4 Martingales

4.1 Definition and some examples

A martingale is a generalized version of a "fair game".
Definition 4.1. A process $\left(M_{n}\right)_{n \geq 0}$ is a martingale if
a) for every $n \geq 0$ the expectation $\mathrm{E} M_{n}$ is finite, equivalently, $\mathrm{E}\left|M_{n}\right|<\infty$;
b) for every $n \geq 0$ and all $m_{n}, m_{n-1}, \ldots, m_{0}$ we have

$$
\begin{equation*}
\mathrm{E}\left(M_{n+1} \mid M_{n}=m_{n}, \ldots, M_{0}=m_{0}\right)=m_{n} . \tag{4.1}
\end{equation*}
$$

For those familiar with the notion of conditioning on a random variable (see next section), (4.1) can just be written as $\mathrm{E}\left(M_{n+1} \mid M_{n}, \ldots, M_{0}\right)=M_{n}$.

Definition 4.2. We say that $\left(M_{n}\right)_{n \geq 0}$ is a supermartingale ${ }^{24}$ if the equality in (4.1) holds with \leq, ie., $\mathrm{E}\left(M_{n+1} \mid M_{n}, \ldots, M_{0}\right) \leq M_{n}$; and we say that $\left(M_{n}\right)_{n \geq 0}$ is a submartingale, if (4.1) holds with \geq, ie., $\mathrm{E}\left(M_{n+1} \mid M_{n}, \ldots, M_{0}\right) \geq M_{n}$.
Example 4.3. Let $\left(\xi_{n}\right)_{n \geq 1}$ be independent random variables ${ }^{25}$ with

$$
\mathrm{E} \xi_{n}=0
$$

for all $n \geq 1$. Then the process $\left(M_{n}\right)_{n \geq 0}$ defined via

$$
M_{n} \stackrel{\text { def }}{=} M_{0}+\xi_{1}+\cdots+\xi_{n}
$$

is a martingale as long as the random variable M_{0} is independent of $\left(\xi_{n}\right)_{n \geq 1}$ and $\mathrm{E}\left|M_{0}\right|<\infty$. For example, we will often take $M_{0}=0$ or some other deterministic constant.

Indeed, by the triangle inequality, $\mathrm{E}\left|M_{n}\right| \leq \mathrm{E}\left|M_{0}\right|+\sum_{j=1}^{n} \mathrm{E}\left|\xi_{j}\right|<\infty$ for all $n \geq 0$; on the other hand, the independence property implies

$$
\mathrm{E}\left(M_{n+1}-M_{n} \mid M_{n}, \ldots, M_{0}\right) \equiv \mathrm{E}\left(\xi_{n+1} \mid M_{n}, \ldots, M_{0}\right)=\mathrm{E} \xi_{n+1}=0
$$

Remark 4.4. Notice that if $\mathrm{E} \xi_{n} \geq 0$ for all $n \geq 1$, then $\left(M_{n}\right)_{n \geq 0}$ is a submartingale, whereas if $\mathrm{E} \xi_{n} \leq 0$ for all $n \geq 1$, then $\left(M_{n}\right)_{n \geq 0}$ is a supermartingale. More generally, if $\left(\xi_{n}\right)_{n \geq 1}$ are independent random variables with $\mathrm{E}\left|\xi_{n}\right|<\infty$ for all $n \geq 1$, then the process $M_{n}=M_{0}+\left(\xi_{1}-\mathrm{E} \xi_{1}\right)+\cdots+\left(\xi_{n}-\mathrm{E} \xi_{n}\right), n \geq 0$, is a martingale.

Exercise 4.5. Given a sequence $\left(\xi_{k}\right)_{k \geq 1}$ of independent Bernoulli variables with common distribution $\mathrm{P}(\xi=1)=p$ and $\mathrm{P}(\xi=-1)=q=1-p$, define the generated random walk via $X_{n}=\sum_{k=1}^{n} \xi_{k}, n \geq 0$. Show that the process $M_{n}=(q / p)^{X_{n}}$ is a martingale.

[^0]Example 4.6. Let $\left(Z_{n}\right)_{n \geq 0}$ be a branching process with $\mathrm{E} Z_{1}=m<\infty$. We have $\mathrm{E}\left|Z_{n}\right|<\infty$ and $\mathrm{E}\left(Z_{n+1} \mid Z_{n}, \ldots, Z_{0}\right)=m Z_{n}$ for all $n \geq 0$. In other words, the process $\left(Z_{n}\right)_{n \geq 0}$ is a martingale, a submartingale or a supermartingale depending on whether $m=1, m>1$ or $m<1$.
Notice also, that for every $m \in(0, \infty)$ the process $\left(Z_{n} / m^{n}\right)_{n \geq 0}$ is a martingale.
Exercise 4.7. Let ρ be the extinction probability for a branching process $\left(Z_{n}\right)_{n \geq 0}$; show that $M_{n}=\rho^{Z_{n}}$ is a martingale.

We can also construct many examples of submartingales and supermartingales if we have a martingale and apply certain functions to it. This is a consequence of:
Lemma 4.8 (Conditional Jensen's inequality). Suppose that X is an integrable random variable on $(\Omega, \mathcal{F}, \mathrm{P})$ and $A \in \mathcal{F}$ with $\mathrm{P}(A)>0$.

Suppose that φ is a convex function such that $\varphi(X)$ is also integrable. Then

$$
\mathrm{E}(\varphi(X) \mid A) \geq \varphi(\mathrm{E}(X \mid A))
$$

Proof. This follows from the non-conditional version of Jensen's inequality, and using the fact that $\mathrm{P}(\cdot \mid A)$ is a valid probability measure.
Example 4.9. Let $\left(X_{n}\right)_{n \geq 0}$ be a martingale. If, for some convex function $f(\cdot)$ we have $\mathrm{E}\left(\left|f\left(X_{n}\right)\right|\right)<\infty$ for all $n \geq 0$, then the process $f(X):=\left(f\left(X_{n}\right)\right)_{n \geq 0}$ is a submartingale.

Similarly, if for some concave $f(\cdot)$ we have $\mathrm{E}\left(\left|f\left(X_{n}\right)\right|\right)<\infty$ for all $n \geq 0$, then the process $f(X)$ is a supermartingale.

Both these claims follow immediately from the Jensen inequalities for conditional expectations.

4.2 A few remarks on conditional expectation

Recall the following basic definition:
Example 4.10. Let (Ω, \mathcal{F}, P) be a probability triple and let X and Y be random variables taking values $x_{1}, x_{2}, \ldots, x_{m}$ and $y_{1}, y_{2}, \ldots, y_{n}$ respectively. On the event $\left\{Y=y_{j}\right\}$ one defines the conditional probability

$$
\mathrm{P}\left(X=x_{i} \mid Y=y_{j}\right) \stackrel{\text { def }}{=} \frac{\mathrm{P}\left(X=x_{i}, Y=y_{j}\right)}{\mathrm{P}\left(Y=y_{j}\right)}
$$

and the conditional expectation: $\mathrm{E}\left(X \mid Y=y_{j}\right) \equiv \sum_{i} x_{i} \mathrm{P}\left(X=x_{i} \mid Y=y_{j}\right)$. Then the conditional expectation $Z=\mathrm{E}(X \mid Y)$ of X given Y is defined as follows:

$$
\text { if } Y(\omega)=y_{j}, \quad \text { then } \quad Z(\omega) \stackrel{\text { def }}{=} z_{j} \equiv \mathrm{E}\left(X \mid Y=y_{j}\right)
$$

Notice that the value z_{j} is completely determined by y_{j}; in other words, Z is a function of Y, and as such, a random variable. Of course, if X and Y are independent, we have $Z(\omega) \equiv \mathrm{E} X$.

