection is optional and will not be examined.

The following example has a number of important applications.

Example 4.39 (Pólya's urn). An urns contains one green and one red ball. At every step a ball is selected at random, and then replaced together with another ball of the same colour. Let X_n be the number of green balls after nth draw, $X_0 = 1$. Then the fraction $M_n = X_n/(n+2)$ of green balls is a martingale w.r.t. the filtration $(\mathcal{F}_n^X)_{n\geq 0}$.

Indeed, as $|M_n| \leq 1$ we have $\mathsf{E}|M_n| \leq 1$ for all $n \geq 0$, and since

$$\mathsf{P}(X_{n+1} = k+1 \mid X_n = k) = \frac{k}{n+2}, \qquad \mathsf{P}(X_{n+1} = k \mid X_n = k) = 1 - \frac{k}{n+2},$$

we get $\mathsf{E}(X_{n+1} \mid \mathcal{F}_n^X) = \frac{n+3}{n+2} X_n$, equivalently, $\mathsf{E}(M_{n+1} \mid \mathcal{F}_n^X) = M_n$.

Exercise 4.40. Show that $\mathsf{P}(M_n = \frac{k}{n+2}) = \frac{1}{n+1}$ for $1 \le k \le n+1$, i.e., M_n is uniformly distributed in $\left\{\frac{1}{n+2}, \frac{2}{n+2}, \dots, \frac{n+1}{n+2}\right\}$.

Exercise 4.40 suggests that in the limit $n \to \infty$ the distribution of M_n becomes uniform in (0, 1):

Exercise 4.41. Show that $\lim_{n \to \infty} \mathsf{P}(M_n < x) = x$ for every $x \in (0, 1)$.

In view of Exercise 4.40, a natural question is: does the proportion M_n of green balls fluctuate between 0 and 1 infinitely often or does it eventually settle down to a particular value? The following example shows that the latter is true. Our argument is based upon the following observation: if a real sequence y_n does not converge, for some real a, b with $-\infty < a < b < \infty$ the sequence y_n must go from the region below a to the region above b (and back) infinitely often.

³⁰Here we are really using the monotone convergence theorem: if $0 \leq Z_n \leq Z$ for every n and $Z_n \uparrow Z$ as $n \to \infty$, then $\mathsf{E}(Z_n) \to \mathsf{E}(Z)$ as $n \to \infty$.

Example 4.42. For fixed $n \ge 0$ let $M_n < a \in (0, 1)$, and let $N = \min\{k > n : M_n > b\}$ for some $b \in (a, 1)$. Since $N_m = N \land m$ is a bounded stopping time, by (OST-1) we have $\mathsf{E}M_{N_m} = \mathsf{E}M_n < a$ if only m > n. On the other hand,

$$\mathsf{E}M_{N_m} \ge \mathsf{E}\big(M_{N_m} \mathbf{1}_{N \le m}\big) \equiv \mathsf{E}\big(M_N \mathbf{1}_{N \le m}\big) > b \,\mathsf{P}(N \le m) \,.$$

In other words, $P(N \le m) < \frac{a}{b}$ and consequently $P(N < \infty) \le \frac{a}{b} < 1$, i.e., the fraction M_n of green balls ever gets above level b with probability at most $\frac{a}{b}$. Suppose that at certain moment $N \in (n, \infty)$ the fraction of green balls became bigger than b. Then a similar argument shows that with probability at most (1-b)/(1-a) the value M_n becomes smaller than a at a later moment.

Put $S_0 = \min\{n \ge 0 : M_n < a\}$, and then, inductively, for $k \ge 0$,

$$T_k = \min\{n > S_k : M_n > b\}, \qquad S_{k+1} = \min\{n > T_k : M_n < a\}.$$
(4.7)

The argument above implies that

$$\mathsf{P}(S_k < \infty) \le \prod_{j=1}^k \Big(\mathsf{P}(T_{j-1} < \infty \mid S_{j-1} < \infty) \mathsf{P}(S_j < \infty \mid T_{j-1} < \infty) \Big)$$
(4.8)

with the RHS bounded above by $\left(\frac{a}{b}\right)^k \left(\frac{1-b}{1-a}\right)^k \to 0$ as $k \to \infty$. As a result, the probability of infinitely many crossing (i.e., $S_k < \infty$ for all $k \ge 0$) vanishes.

Clearly, the argument above applies to all strips $(a,b) \subset (0,1)$ with rational endpoints. Thus, with probability one,³¹ trajectories of M_n eventually converge to a particular value.³²

Exercise 4.43. Write $U_{(a,b)}$ for the total number of upcrossings of the strip (a,b) by the process $(M_n)_{n\geq 0}$. By using the approach of Example 4.42 and noticing that $\{U_{(a,b)}\geq m\}\subset\{S_{m-1}<\infty\}$ or otherwise, show that $\mathsf{E}U_{(a,b)}<\infty$.

