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Conclusion

Outline

1) Perturbative bootstrap methods for computing scattering amplitudes and form
factors to high perturbative orders

◦ Example of supersymmetric three-particle form factors through eight loops

no clear connection to cluster algebras

2) A new antipodal duality relating supersymmetric form factors to amplitudes

◦ Relates three-particle form factors to six-particle amplitudes

direct connection
to cluster algebras

⊗ ←→

◦ Evidence for this duality through seven loops

◦ Extends to a self-duality for four particle form factors
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Conclusion

From Feynman Diagrams. . .

Feynman diagrams provide an intuitive picture for calculating scattering amplitudes and
related quantities perturbatively

︸ ︷︷ ︸
tree level

︸ ︷︷ ︸
one loop

︸ ︷︷ ︸
two loops

A2→2 = + + + · · ·

Two sources of difficulty arise when using Feynman diagrams

◦ number of diagrams grows exponentially

gg → ?? gg ggg gggg ggggg gggggg

# tree diagrams 4 25 220 2485 34300
[Mangano, Parke (1990)]

◦ at loop level, each diagram becomes a complicated integral over loop momenta
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Conclusion

. . . to Surprisingly Simple Expressions

Despite this computational complexity, scattering amplitudes exhibit striking simplicity

◦ At tree level, the n-particle maximum-helicity-violating (MHV) gluon amplitude recombines to

∣∣An(p−1 , p−2 , p+3 , . . . , p+n )∣∣2 ∝ ∑
σ∈Sn

(p1 · p2)4
(pσ1 · pσ2)(pσ2 · pσ3) · · · (pσn · pσ1)

[Parke, Taylor (1986)]

◦ Similar simplifications occur at loop level

The two-loop six-particle MHV amplitude in planar N = 4 supersymmetric Yang-Mills theory
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Classical Polylogarithms for Amplitudes and Wilson Loops

A. B. Goncharov,1 M. Spradlin,2 C. Vergu,2 and A. Volovich2

1Department of Mathematics, Brown University, Box 1917, Providence, Rhode Island 02912, USA
2Department of Physics, Brown University, Box 1843, Providence, Rhode Island 02912, USA

We present a compact analytic formula for the two-loop six-particle maximally helicity violating
remainder function (equivalently, the two-loop lightlike hexagon Wilson loop) in N = 4 supersym-
metric Yang-Mills theory in terms of the classical polylogarithm functions Lik with cross-ratios of
momentum twistor invariants as their arguments. In deriving our formula we rely on results from
the theory of motives.

INTRODUCTION

The past few years have witnessed revolutionary ad-
vances in our understanding of the structure of scattering
amplitudes, especially in N = 4 supersymmetric Yang-
Mills theory (SYM). It is easy to argue that the seeds
of modern progress were sown already in the 1980s with
the discovery of the Parke-Taylor formula for the sim-
plest nontrivial amplitudes: tree-level maximally helicity
violating (MHV) gluon scattering. The mere existence
of such a simple formula for a quantity which otherwise
would have been prohibitively difficult to calculate us-
ing traditional Feynman diagram methods signalled the
tantalizing possibility that a great vista of unanticipated
structure in scattering amplitudes awaited exploration.

In contrast to the situation at tree level, it is fair to
say that recent progress at loop level has mostly been
evolutionary rather than revolutionary, driven primarily
by faster computers, improved algorithms (both analytic
and numeric), and software for multiloop calculations
which has been made publicly available. Yet we hope
that a great new vista of unexplored structure awaits us
also at loop level in SYM theory.

This paper is concerned with the planar two-loop six-
particle MHV amplitude [1, 2], which in a sense is the
simplest nontrivial SYM loop amplitude. The known in-
frared and collinear behavior of general amplitudes, con-
veniently encapsulated in the ABDK/BDS ansatz [3, 4],
determines the n-particle MHV amplitude at each loop
order L ≥ 2 up to an additive finite function of kinematic

invariants called the remainder function R
(L)
n . Given the

presumption of dual conformal invariance [5, 6] for SYM
amplitudes (not yet proven, but supported by all avail-

able evidence [1, 3, 4, 7, 8]), R
(L)
n can depend on confor-

mal cross-ratios only. Since there are no cross-ratios for

n = 4, 5, the first nontrivial remainder function is R
(2)
6 .