Definition 4.11. If $\mathcal{D}=\left\{D_{1}, D_{2}, \ldots, D_{m}\right\}$ is a finite partition ${ }^{26}$ of Ω, the collection $\mathcal{G}=\sigma(\mathcal{D})$ of all 2^{m} possible subsets of Ω constructed from blocks D_{i} is called the σ-field generated by \mathcal{D}. A random variable Y is measurable with respect to \mathcal{G} if it is constant on every block D_{i} of the initial partition \mathcal{D}.

In Example 4.10 above we see that Z is constant on the events $\left\{Y=y_{j}\right\}$; ie., Z is measurable w.r.t. the σ-field $\sigma(Y) \equiv \sigma\left(\left\{Y=y_{j}\right\}_{j}\right)$. Moreover, for every $G_{j} \equiv\left\{Y=y_{j}\right\}$, we have

$$
\begin{aligned}
\mathrm{E}\left(Z 1_{G_{j}}\right) & =z_{j} \mathrm{P}\left(Y=y_{j}\right)=\sum_{i} x_{i} \mathrm{P}\left(X=x_{i} \mid Y=y_{j}\right) \mathrm{P}\left(Y=y_{j}\right) \\
& =\sum_{i} x_{i} \mathrm{P}\left(X=x_{i}, Y=y_{j}\right)=\mathrm{E}\left(X 1_{G_{j}}\right)
\end{aligned}
$$

where the last equality follows from the observation that the random variable $X 1_{G_{j}}$ equals x_{i} on every event $G_{j} \cap\left\{X=x_{i}\right\}=\left\{Y=y_{j}\right\} \cap\left\{X=x_{i}\right\}$ and vanishes identically outside the set G_{j}.

Remark 4.12. The last two properties can be used to define conditional expectation in general: Let $(\Omega, \mathcal{F}, \mathrm{P})$ be a probability triple, let $\mathcal{G} \subseteq \mathcal{F}$ be a σ-field, and let X be a rv, $X: \Omega \rightarrow \mathbb{R}$. The conditional expectation of X w.r.t. \mathcal{G} is the unique random variable Z such that: Z is \mathcal{G} measurable and for every set $G \in \mathcal{G}$ we have $\int_{G} Z \mathrm{dP} \equiv \mathrm{E}\left(Z 1_{G}\right)=\mathrm{E}\left(X 1_{G}\right) \equiv \int_{G} X \mathrm{dP}$.

Notice that when $\mathcal{G}=\sigma(D)$, the definition in the remark above coincides with Definition 4.11.

The following are the most important properties of conditional expectation:
Lemma 4.13. Let $(\Omega, \mathcal{F}, \mathrm{P})$ be a probability triple, and let $\mathcal{G} \subset \mathcal{F}$ a σ-field. Then for all random variables X, X_{1}, X_{2} and constants a_{1}, a_{2}, the following properties hold:
a) If $Z=\mathrm{E}(X \mid \mathcal{G})$ then $\mathrm{E} Z=\mathrm{E} X$;
b) If X is \mathcal{G}-measurable, then $\mathrm{E}(X \mid \mathcal{G})=X$;
c) $\mathrm{E}\left(a_{1} X_{1}+a_{2} X_{2} \mid \mathcal{G}\right)=a_{1} \mathrm{E}\left(X_{1} \mid \mathcal{G}\right)+a_{2} \mathrm{E}\left(X_{2} \mid \mathcal{G}\right)$;
d) If $X \geq 0$, then $\mathrm{E}(X \mid \mathcal{G}) \geq 0$;
e) If \mathcal{H} and \mathcal{G} are two σ-fields in Ω such that $\mathcal{H} \subseteq \mathcal{G}$, then

$$
\mathrm{E}[\mathrm{E}(X \mid \mathcal{G}) \mid \mathcal{H}]=\mathrm{E}[\mathrm{E}(X \mid \mathcal{H}) \mid \mathcal{G}]=\mathrm{E}(X \mid \mathcal{H})
$$

[^1]f) If Z is \mathcal{G}-measurable, then $\mathrm{E}[Z X \mid \mathcal{G}]=Z \mathrm{E}(X \mid \mathcal{G})$.
g) If Z is independent of \mathcal{G}, then $\mathrm{E}[Z \mid \mathcal{G}]=\mathrm{E}[Z]$.

If $\left(X_{k}\right)_{k \geq 1}$ is a sequence of random variables, we can define the generated σ-fields $\mathcal{F}_{1}^{X}, \mathcal{F}_{2}^{X}, \ldots$, via

$$
\begin{equation*}
\mathcal{F}_{k}^{X} \stackrel{\text { def }}{=} \sigma\left(X_{1}, X_{2}, \ldots, X_{k}\right) ; \tag{4.2}
\end{equation*}
$$

here, the σ-field \mathcal{F}_{k}^{X} stores all information about the process $\left(X_{n}\right)_{n \geq 1}$ up to time k. Observe that these σ-fields form a filtration $\left(\mathcal{F}_{n}^{X}\right)_{n \geq 1}$ in the sense that

$$
\begin{equation*}
\mathcal{F}_{1}^{X} \subseteq \mathcal{F}_{2}^{X} \subseteq \ldots \subseteq \mathcal{F}_{k}^{X} \subseteq \ldots \tag{4.3}
\end{equation*}
$$

The notion of filtration is very useful when working with martingales. Indeed, a process $\left(M_{n}\right)_{n \geq 0}$ is a martingale if for all $n \geq 0, \mathrm{E}\left|M_{n}\right|<\infty$ and $\mathrm{E}\left(M_{n+1} \mid\right.$ $\left.\mathcal{F}_{n}^{M}\right)=M_{n}$. We can also generalise the definition of a martingale:

Definition 4.14. $\left(M_{n}\right)_{n \geq 0}$ is a martingale with respect to a filtration $\left(\mathcal{F}_{n}\right)_{n \geq 0}$ if for all $n \geq 0, \mathrm{E}\left(\left|M_{n}\right|\right)<\infty$ and

$$
\mathrm{E}\left(M_{n+1} \mid \mathcal{F}_{n}\right)=M_{n} .
$$

The original definition of martingale is sometimes referred to as "being a martingale with respect to the natural filtration".

We say that M is a martingale with respect to a sequence $\left(X_{n}\right)_{n \geq 0}$ if it is a martingale with respect to the filtration $\left(\mathcal{F}_{n}^{X}\right)_{n \geq 0}$.

We also notice that by repeatedly applying the tower property in claim e) of Lemma 4.13 above to the sequence (4.3), we get the following result:

Lemma 4.15. If $\left(M_{n}\right)_{n \geq 0}$ is a submartingale w.r.t. $\left(X_{n}\right)_{n \geq 0}$, then for all integer $n \geq k \geq 0$, we have $\mathrm{E} M_{n} \geq \mathrm{E} M_{k}$.

Remark 4.16. Changing signs, we get the inequality $\mathrm{E} M_{n} \leq \mathrm{E} M_{k}$ for supermartingales, and therefore the equality $\mathrm{E} M_{n}=\mathrm{E} M_{k}$ for martingales.