The argument in Example 4.42 also works in general. Let $(M_n)_{n\geq 0}$ be a martingale w.r.t. filtration $(\mathcal{F}_n^X)_{n\geq 0}$. For real a, b with $-\infty < a < b < \infty$ let $U_{(a,b)}$ be the total number of upcrossings of the strip (a,b). The following result (or some of its variants) is often referred to as Doob's Upcrossing Lemma:

Lemma 4.44. Let the martingale $(M_n)_{n\geq 0}$ have uniformly bounded expectations, i.e., for some constant K and all $n \geq 0$, $\mathsf{E}|M_n| < K < \infty$. If $U_{(a,b)}$ is the number of upcrossings of a strip (a,b), then $\mathsf{E}U_{(a,b)} < \infty$.

Proof. With stopping times as in (4.7), put $H_n = 1$ if $S_m < n \leq T_m$ and put $H_n = 0$ otherwise. Then the process $W_n = \sum_{k=1}^n H_k(M_k - M_{k-1})$ is a martingale w.r.t. $(M_n)_{n\geq 0}$, cf. Lemma 4.35. It is easy to check that $W_n \geq (b-a)U_n - |M_n - a|$ (draw the picture!), where $U_n = \max\{m \geq 0 : T_m \leq n\}$ is the number of upcrossings of the strip (a, b) up to time n. As a result

$$0 = \mathsf{E} W_0 = \mathsf{E} W_n \ge (b-a) \, \mathsf{E} U_n - \mathsf{E} |M_n - a| \ge (b-a) \, \mathsf{E} U_n - (K+|a|) \,,$$

so that $\mathsf{E}U_n \leq (K+|a|)/(b-a)$ for all $n \geq 0$, and thus $\mathsf{E}U_{(a,b)} < \infty$.

³¹If M_n does not converge, it must cross at least one of countably many strips (a, b) with rational points infinitely many times.

 $^{^{32}}$ which is random and depends on the trajectory

Theorem 4.45. Let $(M_n)_{n\geq 0}$ be a martingale as in Lemma 4.44. Then there exists a random variable M_{∞} such that $M_n \to M_{\infty}$ with probability one.

Proof. If M_n does not converge, for some rational a, b with $-\infty < a < b < \infty$ we must have $U_{(a,b)} = \infty$. However, by Lemma 4.44, $\mathsf{E}U_{(a,b)} < \infty$ implying that $\mathsf{P}(U_{(a,b)} = \infty) = 0$. As the number of such pairs (a, b) is countable, the result follows.

Exercise 4.46. Let $(X_k)_{k>1}$ be independent variables with

$$\mathsf{P}\left(X = \frac{3}{2}\right) = \mathsf{P}\left(X = \frac{1}{2}\right) = \frac{1}{2}$$

Put $M_n = X_1 \cdot \ldots \cdot X_n$ with $M_0 = 1$. Show that M_n is an $(\mathcal{F}_n^X)_{n \ge 0}$ martingale. Deduce that $M_n \to M_\infty$ with probability one. Can you compute $\mathsf{E}(M_\infty)$?

4.6 Additional problems

Exercise 4.47. Let $(\eta_n)_{n\geq 1}$ be independent positive random variables with $\mathsf{E}\eta_n = 1$ for all $n \geq 1$. If a random variable $M_0 > 0$ is independent of $(\eta_n)_{n\geq 0}$ and $\mathsf{E}M_0 < \infty$, then the process $(M_n)_{n\geq 0}$ defined via $M_n = M_0 \prod_{j=1}^n \eta_j$ is a martingale w.r.t. $(\eta_n)_{n\geq 1}$.

Interpreting $\eta_n - 1$ as the (fractional) change in the value of a stock during the *n*th time interval, the martingale $(M_n)_{n\geq 0}$ can be used to model stock prices. Two often used examples are:

Discrete Black-Sholes model: take $\eta_j = e^{\zeta_j}$, where ζ_j is Gaussian, $\zeta_j \sim \mathcal{N}(\mu, \sigma^2)$; Binomial model: take $\eta_j = (1+a)e^{-r}$ and $\eta_j = (1+a)^{-1}e^{-r}$ with probabilities p and 1-p respectively.