The same function R
(2)
6 is also believed [9–12] to arise

as the expectation value of the two-loop lightlike hexagon
Wilson loop in SYM theory [13, 14] (after appropriate
subtraction of ultraviolet divergences, e.g. [15]). Numer-
ical agreement between the two remainder functions was
established in [1, 14]. In a heroic effort, Del Duca, Duhr,
and Smirnov (DDS) explicitly evaluated the appropriate

Wilson loop diagrams to obtain an analytic expression

for R
(2)
6 as a 17-page linear combination of generalized

polylogarithm functions [16, 17] (see also [18]).
The motivation for the present work is the belief that

if SYM theory is really as beautiful and rich as recent
developments indicate, then there must exist a more en-

lightening way of expressing the remainder function R
(2)
6 .

Ideally, like the Parke-Taylor formula at tree level, the ex-
pression should provide encouragement and guidance as
we seek deeper understanding of SYM at loop level.

We present our new formula for R
(2)
6 in the next sec-

tion and then describe the algorithm by which it was
obtained.

THE REMAINDER FUNCTION R
(2)
6

The remainder function R
(2)
6 is usually presented as a

function of the three dual conformal cross-ratios

u1 =
s12s45

s123s345
, u2 =

s23s56

s234s123
, u3 =

s34s61

s345s234
, (1)

of the momentum invariants si···j = (ki + · · · + kj)
2,

though we will see shortly that cross-ratios of momen-
tum twistor invariants are more natural variables. In
terms of

x±
i = uix

±, x± =
u1 + u2 + u3 − 1 ±

√
∆

2u1u2u3
, (2)

where ∆ = (u1 + u2 + u3 − 1)2 − 4u1u2u3, we find

R
(2)
6 (u1, u2, u3) =

3∑

i=1

(
L4(x

+
i , x−

i ) − 1

2
Li4(1 − 1/ui)

)

− 1

8

(
3∑

i=1

Li2(1 − 1/ui)

)2

+
1

24
J4 +

π2

12
J2 +

π4

72
. (3)

Here we use the functions

L4(x
+, x−) =

1

8!!
log(x+x−)4

+
3∑

m=0

(−1)m

(2m)!!
log(x+x−)m(ℓ4−m(x+) + ℓ4−m(x−)) (4)

+ · · · + ⇒

was first computed as a 17 page expression and later simplified to a two-line expression

[Del Duca, Duhr, Smirnov (2009)] [Goncharov, Spradlin, Vergu, Volovich (2010)]
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Classical Polylogarithms for Amplitudes and Wilson Loops
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We present a compact analytic formula for the two-loop six-particle maximally helicity violating
remainder function (equivalently, the two-loop lightlike hexagon Wilson loop) in N = 4 supersym-
metric Yang-Mills theory in terms of the classical polylogarithm functions Lik with cross-ratios of
momentum twistor invariants as their arguments. In deriving our formula we rely on results from
the theory of motives.

INTRODUCTION

The past few years have witnessed revolutionary ad-
vances in our understanding of the structure of scattering
amplitudes, especially in N = 4 supersymmetric Yang-
Mills theory (SYM). It is easy to argue that the seeds
of modern progress were sown already in the 1980s with
the discovery of the Parke-Taylor formula for the sim-
plest nontrivial amplitudes: tree-level maximally helicity
violating (MHV) gluon scattering. The mere existence
of such a simple formula for a quantity which otherwise
would have been prohibitively difficult to calculate us-
ing traditional Feynman diagram methods signalled the
tantalizing possibility that a great vista of unanticipated
structure in scattering amplitudes awaited exploration.

In contrast to the situation at tree level, it is fair to
say that recent progress at loop level has mostly been
evolutionary rather than revolutionary, driven primarily
by faster computers, improved algorithms (both analytic
and numeric), and software for multiloop calculations
which has been made publicly available. Yet we hope
that a great new vista of unexplored structure awaits us
also at loop level in SYM theory.

This paper is concerned with the planar two-loop six-
particle MHV amplitude [1, 2], which in a sense is the
simplest nontrivial SYM loop amplitude. The known in-
frared and collinear behavior of general amplitudes, con-
veniently encapsulated in the ABDK/BDS ansatz [3, 4],
determines the n-particle MHV amplitude at each loop
order L ≥ 2 up to an additive finite function of kinematic

invariants called the remainder function R
(L)
n . Given the

presumption of dual conformal invariance [5, 6] for SYM
amplitudes (not yet proven, but supported by all avail-

able evidence [1, 3, 4, 7, 8]), R
(L)
n can depend on confor-

mal cross-ratios only. Since there are no cross-ratios for

n = 4, 5, the first nontrivial remainder function is R
(2)
6 .