4.3 Martingales and stopping times

Martingales are extremely useful in studying stopping times:
Example 4.17. Let $\left(X_{k}\right)_{k \geq 1}$ be a sequence of i.i.d. Bernoulli random variables with common distribution $\mathrm{P}\left(X_{1}=1\right)=p, \mathrm{P}\left(X_{1}=-1\right)=q=1-p$, where $p \in(0,1), p \neq 1 / 2$. For fixed $k \in\{0,1, \ldots, N\}$, define the random walk $\left(S_{n}\right)_{n \geq 0}$ defined via $S_{n}=k+\sum_{j=1}^{n} X_{j}, n \geq 0$, and consider the process $\left(Y_{n}\right)_{n \geq 0}$, where $Y_{n}=(q / p)^{S_{n}}$. Clearly, Y_{n} is an $\left(\mathcal{F}_{n}^{X}\right)_{n \geq 0}$-martingale, so that $\mathrm{E}\left(Y_{n}\right)=\mathrm{E}\left(Y_{0}\right)=$ $(q / p)^{k}$ for all $n \geq 0$, recall Lemma 4.15.

Let T be the first time S_{n} hits 0 or N. If an analogue of the above equality, $\mathrm{E}\left(Y_{T}\right)=\mathrm{E}\left(Y_{0}\right)=(q / p)^{k}$ were true for (random) time T, we could find the exit probability $\mathrm{p}_{k}=\mathrm{P}\left(S\right.$ hits 0 before $\left.N \mid S_{0}=k\right)$ from the expression

$$
\mathrm{E}\left(Y_{T}\right)=(q / p)^{0} \mathbf{p}_{k}+(q / p)^{N}\left(1-\mathrm{p}_{k}\right),
$$

thus obtaining $\mathrm{p}_{k}=\left((q / p)^{k}-(q / p)^{N}\right) /\left(1-(q / p)^{N}\right)$.
Remark 4.18. The method used in the previous example relies on the assumption $\mathrm{E}\left(Y_{T}\right)=\mathrm{E}\left(Y_{0}\right)$ and on the formula for $\mathrm{E}\left(Y_{T}\right)$ for a certain random variable T. An important part of the theory of martingales is to study random variables T for which the above statements are true. ${ }^{27}$

Example 4.19. Let $S_{n}=\sum_{k=1}^{n} X_{k}$ be the simple symmetric random walk in $\{-K, \ldots, K\}$, generated by a sequence of i.i.d. symmetric Bernoulli r.v. X_{k}, where $\mathrm{P}\left(X_{1}= \pm 1\right)=1 / 2$. Similarly to Example 4.17 one can study the hitting time T of the boundary, $T=\inf \left\{n \geq 0:\left|S_{n}\right|=K\right\}$: namely, since ${ }^{28}$

$$
\mathrm{E}\left(\left(S_{T}\right)^{2}\right)=K^{2} \mathrm{P}\left(S_{T}=K\right)+K^{2} \mathrm{P}\left(S_{T}=-K\right)=K^{2},
$$

the same heuristics applied to the martingale $\left(Y_{n}\right)_{n \geq 0}, Y_{n} \stackrel{\text { def }}{=}\left(S_{n}\right)^{2}-n$, leads to $0=\mathrm{E}\left(Y_{0}\right)=\mathrm{E}\left(Y_{T}\right)=\mathrm{E}\left(\left(S_{T}\right)^{2}\right)-\mathrm{E}(T)$; i.e., it suggests that $\mathrm{E}(T)=K^{2}$.

One of our aims is to discuss general results that justify the above heuristics. To this end, we need to carefully define what we mean by a "stopping time".

Definition 4.20. A variable T is a stopping time for a process $\left(X_{n}\right)_{n \geq 0}$, if the occurrence/non-occurrence of the event $\{T=n\}=$ "we stop at time n " can be determined by looking at the values $X_{0}, X_{1}, \ldots, X_{n}$ of the process up to time n. Equivalently, if we have $\{T \leq n\} \in \mathcal{F}_{n}^{X} \equiv \sigma\left(X_{0}, \ldots, X_{n}\right)$ for every $n \geq 0$.

Example 4.21. Let $\left(X_{n}\right)_{n \geq 0}$ be a stochastic process with values in S, and let T be the hitting time of a set $A \subset S$, namely, $T=\min \left\{n \geq 0: X_{n} \in A\right\}$. Then T is a stopping time for $\left(X_{n}\right)_{n \geq 0}$.

Indeed, for every fixed $n \geq 0$, we have $\{T>n\} \equiv\left\{X_{0} \notin A, X_{1} \notin A, \ldots, X_{n} \notin\right.$ $A\}$; therefore, the event $\{T>n\}$ and its complement $\{T \leq n\}$ both belong to \mathcal{F}_{n}^{X}.

By contrast, the last time that X visits $A, \tilde{T}=\max \left\{n \geq 0: X_{n} \in A\right\}$ is not generally a stopping time. Because we generally cannot tell just by looking at X_{0}, \ldots, X_{n}, whether the process will visit A after time n or not.

Exercise 4.22. Let $k \in \mathbb{N}$ be fixed, and let S and T be stopping times for a process $\left(X_{n}\right)_{n \geq 0}$. Show that the following are stopping times:
(a) $T \equiv k$,

[^2](b) $S \wedge T \equiv \min (S, T)$,
(c) $S \vee T \equiv \max (S, T)$.

Let A be a set of states, and let $T=T_{A}$ be the moment of the first visit to A, ie., $T=\min \left\{n \geq 0: X_{n} \in A\right\}$. Consider $S=S_{A}=\min \left\{n>T_{A}: X_{n} \in A\right\}$, the moment of the second visit to A. Show that S_{A} is a stopping time for $\left(X_{n}\right)_{n \geq 0}$. Is the variable $L=\max \left\{n \geq 0: X_{n} \in A\right\}$ a stopping time for $\left(X_{n}\right)_{n \geq 0}$?

Exercise 4.23. Let $\left(M_{n}\right)_{n \geq 0}$ be a submartingale w.r.t. $\left(X_{n}\right)_{n \geq 0}$, and let T be a stopping time for $\left(X_{n}\right)_{n \geq 0}$. Show that the process $\left(L_{n}^{T}\right)_{n \geq 0}$,

$$
L_{n}^{T} \stackrel{\text { def }}{=} M_{n \wedge T} \equiv \begin{cases}M_{n}, & n \leq T \\ M_{T}, & n>T\end{cases}
$$

is a submartingale w.r.t. $\left(X_{n}\right)_{n>0}$. Deduce that if $\left(M_{n}\right)_{n>0}$ is a martingale w.r.t. $\left(X_{n}\right)_{n \geq 0}$, then the stopped process $\left(L_{n}^{T}\right)_{n \geq 0}$ is also a martingale w.r.t. $\left(X_{n}\right)_{n \geq 0}$.

4.4 Optional stopping theorem

The optional stopping (or sampling) theorem (OST) tells us that, under quite general assumptions, whenever X_{n} is a martingale, then $X_{T \wedge n}$ is a martingale for a stopping time T. Such results are very useful in deriving inequalities and probabilities of various events associated with such stochastic processes.