Exercise 4.48. Let $(S_n)_{n\geq 0}$ be the random walk from Example 4.19. Find constants a, b, c such that the process $(S_n)^4 + an(S_n)^2 + bn^2 + cn$ is an $(X_n)_{n\geq 0}$ -martingale. Use the heuristc in Example 4.19 to predict the value of the second moment $\mathsf{E}(T^2)$ of the exit time T.

Exercise 4.49. A standard symmetric dice is tossed repeatedly. Let N be the number of (independent) tosses until a fixed pattern is observed. Using an appropriate martingale, find EN for the sequences '123456' and '123321'.

Exercise 4.50. Suppose that the process in Example 4.39 is modified as follows: for a fixed integer c > 1, every time a random ball is selected, it is replaced together with other c balls of the same colour. If, as before, X_n denotes the total number of green balls after n draws, show that the the fraction $M_n = \frac{X_n}{2+nc}$ of green balls forms a martingale w.r.t. $(\mathcal{F}_n^X)_{n\geq 0}$.

Exercise 4.51. Find the large-n limit of the distribution of the martingale $(M_n)_{n\geq 0}$ from Exercise 4.50.

Exercise 4.52. Let $(X_n)_{n\geq 0}$ be a birth-and-death process in $S = \{0, 1, ...\}$, i.e., a Markov chain in S with transition probabilities $p_{00} = r_0$, $p_{01} = p_0$, and $p_{m,m-1} = q_m$, $p_{m,m} = r_m$, $p_{m,m+1} = p_m$ for m > 0, while $p_{m,k} = 0$ for all other pairs $(m,k) \in S^2$. Let $X_0 = x$, and for $y \geq 0$ denote $T_y \stackrel{\text{def}}{=} \min\{n \geq 0 : X_n = y\}$.

- (a) Show that the process $(\varphi(X_n))_{n\geq 0}$ with $\varphi(z) \stackrel{\text{def}}{=} \sum_{y=1}^{z} \prod_{x=1}^{y-1} \frac{q_x}{p_x}$ is a martingale.
- (b) Show that for all $0 \le a < X_0 = x < b$ we have

$$\mathsf{P}(T_b < T_a) = (\varphi(x) - \varphi(a)) / (\varphi(b) - \varphi(a)).$$

Deduce that state 0 is recurrent iff $\varphi(b) \to \infty$ as $b \to \infty$.

(c) Now suppose that $p_m \equiv p$, $q_m \equiv q = 1 - p$, and $r_m = 0$ for m > 0, whereas $p_0 = p$ and $r_0 = q$. Show that in this case the result in part b) above becomes

$$\mathsf{P}(T_b < T_a) = \left((q/p)^a - (q/p)^x \right) / \left((q/p)^a - (q/p)^b \right).$$

(d) Find $P(T_b < T_a)$ if in the setup of part c) one has p = q = 1/2.

Exercise 4.53. Let $(\xi_k)_{k\geq 1}$ be i.i.d. random variables with $\mathsf{P}(\xi = 1) = p < \frac{1}{2}$, $\mathsf{P}(\xi = -1) = q = 1 - p$, and $\mathsf{E}\xi > 0$. Let $(S_n)_{n\geq 0}$ be the generated random walk, $S_n = x + \xi_1 + \cdots + \xi_n$, and let $T_0 = \min\{n \geq 0 : S_n = 0\}$ be the hitting time of 0. Deduce that for all x > 0, $\mathsf{P}(T_0 < \infty) = (q/p)^x$. Compare this to the result of Example 1.26.

Exercise 4.54. Let $(Z_n)_{n\geq 0}$ be a homogeneous branching process with $Z_0 = 1$, $m = \mathsf{E}Z_1 > 0$ and finite variance $\sigma^2 = \mathsf{Var}(Z_1)$. Show that $M_n = Z_n/m^n$ is a martingale.

- (a) Let m > 1. By using Exercise 2.3 or otherwise show that $\mathsf{E}(M_n)$ is uniformly bounded. Deduce that $M_n \to M_\infty$ almost surely. What can you say about $\mathsf{E}M_\infty$?
- (b) What happens if $m \leq 1$? Compute $\mathsf{E}(M_{\infty})$.

Hint: Recall Exercise 4.56.

Exercise 4.55. Let $(X_n)_{n\geq 0}$ be a sequence of i.i.d. Bernoulli random variables with P(X = 1) = p and P(X = -1) = 1 - p = q. Let $(S_n)_{n\geq 0}$ be the generated random walk with $S_0 = x > 0$, and let $T = \min\{n \ge 0 : S_n = 0\}$ be the hitting time of the origin. Example 1.26 suggests that $E(T) = x/(q-p) < \infty$ for q > p.

