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Description

Bayesian global optimization (BGO) is a machine learning statistical methodology which aims at optimizing objective
functions which are extremely expensive to be directly evaluated many times, and whose analytic expression and
derivatives may not be available. By expensive, we mean in time, money, etc...

BGO is often used as a tool for the analysis of large-scale real world applications in climatology, engineering, chem-
istry, etc.... It can address problems such as inverse problems, computer model calibration, standard parameter esti-
mation, etc....

BGO methods are applicable in scenarios where the objective function (to be optimized) is not available in closed-
form, but it can be evaluated point-wisely at given input values. It is particularly useful when these evaluations are
costly and possibly contaminated by noise.

Central to BGO is the idea of building a probabilistic surrogate model for the objective function and using it to de-
fine a utility function called ‘information acquisition function’ (IAF) whose role is to guide the search for the optimum
value. Given an IAF, BGO iterates between making the observation with the largest expected IAF and rebuilding the
probabilistic surrogate until a convergence criterion is met.

• Consider a function f (x) = exp(1.4x) cos(3.5πx) with
minimum fmin ≈ −3.3470 at location xmin ≈ 0.8686.

on the right −→

• Pretend, we do not know the equation of f (·).

• Assume that we wish itsto find its minimum and mini-
mum location by BGO.

• To see the BGO in action, discovering the global mini-
mum and recovering the real function, click [HERE].

Red dots: the samples; Blue lines: the recovered func-
tion and error bounds; red line: the acquisition function.

Objectives:

The objective of the project is to study several aspects of BGO. For instance, BGO variations to address problems
involving:

• optimization under constraints

• time-dependent models

• heteroscedastisity

• non-stationarity

• multi-fidelity models

http://www.maths.dur.ac.uk/~mffk55/Project_III/2017-2018/BO_1D_animation.gif


Pre-requisites

• Statistical Concepts II

• Knowledge of a programming language (required)

Co-requisites

• Bayesian Statistics III/IV (recommended, but not required)
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Example

Let f (·) be a function with equation
f (x) = exp(1.4x) cos(3.5πx)

with minimum fmin ≈ −3.3470 at location xmin ≈ 0.8686. Pretend the equation of f (·) and its minimum are unknown.
Assume we are interested in learning the minimum and the location of minimum of f (·) .

The BGO in action, discovering the global minimum and recovering the real function is shown below.
Red dots: the samples;
Blue lines: the recovered function and error bounds
Red line: the acquisition function

(a) iteration 1 (b) iteration 2 (c) iteration 3

(d) iteration 10 (e) iteration 12 (f) iteration 31
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