Theorem 4.24 (Optional Stopping Theorem). Let $\left(M_{n}\right)_{n \geq 0}$ be a martingale w.r.t. $\left(X_{n}\right)_{n \geq 0}$, and let T be a stopping time for $\left(X_{n}\right)_{n \geq 0}$. Then the equality

$$
\begin{equation*}
\mathrm{E}\left[M_{T}\right]=\mathrm{E}\left[M_{0}\right] \tag{4.4}
\end{equation*}
$$

holds whenever one of the following conditions holds:
(OST-1) the stopping time T is bounded, i.e., $\mathrm{P}(T \leq N)=1$ for some $N<\infty$;
(OST-2) ET < ∞, and the martingale $\left(M_{n}\right)_{n \geq 0}$ has bounded increments, i.e., $\left|M_{n+1}-M_{n}\right| \leq K$ for all n and some constant K;
(OST-3) $\mathrm{P}(T<\infty)=1$, and the martingale $\left(M_{n}\right)_{n \geq 0}$ is bounded, i.e., $\left|M_{n}\right| \leq$ K for all n and some constant K.

Remark 4.25. If M_{n} records gambler's fortune, by (OST-3), one cannot make money from a fair game, unless an unlimited amount of credit is available.

Remark 4.26. One can generalize (OST-3) by replacing the condition of boundedness, $\left|M_{n}\right| \leq K$, by that of uniform integrability for the martingale $\left(M_{n}\right)_{n \geq 0}$: a sequence of random variables $\left(Y_{n}\right)_{n \geq 0}$ is uniformly integrable if

$$
\begin{equation*}
\lim _{K \rightarrow \infty} \sup _{n \geq 0} \mathrm{E}\left(\left|Y_{n}\right| 1_{\left\{\left|Y_{n}\right|>K\right\}}\right)=0 . \tag{4.5}
\end{equation*}
$$

Example 4.27. Let the $S S R W\left(S_{n}\right)_{n \geq 0}$ be generated as in Example 4.19. Put

$$
H \stackrel{\text { def }}{=} \inf \left\{n \geq 0: S_{n}=1\right\}
$$

Since this $R W$ is recurrent, ${ }^{29}$ we deduce that $\mathrm{P}(H<\infty)=1$. However, the (OST) does not apply, as $0=\mathrm{E}\left(S_{0}\right) \neq \mathrm{E}\left(S_{H}\right) \equiv 1$. It is an instructive Exercise to check which conditions in each of the above (OST) are violated.

We now give the proof of Theorem 4.24.
Proof. Let us first assume that T satisfies (OST-1); that is, there is some $N<\infty$ with $0 \leq T \leq N$. Then the decomposition

$$
M_{T}=\sum_{n=0}^{N} M_{T} 1_{\{T=n\}}=\sum_{n=0}^{N} M_{n} 1_{\{T=n\}}=M_{0}+\sum_{n=0}^{N-1}\left(M_{n+1}-M_{n}\right) 1_{\{T>n\}}
$$

holds. Now for each $0 \leq n \leq N-1$, (a) of Lemma 4.13 allows us to rewrite $\mathrm{E}\left(\left(M_{n+1}-M_{n}\right) 1_{\{T>n\}}\right)$ as

$$
\mathrm{E}\left(\mathrm{E}\left(\left(M_{n+1}-M_{n}\right) 1_{\{T>n\}} \mid \mathcal{F}_{n}^{X}\right)\right)=\mathrm{E}\left(1_{\{T>n\}} \mathrm{E}\left(M_{n+1}-M_{n} \mid \mathcal{F}_{n}^{X}\right)\right)
$$

where we have used that $\{T>n\}$ is \mathcal{F}_{n}^{X}-measurable (by definition of a stopping time $)$. Since M is a martingale, $\mathrm{E}\left(M_{n+1}-M_{n} \mid \mathcal{F}_{n}^{X}\right)=0$ and hence $\mathrm{E}\left(\left(M_{n+1}-\right.\right.$ $\left.\left.M_{n}\right) 1_{\{T>n\}}\right)=0$ for each n. Linearity of expectation then implies that $\mathrm{E}\left(M_{T}\right)=$ $\mathrm{E}\left(M_{0}\right)$ as required.

Now let us assume that T satisfies (OST-2). For fixed $n, \min (T, n)=T \wedge n$ is clearly a bounded stopping time (it is less than n with probability one), so by (OST-1) we have that $\mathrm{E} M_{T \wedge n}=\mathrm{E} M_{0}$ for all $n \geq 0$. We now want to take a limit as $n \rightarrow \infty$. For this we write

$$
\left|M_{T}-M_{T \wedge n}\right|=\left|\sum_{k>n}\left(M_{k}-M_{n}\right) 1_{\{T=k\}}\right|=\left|\sum_{k>n}\left(M_{k}-M_{k-1}\right) 1_{\{T \geq k\}}\right|
$$

(in particular, noting that this gives $\left|M_{T}\right| \leq K T$ when $n=0$ and so M_{T} is integrable). Taking expectations then gives that $\mathrm{E}\left(\left|M_{T}-M_{T \wedge n}\right|\right) \leq K \sum_{k>n} \mathrm{P}(T \geq$ $k)$ which tends to 0 as $n \rightarrow \infty$. Hence $\mathrm{E}\left(M_{T}\right)=\lim _{n \rightarrow \infty} \mathrm{E}\left(M_{T \wedge n}\right)=\lim _{n \rightarrow \infty} \mathrm{E}\left(M_{0}\right)=$ $\mathrm{E}\left(M_{0}\right)$.

Finally, we can assume (OST-3) and deduce the result in a similar way. The strategy is the same, but instead of writing $M_{T}-M_{T \wedge n}$ as a telescoping sum, we note that $\left|M_{T}-M_{T \wedge n}\right| \leq 2 K 1_{\{T>n\}}$ so that

$$
\left|\mathrm{E} M_{T}-\mathrm{E} M_{T \wedge n}\right| \leq 2 K \mathrm{P}(T>n) \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

Remark 4.28. For those who are familiar with the dominated convergence theorem. In (OST-3) it is sufficient to assume that $\left|M_{n \wedge T}\right| \leq K$ for all $n \geq 0$ and $\mathrm{P}(T<\infty)=1$. Indeed, by the dominated convergence theorem we deduce that then $\left|M_{T}\right| \leq K$, so that the argument in the proof above applies.

[^3]With suitable martingales (OST) gives very powerful results.
The following instructive example is due to D. Williams:
Example 4.29. (ABRACADABRA) A monkey types symbols at random, one per unit time, on a typewriter having 26 keys. How long on average will it take him to produce the sequence 'ABRACADABRA'?

Solution To compute the expected time, imagine a sequence of gamblers, each initially having $£ 1$, playing at a fair gambling casino. Gambler arriving just before time $n(n \geq 1)$ bets $£ 1$ on the event $\{n$th letter will be A$\}$. If he loses, he leaves. If he wins, he receives $£ 26$ all of which he bets on the event $\{n+1$ st letter will be B$\}$. If he loses, he leaves. If he wins, he receives $£ 26^{2}$ all of which he bets on the event $\{n+2$ nd letter will be R$\}$ and so on through the whole ABRACADABRA sequence.