- 1. Use (4.6) to deduce that $(q-p)\mathsf{E}(n \wedge T) = \mathsf{E}(S_0 S_{n \wedge T}) \leq \mathsf{E}(S_0) = x$; then take $n \to \infty$ to show that $\mathsf{E}(T) < \infty$;
- 2. Use the Wald equation to deduce that indeed $\mathsf{E}(T) = \frac{x}{q-p}$. Can you give a heuristic explanation of this result?
- 3. Argue, without using the Wald equation, that E(T) = cx for some constant c.
- 4. Use the Wald equation and an argument by contradiction to show that if $p \ge q$, then $\mathsf{E}(T) = \infty$ for all x > 0.

Exercise 4.56. Let a variable Y satisfy $E(Y^2) < \infty$. Show that $E|Y| < \infty$. Hint Notice that $Var(|Y|) \ge 0$.

Exercise 4.57. Let $(X_n)_{n\geq 0}$ be an irreducible Markov chain in $S = \{0, 1, ...\}$ with bounded jumps, and let a function $\varphi : S \to \mathbb{R}^+$ satisfy $\varphi(x) \to \infty$ as $x \to \infty$. Let $K \geq 0$ be such that

$$\mathsf{E}_{x}\varphi(X_{1}) \stackrel{\text{der}}{=} \mathsf{E}\big[\varphi(X_{1})|X_{0}=x\big] \leq \varphi(x)$$

for all $x \ge K$.

- (a) If the function $\varphi(x)$ is monotone, show that the set of states $\{0, 1, \ldots, K\}$, and thus the whole space S is recurrent for $(X_n)_{n\geq 0}$. Hint If $H_K = \min\{n \geq 0 : 0 \leq X_n \leq K\}$, show that $\varphi(X_{n \wedge H_K})$ is a supermartingale. Deduce that if $T_M = \min\{n \geq 0 : X_n \geq M\}$, then $\varphi(x) \geq \varphi(M) \mathsf{P}(T_M < H_K)$.
- (b) Argue that the result holds for φ(x) ≥ 0 not necessarily monotone, but only satisfying φ(x) → ∞ as x → ∞.
 Hint With T_M as above, show that φ^{*}_M ^{def} min{φ(x) : x ≥ M} → ∞ as M → ∞.

Exercise 4.58. Let $(X_k)_{k\geq 1}$ be independent variables with $\mathsf{P}(X = \pm 1) = \frac{1}{2}$. Show that the process

$$M_n = \sum_{k=1}^n \frac{1}{k} X_k$$

is a martingale w.r.t. $(\mathcal{F}_n^X)_{n\geq 0}$ and that $\mathsf{E}[(M_n)^2] < K < \infty$ for some constant K and all $n \geq 0$. By using Exercise 4.56 or otherwise, deduce that with probability one, $M_n \to M_\infty$ for some random variable M_∞ . In other words, the random sign harmonic series converges with probability one.

Exercise 4.59. [Wright-Fischer model] Thinking of a population of N haploid individuals who have one copy of each of their chromosomes, consider a fixed population of N genes that can be of two types A or a. In the simplest version of

this model the population at time n+1 is obtained by sampling with replacement from the population at time n. If we let X_n to be the number of A alleles at time n, then X_n is a Markov chain with transition probability

$$p_{ij} = \binom{N}{j} \left(\frac{i}{N}\right)^j \left(1 - \frac{i}{N}\right)^{N-j}.$$

Starting from i of the A alleles and N-i of a alleles, what is the probability that the population fixates in the all A state? Hint You can use the heuristics of Example 4.17 but need to justify your computation!

Exercise 4.60. Let $(X_n)_{n\geq 0}$ be a Markov chain with a (countable) state space S and the transition matrix \mathbf{P} , and let h(x, n) be a function of the state x and time n such that ³³

$$h(x,n) = \sum_{y} p_{xy}h(y,n+1).$$

Show that $(M_n)_{n\geq 0}$ with $M_n = h(X_n, n)$ is a martingale w.r.t. $(X_n)_{n\geq 0}$.

Exercise 4.61. Let $(X_n)_{n\geq 0}$ be a Markov chain with a (countable) state space S and the transition matrix \mathbf{P} . If ψ is a right eigenvector of \mathbf{P} corresponding to the eigenvalue $\lambda > 0$, i.e., $\mathbf{P}\psi = \lambda\psi$, show that the process $M_n = \lambda^{-n}\psi(X_n)$ is a martingale w.r.t. $(X_n)_{n\geq 0}$.

 $^{^{33}\}text{This result is useful, eg., if } h(x,n) = x^2 - cn \text{ or } h(x,n) = \exp\{x - cn\} \text{ for a suitable } c.$