The same function R
(2)
6 is also believed [9–12] to arise

as the expectation value of the two-loop lightlike hexagon
Wilson loop in SYM theory [13, 14] (after appropriate
subtraction of ultraviolet divergences, e.g. [15]). Numer-
ical agreement between the two remainder functions was
established in [1, 14]. In a heroic effort, Del Duca, Duhr,
and Smirnov (DDS) explicitly evaluated the appropriate

Wilson loop diagrams to obtain an analytic expression

for R
(2)
6 as a 17-page linear combination of generalized

polylogarithm functions [16, 17] (see also [18]).
The motivation for the present work is the belief that

if SYM theory is really as beautiful and rich as recent
developments indicate, then there must exist a more en-

lightening way of expressing the remainder function R
(2)
6 .

Ideally, like the Parke-Taylor formula at tree level, the ex-
pression should provide encouragement and guidance as
we seek deeper understanding of SYM at loop level.

We present our new formula for R
(2)
6 in the next sec-

tion and then describe the algorithm by which it was
obtained.

THE REMAINDER FUNCTION R
(2)
6

The remainder function R
(2)
6 is usually presented as a

function of the three dual conformal cross-ratios

u1 =
s12s45

s123s345
, u2 =

s23s56

s234s123
, u3 =

s34s61

s345s234
, (1)

of the momentum invariants si···j = (ki + · · · + kj)
2,

though we will see shortly that cross-ratios of momen-
tum twistor invariants are more natural variables. In
terms of

x±
i = uix

±, x± =
u1 + u2 + u3 − 1 ±

√
∆

2u1u2u3
, (2)

where ∆ = (u1 + u2 + u3 − 1)2 − 4u1u2u3, we find

R
(2)
6 (u1, u2, u3) =

3∑

i=1

(
L4(x

+
i , x−

i ) − 1

2
Li4(1 − 1/ui)

)

− 1

8

(
3∑

i=1

Li2(1 − 1/ui)

)2

+
1

24
J4 +

π2

12
J2 +

π4

72
. (3)

Here we use the functions

L4(x
+, x−) =

1

8!!
log(x+x−)4

+
3∑

m=0

(−1)m

(2m)!!
log(x+x−)m(ℓ4−m(x+) + ℓ4−m(x−)) (4)

+ · · · + ⇒

was first computed as a 17 page expression and later simplified to a two-line expression

[Del Duca, Duhr, Smirnov (2009)] [Goncharov, Spradlin, Vergu, Volovich (2010)]
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Bootstrap Methods
These key insights into the analytic structure of the six-particle amplitude led to the development of
novel bootstrap methods, by means of which it has been calculated to high loop orders
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◦ these bootstrap methods bypass Feynman diagrams altogether, and just try to directly
construct the function that has all the right properties to be the amplitude
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Conclusion

Form Factors

More recently, bootstap techniques have been used to compute form factors

◦ Form factors describe the interaction of on-shell external particles with a gauge-invariant
local operator insertion, which has a non-lightlike momentum q

FO(p1, . . . , pn; q) =

∫
d4xe−iqx〈p1, . . . , pn|O(x)|0〉 = q⊗

◦ these objects are just scattering amplitudes with special ‘composite’ particles

◦ such objects appear when modeling the real world, for instance in the heavy-top limit of QCD

⊗⇒
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Conclusion

Supersymmetric Form Factors

In this talk, we’ll stay in the idealized world of planar N = 4 SYM theory, and consider form factors
involving the operator tr(φ2)

◦ This quantity first has nontrivial kinematic dependence for n = 3:

⊗

p1

p2

p3

q

si...j = (pi + · · ·+ pj)
2

u =
s12
s123

, v =
s23
s123

, w =
s13
s123

u+ v + w = 1

w

w

= 1

= 1

= 1

= 0

In the same paper, it was also shown that the answer
could be bootstrapped using a small number of constraints

◦ Computed using traditional methods through two loops
[Brandhuber, Travaglini, Yang (2012)]
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Conclusion

Bootstrap Methods

Perturbative bootstrap methods ask the question:

Do we know enough about the mathematical structure
of these form factors to construct them directly?