Let X_{n} denote the total winnings of the casino after the nth day. Since all bets are fair the process $\left(X_{n}\right)_{n \geq 0}$ is a martingale with mean zero. Let N denote the time until the sequence ABRACADABRA appears. At time N, gambler $N-10$ would have won $£ 26^{11}-1$, gambler $N-3$ would have won $£ 26^{4}-1$, gambler N would have won $£ 26-1$ and all other $N-3$ gamblers would have lost their initial fortune. Therefore,

$$
X_{N}=N-3-\left(26^{11}-1\right)-\left(26^{4}-1\right)-(26-1)=N-26^{11}-26^{4}-26
$$

and since (OST-2) can be applied (check this!), we deduce the $\mathrm{E}\left(X_{N}\right)=\mathrm{E}\left(X_{0}\right)=$ 0 , that is

$$
\mathrm{E}(N)=26+26^{4}+26^{11} .
$$

Remark 4.30. Notice that the answer could also be obtained by considering a finite state Markov chain X_{n} on the state space of 12 strings representing the longest possible intersection of the tail of the typed text with the target word ABRACADABRA, ie., $\{$ ABRACADABRA, ABRACADABR, ..., ABRA, ABR, AB, A, $\varnothing\}$, as there N is just the hitting time of the state ABRACADABRA from the initial condition $X_{0}=\varnothing$.

Exercise 4.31. Use an appropriate (OST) to carefully derive the probability p_{k} in Example 4.17.

Exercise 4.32. Use an appropriate (OST) to carefully derive the expectation $\mathrm{E}(T)$ in Example 4.19.

Exercise 4.33. Consider the simple symmetric random walk $\left(S_{n}\right)_{n>0}$, generated by a sequence of i.i.d. Bernoulli r.v. X_{k} with $\mathrm{P}\left(X_{1}= \pm 1\right)=1 / 2$, ie., $S_{n}=\sum_{k=1}^{n} X_{k}$. For integer $a<0<b$, let T be the stopping time $T=\inf \left\{n \geq 0: S_{n} \notin(a, b)\right\} \equiv \inf \left\{n \geq 0: S_{n} \in\{a, b\}\right\}$.
(a) Show that $\left(S_{n}\right)_{n>0}$ is a martingale and use an appropriate (OST) to find $\mathrm{P}\left(S_{T}=a\right)$ and $\mathrm{P}\left(S_{T}=b\right)$.
(b) Show that $\left(M_{n}\right)_{n \geq 0}$ defined via $M_{n}=\left(S_{n}\right)^{2}-n$ is a martingale w.r.t. the process $\left(S_{n}\right)_{n \geq 0}$.
(c) For fixed integer $K>0$, carefully apply an appropriate (OST) to M_{n} and prove that $\mathrm{E}(T \wedge K)=\mathrm{E}\left[\left(S_{T \wedge K}\right)^{2}\right]$.
(d) Deduce that $\mathrm{E}(T)=-a b$.

Exercise 4.34. A coin showing heads with probability p is tossed repeatedly. Let w be a fixed sequence of outcomes such as ' HTH ', and let N denote the number of (independent) tosses until the word w is observed. Using an appropriate martingale, find the expectation $\mathrm{E} N$ for each of the following sequences: ' HH ', 'HTH', 'HHTTHH'.

Lemma 4.35. Let $\left(Y_{n}\right)_{n \geq 0}$ be a supermartingale w.r.t. a sequence $\left(X_{n}\right)_{n \geq 0}$ and let $H_{n} \in \mathcal{F}_{n-1}^{X}=\sigma\left(X_{0}, \ldots, X_{n-1}\right)$ satisfy $0 \leq H_{n} \leq c_{n}$, where the constant c_{n} might depend on n. Then the process $W_{n}=W_{0}+\sum_{m=1}^{n} H_{m}\left(Y_{m}-Y_{m-1}\right)$, $n \geq 0$, is a supermartingale w.r.t. $\left(X_{n}\right)_{n \geq 0}$.

Proof. Following the proof of the optional stopping theorem, we observe that since $\left(Y_{n}\right)_{n \geq 0}$ is a supermartingale w.r.t. $\left(X_{n}\right)_{n \geq 0}$,

$$
\mathrm{E}\left(H_{m}\left(Y_{m}-Y_{m-1}\right)\right)=\mathrm{E}\left[H_{m} \mathrm{E}\left(Y_{m}-Y_{m-1} \mid \mathcal{F}_{m-1}\right)\right] \leq 0 .
$$

Example 4.36. If $\left(Y_{n}\right)_{n>0}$ describes the stock price process, and H_{m} is the number of stocks held during the time ($m-1, m$] (decided when the price Y_{m-1} is known), then W_{n} describes the fortune of an investor at time n. As $\left(W_{n}\right)_{n \geq 0}$ is a supermartingale w.r.t. $\left(X_{n}\right)_{n \geq 0}$, we have $\mathrm{E} W_{n} \leq \mathrm{E} W_{0}$ for all $n \geq 0$.
Remark 4.37. The famous "doubling martingale" corresponds to doubling the bet size until one wins, ie., to taking $H_{m}=2^{m-1} 1_{\{T>m\}}$, where T is the first moment when the price goes up, ie., $T=\min \left\{m>0: Y_{m}-Y_{m-1}=1\right\}$. Since the stopped process $\left(W_{n \wedge T}\right)_{n \geq 0}$ is a supermartingale, for all $n \geq 0$ we have $\mathrm{E}\left(W_{n \wedge T}\right) \leq \mathrm{E}\left(W_{0}\right)$, ie., on average, the doubling strategy does not produce money if one bets against a (super)martingale.

Example 4.38. [Wald's equation] Let $\left(S_{n}\right)_{n \geq 0}$ be a random walk generated by a sequence $\left(X_{n}\right)_{n \geq 0}$ of i.i.d. steps with $\mathrm{E}|X|<\infty$ and $\mathrm{E}(X)=m$. If T is a stopping time for $\left(X_{n}\right)_{n \geq 0}$ with $\mathrm{E}(T)<\infty$, then the optional stopping theorem implies that S_{T} is integrable and

$$
\mathrm{E}\left(S_{T}-S_{0}\right)=m \mathrm{E}(T) .
$$

To show this, first notice that $S_{n}-n \mathrm{E} X=S_{n}-m n$ is a martingale and for every $n \geq 0$ the variable $T \wedge n$ is a bounded stopping time. By (OST-1), we have

$$
\begin{equation*}
\mathrm{E}\left(S_{0}\right)=\mathrm{E}\left(S_{n \wedge T}-m(n \wedge T)\right) \tag{4.6}
\end{equation*}
$$

This rearranges to

$$
\mathrm{E}\left(S_{n \wedge T}-S_{0}\right)=m \mathrm{E}(n \wedge T)
$$

for every n. Now, the RHS converges to $\mathrm{E}(T)$ as $n \rightarrow \infty$ since $|\mathrm{E}(T)-\mathrm{E}(n \wedge T)| \leq$ $\mathrm{E}\left(T 1_{\{T>n\}}\right)=\sum_{k>n} k \mathrm{P}(T=k)$, where the tail sums on the right go to zero as $n \rightarrow \infty$ by the assumption that T is integrable. Next, by writing $\left|S_{T}\right|=$ $\sum_{k \geq 0}\left|X_{k}\right| 1_{\{T \geq k\}}$ as a telescoping sum, where $\mathrm{E}\left(\left|X_{k}\right| 1_{\{T \geq k\}}\right)=\mathrm{P}(T \geq k) \mathrm{E}\left(\left|X_{1}\right|\right)$ and $\sum_{k} \mathrm{P}(T \geq k)<\infty$, we see that $\left|S_{T}\right|$ is integrable. ${ }^{30}$ Similarly, we can bound $\mathrm{E}\left(\left|S_{T}-S_{T \wedge n}\right|\right) \leq \mathrm{E}\left(\left|X_{1}\right|\right) \sum_{k>n} \mathrm{P}(T \geq k)$ which tends to 0 as $n \rightarrow \infty$. This implies that $\mathrm{E}\left(S_{T \wedge n}\right) \rightarrow \mathrm{E}\left(S_{T}\right)$ as $n \rightarrow \infty$, and combining the above completes the argument.

4.5 Martingale convergence theorem

This subsection is optional and will not be examined.
The following example has a number of important applications.
Example 4.39 (Pólya's urn). An urns contains one green and one red ball. At every step a ball is selected at random, and then replaced together with another ball of the same colour. Let X_{n} be the number of green balls after nth draw, $X_{0}=1$. Then the fraction $M_{n}=X_{n} /(n+2)$ of green balls is a martingale w.r.t. the filtration $\left(\mathcal{F}_{n}^{X}\right)_{n \geq 0}$.

Indeed, as $\left|M_{n}\right| \leq 1$ we have $\mathrm{E}\left|M_{n}\right| \leq 1$ for all $n \geq 0$, and since
$\mathrm{P}\left(X_{n+1}=k+1 \mid X_{n}=k\right)=\frac{k}{n+2}, \quad \mathrm{P}\left(X_{n+1}=k \mid X_{n}=k\right)=1-\frac{k}{n+2}$,
we get $\mathrm{E}\left(X_{n+1} \mid \mathcal{F}_{n}^{X}\right)=\frac{n+3}{n+2} X_{n}$, equivalently, $\mathrm{E}\left(M_{n+1} \mid \mathcal{F}_{n}^{X}\right)=M_{n}$.
Exercise 4.40. Show that $\mathrm{P}\left(M_{n}=\frac{k}{n+2}\right)=\frac{1}{n+1}$ for $1 \leq k \leq n+1$, ie., M_{n} is uniformly distributed in $\left\{\frac{1}{n+2}, \frac{2}{n+2}, \ldots, \frac{n+1}{n+2}\right\}$.

Exercise 4.40 suggests that in the limit $n \rightarrow \infty$ the distribution of M_{n} becomes uniform in $(0,1)$:
Exercise 4.41. Show that $\lim _{n \rightarrow \infty} \mathrm{P}\left(M_{n}<x\right)=x$ for every $x \in(0,1)$.
In view of Exercise 4.40, a natural question is: does the proportion M_{n} of green balls fluctuate between 0 and 1 infinitely often or does it eventually settle down to a particular value? The following example shows that the latter is true. Our argument is based upon the following observation: if a real sequence y_{n} does not converge, for some real a, b with $-\infty<a<b<\infty$ the sequence y_{n} must go from the region below a to the region above b (and back) infinitely often.

[^4]Example 4.42. For fixed $n \geq 0$ let $M_{n}<a \in(0,1)$, and let $N=\min \{k>n$: $\left.M_{n}>b\right\}$ for some $b \in(a, 1)$. Since $N_{m}=N \wedge m$ is a bounded stopping time, by (OST-1) we have $\mathrm{E} M_{N_{m}}=\mathrm{E} M_{n}<a$ if only $m>n$. On the other hand,

$$
\mathrm{E} M_{N_{m}} \geq \mathrm{E}\left(M_{N_{m}} 1_{N \leq m}\right) \equiv \mathrm{E}\left(M_{N} 1_{N \leq m}\right)>b \mathrm{P}(N \leq m)
$$

In other words, $\mathrm{P}(N \leq m)<\frac{a}{b}$ and consequently $\mathrm{P}(N<\infty) \leq \frac{a}{b}<1$, ie., the fraction M_{n} of green balls ever gets above level b with probability at most $\frac{a}{b}$. Suppose that at certain moment $N \in(n, \infty)$ the fraction of green balls became bigger than b. Then a similar argument shows that with probability at most $(1-b) /(1-a)$ the value M_{n} becomes smaller than a at a later moment.

Put $S_{0}=\min \left\{n \geq 0: M_{n}<a\right\}$, and then, inductively, for $k \geq 0$,

$$
\begin{equation*}
T_{k}=\min \left\{n>S_{k}: M_{n}>b\right\}, \quad S_{k+1}=\min \left\{n>T_{k}: M_{n}<a\right\} . \tag{4.7}
\end{equation*}
$$

The argument above implies that

$$
\begin{equation*}
\mathrm{P}\left(S_{k}<\infty\right) \leq \prod_{j=1}^{k}\left(\mathrm{P}\left(T_{j-1}<\infty \mid S_{j-1}<\infty\right) \mathrm{P}\left(S_{j}<\infty \mid T_{j-1}<\infty\right)\right) \tag{4.8}
\end{equation*}
$$

with the RHS bounded above by $\left(\frac{a}{b}\right)^{k}\left(\frac{1-b}{1-a}\right)^{k} \rightarrow 0$ as $k \rightarrow \infty$. As a result, the probability of infinitely many crossing (ie., $S_{k}<\infty$ for all $k \geq 0$) vanishes.

Clearly, the argument above applies to all strips $(a, b) \subset(0,1)$ with rational endpoints. Thus, with probability one, ${ }^{31}$ trajectories of M_{n} eventually converge to a particular value. ${ }^{32}$

Exercise 4.43. Write $U_{(a, b)}$ for the total number of upcrossings of the strip (a, b) by the process $\left(M_{n}\right)_{n \geq 0}$. By using the approach of Example 4.42 and noticing that $\left\{U_{(a, b)} \geq m\right\} \subset\left\{S_{m-1}<\infty\right\}$ or otherwise, show that $\mathrm{E} U_{(a, b)}<\infty$.

The argument in Example 4.42 also works in general. Let $\left(M_{n}\right)_{n \geq 0}$ be a martingale w.r.t. filtration $\left(\mathcal{F}_{n}^{X}\right)_{n \geq 0}$. For real a, b with $-\infty<a<b<\infty$ let $U_{(a, b)}$ be the total number of upcrossings of the strip (a, b). The following result (or some of its variants) is often referred to as Doob's Upcrossing Lemma:
Lemma 4.44. Let the martingale $\left(M_{n}\right)_{n \geq 0}$ have uniformly bounded expectations, ie., for some constant K and all $n \geq 0, \mathrm{E}\left|M_{n}\right|<K<\infty$. If $U_{(a, b)}$ is the number of upcrossings of a strip (a, b), then $\mathrm{E} U_{(a, b)}<\infty$.
Proof. With stopping times as in (4.7), put $H_{n}=1$ if $S_{m}<n \leq T_{m}$ and put $H_{n}=0$ otherwise. Then the process $W_{n}=\sum_{k=1}^{n} H_{k}\left(M_{k}-M_{k-1}\right)$ is a martingale w.r.t. $\left(M_{n}\right)_{n \geq 0}$, cf. Lemma 4.35. It is easy to check that $W_{n} \geq$ $(b-a) U_{n}-\left|M_{n}-a\right|$ (draw the picture!), where $U_{n}=\max \left\{m \geq 0: T_{m} \leq n\right\}$ is the number of upcrossings of the strip (a, b) up to time n. As a result

$$
0=\mathrm{E} W_{0}=\mathrm{E} W_{n} \geq(b-a) \mathrm{E} U_{n}-\mathrm{E}\left|M_{n}-a\right| \geq(b-a) \mathrm{E} U_{n}-(K+|a|),
$$

so that $\mathrm{E} U_{n} \leq(K+|a|) /(b-a)$ for all $n \geq 0$, and thus $\mathrm{E} U_{(a, b)}<\infty$.

[^5]Theorem 4.45. Let $\left(M_{n}\right)_{n \geq 0}$ be a martingale as in Lemma 4.44. Then there exists a random variable M_{∞} such that $M_{n} \rightarrow M_{\infty}$ with probability one.

Proof. If M_{n} does not converge, for some rational a, b with $-\infty<a<b<\infty$ we must have $U_{(a, b)}=\infty$. However, by Lemma 4.44, $\mathrm{E} U_{(a, b)}<\infty$ implying that $\mathrm{P}\left(U_{(a, b)}=\infty\right)=0$. As the number of such pairs (a, b) is countable, the result follows.

Exercise 4.46. Let $\left(X_{k}\right)_{k \geq 1}$ be independent variables with

$$
\mathrm{P}\left(X=\frac{3}{2}\right)=\mathrm{P}\left(X=\frac{1}{2}\right)=\frac{1}{2} .
$$

Put $M_{n}=X_{1} \cdot \ldots \cdot X_{n}$ with $M_{0}=1$. Show that M_{n} is an $\left(\mathcal{F}_{n}^{X}\right)_{n \geq 0}$ martingale. Deduce that $M_{n} \rightarrow M_{\infty}$ with probability one. Can you compute $\mathrm{E}\left(M_{\infty}\right)$?

4.6 Additional problems

Exercise 4.47. Let $\left(\eta_{n}\right)_{n>1}$ be independent positive random variables with $\mathrm{E} \eta_{n}=1$ for all $n \geq 1$. If a random variable $M_{0}>0$ is independent of $\left(\eta_{n}\right)_{n>0}$ and $\mathrm{E} M_{0}<\infty$, then the process $\left(M_{n}\right)_{n \geq 0}$ defined via $M_{n}=M_{0} \prod_{j=1}^{n} \eta_{j}$ is a martingale w.r.t. $\left(\eta_{n}\right)_{n \geq 1}$.

Interpreting $\eta_{n}-1$ as the (fractional) change in the value of a stock during the nth time interval, the martingale $\left(M_{n}\right)_{n \geq 0}$ can be used to model stock prices. Two often used examples are:
Discrete Black-Sholes model: take $\eta_{j}=e^{\zeta_{j}}$, where ζ_{j} is Gaussian, $\zeta_{j} \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$; Binomial model: take $\eta_{j}=(1+a) e^{-r}$ and $\eta_{j}=(1+a)^{-1} e^{-r}$ with probabilities p and $1-p$ respectively.
Exercise 4.48. Let $\left(S_{n}\right)_{n \geq 0}$ be the random walk from Example 4.19. Find constants a, b, c such that the process $\left(S_{n}\right)^{4}+a n\left(S_{n}\right)^{2}+b n^{2}+c n$ is an $\left(X_{n}\right)_{n \geq 0^{-}}$ martingale. Use the heuristc in Example 4.19 to predict the value of the second moment $\mathrm{E}\left(T^{2}\right)$ of the exit time T.

Exercise 4.49. A standard symmetric dice is tossed repeatedly. Let N be the number of (independent) tosses until a fixed pattern is observed. Using an appropriate martingale, find $\mathrm{E} N$ for the sequences '123456' and '123321'.

Exercise 4.50. Suppose that the process in Example 4.39 is modified as follows: for a fixed integer $c>1$, every time a random ball is selected, it is replaced together with other c balls of the same colour. If, as before, X_{n} denotes the total number of green balls after n draws, show that the the fraction $M_{n}=\frac{X_{n}}{2+n c}$ of green balls forms a martingale w.r.t. $\left(\mathcal{F}_{n}^{X}\right)_{n \geq 0}$.

Exercise 4.51. Find the large-n limit of the distribution of the martingale $\left(M_{n}\right)_{n>0}$ from Exercise 4.50.

Exercise 4.52. Let $\left(X_{n}\right)_{n \geq 0}$ be a birth-and-death process in $\mathcal{S}=\{0,1, \ldots\}$, ie., a Markov chain in \mathcal{S} with transition probabilities $p_{00}=r_{0}, p_{01}=p_{0}$, and $p_{m, m-1}=q_{m}, p_{m, m}=r_{m}, p_{m, m+1}=p_{m}$ for $m>0$, while $p_{m, k}=0$ for all other pairs $(m, k) \in \mathcal{S}^{2}$. Let $X_{0}=x$, and for $y \geq 0$ denote $T_{y} \stackrel{\text { def }}{=} \min \{n \geq 0$: $\left.X_{n}=y\right\}$.
(a) Show that the process $\left(\varphi\left(X_{n}\right)\right)_{n \geq 0}$ with $\varphi(z) \stackrel{\text { def }}{=} \sum_{y=1}^{z} \prod_{x=1}^{y-1} \frac{q_{x}}{p_{x}}$ is a martingale.
(b) Show that for all $0 \leq a<X_{0}=x<b$ we have

$$
\mathrm{P}\left(T_{b}<T_{a}\right)=(\varphi(x)-\varphi(a)) /(\varphi(b)-\varphi(a)) .
$$

Deduce that state 0 is recurrent iff $\varphi(b) \rightarrow \infty$ as $b \rightarrow \infty$.
(c) Now suppose that $p_{m} \equiv p, q_{m} \equiv q=1-p$, and $r_{m}=0$ for $m>0$, whereas $p_{0}=p$ and $r_{0}=q$. Show that in this case the result in part b) above becomes

$$
\mathrm{P}\left(T_{b}<T_{a}\right)=\left((q / p)^{a}-(q / p)^{x}\right) /\left((q / p)^{a}-(q / p)^{b}\right) .
$$

(d) Find $\mathrm{P}\left(T_{b}<T_{a}\right)$ if in the setup of part c) one has $p=q=1 / 2$.

Exercise 4.53. Let $\left(\xi_{k}\right)_{k \geq 1}$ be i.i.d. random variables with $\mathrm{P}(\xi=1)=p<\frac{1}{2}$, $\mathrm{P}(\xi=-1)=q=1-p$, and $\mathrm{E} \xi>0$. Let $\left(S_{n}\right)_{n>0}$ be the generated random walk, $S_{n}=x+\xi_{1}+\cdots+\xi_{n}$, and let $T_{0}=\min \left\{n \geq \overline{0}: S_{n}=0\right\}$ be the hitting time of 0 . Deduce that for all $x>0, \mathrm{P}\left(T_{0}<\infty\right)=(q / p)^{x}$. Compare this to the result of Example 1.26.

Exercise 4.54. Let $\left(Z_{n}\right)_{n>0}$ be a homogeneous branching process with $Z_{0}=1$, $m=\mathrm{E} Z_{1}>0$ and finite variance $\sigma^{2}=\operatorname{Var}\left(Z_{1}\right)$. Show that $M_{n}=Z_{n} / m^{n}$ is a martingale.
(a) Let $m>1$. By using Exercise 2.3 or otherwise show that $\mathrm{E}\left(M_{n}\right)$ is uniformly bounded. Deduce that $M_{n} \rightarrow M_{\infty}$ almost surely. What can you say about $E M_{\infty}$?
(b) What happens if $m \leq 1$? Compute $\mathrm{E}\left(M_{\infty}\right)$.

Hint: Recall Exercise 4.56.
Exercise 4.55. Let $\left(X_{n}\right)_{n>0}$ be a sequence of i.i.d. Bernoulli random variables with $\mathrm{P}(X=1)=p$ and $\mathrm{P}(X=-1)=1-p=q$. Let $\left(S_{n}\right)_{n \geq 0}$ be the generated random walk with $S_{0}=x>0$, and let $T=\min \left\{n \geq 0: S_{n}=0\right\}$ be the hitting time of the origin. Example 1.26 suggests that $\mathrm{E}(T)=x /(q-p)<\infty$ for $q>p$.

1. Use (4.6) to deduce that $(q-p) \mathrm{E}(n \wedge T)=\mathrm{E}\left(S_{0}-S_{n \wedge T}\right) \leq \mathrm{E}\left(S_{0}\right)=x$; then take $n \rightarrow \infty$ to show that $\mathrm{E}(T)<\infty$;
2. Use the Wald equation to deduce that indeed $\mathrm{E}(T)=\frac{x}{q-p}$. Can you give a heuristic explanation of this result?
3. Argue, without using the Wald equation, that $\mathrm{E}(T)=c x$ for some constant c.
4. Use the Wald equation and an argument by contradiction to show that if $p \geq q$, then $\mathrm{E}(T)=\infty$ for all $x>0$.

Exercise 4.56. Let a variable Y satisfy $\mathrm{E}\left(Y^{2}\right)<\infty$. Show that $\mathrm{E}|Y|<\infty$. Hint Notice that $\operatorname{Var}(|Y|) \geq 0$.

Exercise 4.57. Let $\left(X_{n}\right)_{n \geq 0}$ be an irreducible Markov chain in $\mathcal{S}=\{0,1, \ldots\}$ with bounded jumps, and let a function $\varphi: \mathcal{S} \rightarrow \mathbb{R}^{+}$satisfy $\varphi(x) \rightarrow \infty$ as $x \rightarrow \infty$. Let $K \geq 0$ be such that

$$
\mathrm{E}_{x} \varphi\left(X_{1}\right) \stackrel{\text { def }}{=} \mathrm{E}\left[\varphi\left(X_{1}\right) \mid X_{0}=x\right] \leq \varphi(x)
$$

for all $x \geq K$.
(a) If the function $\varphi(x)$ is monotone, show that the set of states $\{0,1, \ldots, K\}$, and thus the whole space \mathcal{S} is recurrent for $\left(X_{n}\right)_{n \geq 0}$.
Hint If $H_{K}=\min \left\{n \geq 0: 0 \leq X_{n} \leq K\right\}$, show that $\varphi\left(X_{n \wedge H_{K}}\right)$ is a supermartingale. Deduce that if $T_{M}=\min \left\{n \geq 0: X_{n} \geq M\right\}$, then $\varphi(x) \geq$ $\varphi(M) \mathrm{P}\left(T_{M}<H_{K}\right)$.
(b) Argue that the result holds for $\varphi(x) \geq 0$ not necessarily monotone, but only satisfying $\varphi(x) \rightarrow \infty$ as $x \rightarrow \infty$.
Hint With T_{M} as above, show that $\varphi_{M}^{*} \stackrel{\text { def }}{=} \min \{\varphi(x): x \geq M\} \rightarrow \infty$ as $M \rightarrow \infty$.

Exercise 4.58. Let $\left(X_{k}\right)_{k \geq 1}$ be independent variables with $\mathrm{P}(X= \pm 1)=\frac{1}{2}$. Show that the process

$$
M_{n}=\sum_{k=1}^{n} \frac{1}{k} X_{k}
$$

is a martingale w.r.t. $\left(\mathcal{F}_{n}^{X}\right)_{n \geq 0}$ and that $\mathrm{E}\left[\left(M_{n}\right)^{2}\right]<K<\infty$ for some constant K and all $n \geq 0$. By using Exercise 4.56 or otherwise, deduce that with probability one, $M_{n} \rightarrow M_{\infty}$ for some random variable M_{∞}. In other words, the random sign harmonic series converges with probability one.

Exercise 4.59. [Wright-Fischer model] Thinking of a population of N haploid individuals who have one copy of each of their chromosomes, consider a fixed population of N genes that can be of two types A or a. In the simplest version of
this model the population at time $n+1$ is obtained by sampling with replacement from the population at time n. If we let X_{n} to be the number of A alleles at time n, then X_{n} is a Markov chain with transition probability

$$
p_{i j}=\binom{N}{j}\left(\frac{i}{N}\right)^{j}\left(1-\frac{i}{N}\right)^{N-j} .
$$

Starting from i of the A alleles and $N-i$ of a alleles, what is the probability that the population fixates in the all A state? Hint You can use the heuristics of Example 4.17 but need to justify your computation!

Exercise 4.60. Let $\left(X_{n}\right)_{n \geq 0}$ be a Markov chain with a (countable) state space \mathcal{S} and the transition matrix \mathbf{P}, and let $h(x, n)$ be a function of the state x and time n such that ${ }^{33}$

$$
h(x, n)=\sum_{y} p_{x y} h(y, n+1) .
$$

Show that $\left(M_{n}\right)_{n \geq 0}$ with $M_{n}=h\left(X_{n}, n\right)$ is a martingale w.r.t. $\left(X_{n}\right)_{n \geq 0}$.
Exercise 4.61. Let $\left(X_{n}\right)_{n>0}$ be a Markov chain with a (countable) state space \mathcal{S} and the transition matrix \mathbf{P}. If $\boldsymbol{\psi}$ is a right eigenvector of \mathbf{P} corresponding to the eigenvalue $\lambda>0$, ie., $\mathbf{P} \psi=\lambda \boldsymbol{\psi}$, show that the process $M_{n}=\lambda^{-n} \psi\left(X_{n}\right)$ is a martingale w.r.t. $\left(X_{n}\right)_{n \geq 0}$.

[^6]
[^0]: ${ }^{24}$ If M_{n} traces your fortune, then "there is nothing super about a supermartingale".
 ${ }^{25}$ Notice that we do not assume that all ξ_{n} have the same distribution!

[^1]: ${ }^{26}$ In the general countable setting, if $\mathcal{D}=\left\{D_{1}, D_{2}, \ldots\right\}$ forms a denumerable (ie., infinite countable) partition of Ω, then the generated σ-field $\mathcal{G}=\sigma(\mathcal{D})$ consists of all possible subsets of Ω which are obtained by taking countable unions of blocks of \mathcal{D}. Similarly, a variable Y is measurable w.r.t. \mathcal{G}, if for every real y the event $\{\omega: Y(\omega) \leq y\}$ belongs to \mathcal{G} (equivalently, can be expressed as a countable union of blocks of \mathcal{D}.

[^2]: ${ }^{27}$ Notice that the gambler's ruin problem can be solved by using the methods of finite Markov chains, so we indeed know that the result above is correct.
 ${ }^{28}$ the equality is correct, because $\mathrm{P}(T<\infty)=1$ here!

[^3]: ${ }^{29}$ alternatively, recall the result in Example 1.26.

[^4]: ${ }^{30}$ Here we are really using the monotone convergence theorem: if $0 \leq Z_{n} \leq Z$ for every n and $Z_{n} \uparrow Z$ as $n \rightarrow \infty$, then $\mathrm{E}\left(Z_{n}\right) \rightarrow \mathrm{E}(Z)$ as $n \rightarrow \infty$.

[^5]: ${ }^{31}$ If M_{n} does not converge, it must cross at least one of countably many strips (a, b) with rational points infinitely many times.
 32 which is random and depends on the trajectory

[^6]: ${ }^{33}$ This result is useful, eg., if $h(x, n)=x^{2}-c n$ or $h(x, n)=\exp \{x-c n\}$ for a suitable c.