◦ identify the space of functions the form factor is expected to live in

• branch cuts only in physical locations

• types of functions consistent with expectations

basis of transcendental functions∑
cifi ⇒ F

rational coefficients

◦ require this ansatz to have all the known properties of the form factor, such as symmetries and
appropriate behavior in special kinematic limits

⇒ unique function
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Bootstrapping the Three-Point Form Factor

To use bootstrap techniques to push to higher loop orders, we thus want to formulate an educated
guess for the space of functions that will appear in the three-point form factor at each loop order

◦ To simplify this problem, we first use the fact that the infrared divergences in these form factors
are already completely understood, so we can divide them out:

F3 = F IR
3 exp(R3)

◦ The remaining exponentiated function R3 is a finite function of u, v, and w

This reduces the problem of computing the infrared-divergent three-point form factor F3 to

determining the function R
(L)
3 at each loop order
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Analytic Properties of R3

To formulate an ansatz for R
(L)
3 at higher loops, we first analyze the two-loop answer

◦ This function is given by [Brandhuber, Travaglini, Yang (2012)]

R
(2)
3 = −2

3∑
i=1

[
J4

(
−uiui+1

ui+2

)
+ 4Li4 (1− 1/ui) +

ln4 ui

3!

]
− ln4(uvw)

4!

− 2

[
3∑
i=1

Li2(1− 1/ui)

]2
+

1

2

[
3∑
i=1

ln2 ui

]2
− 23

2
ζ4

where {u1, u2, u3} = {u, v, w}, and

J4(t) = Li4(t)− ln(−t)Li3(t) +
ln2(−t)

2!
Li2(t)−

ln3(−t)
3!

Li1(t)−
ln4(−t)

48
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Analytic Properties of R3

◦ Computing the symbol of R
(2)
3 , it is observed to involve only six letters:

xi ∈ {u, v, w, 1− u, 1− v, 1− w}

◦ Moreover, R
(2)
3 obeys the same branch cut conditions as scattering amplitudes—its first

branch cuts only appear on the boundary of the Euclidean region (where all si...j < 0):

S(R
(2)
3 ) =

∑

x∈{u,v,w}
x⊗ . . .

◦ Finally, R
(2)
3 is observed to have uniform transcendental weight four; this is consistent with the

observation that polylogarithmic amplitudes in this theory have uniform transcendental weight 2L

w

w

= 1

= 1

= 1

= 0

To attempt to bootstrap the three-point form factor, we assume that

R
(L)
3 exists within the space of functions defined by these properties
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Bootstrapping Form Factors

We then require a general ansatz of these types of functions to have the expected properties of R3:

◦ Dihedral symmetry that exchanges the three on-shell states

◦ Expected behavior when any two external momenta become collinear

◦ Finally, this form factor is known to have a dual description in terms of periodic Wilson loops,
which can be used to compute the form factor as an expansion around the collinear limit
[Alday, Maldacena (2007)] [Maldacena, Zhiboedov (2010)] [Brandhuber, Spence, Travaglini, Yang (2010)]

Jointly, these constraints allow us to bootstrap R
(L)
3 through eight loops
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Bootstrapping Form Factors

The number of free parameters that remain at each stage in the bootstrap calculation:

L 2 3 4 5 6 7 8
∗symbols in C 48 249 1290 6654 34219 ???? ????
dihedral symmetry 11 51 247 1219 ???? ???? ????
∗(L− 1) final entries 5 9 20 44 86 191 191
Lth discontinuity 2 5 17 38 75 171 164
collinear limit 0 1 2 8 19 70 6

OPE T 2 lnL−1 T 0 0 0 4 12 56 0

OPE T 2 lnL−2 T 0 0 0 0 0 36 0

OPE T 2 lnL−3 T 0 0 0 0 0 0 0

OPE T 2 lnL−4 T 0 0 0 0 0 0 0

OPE T 2 lnL−5 T 0 0 0 0 0 0 0

[Dixon, Gürdoğan, AJM, Wilhelm (2022)]

∗incorporate empirical constraints that will be described on the next slide
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Surprising Analytic Features

Two surprising types of analytic structure become apparent when one studies R
(L)
3 to high loop order

(i) If we ‘minimally’ normalize the form factor, certain letters never appear next to each other:

F3 = FBDS-like
3 F3 ⇒ S(F3) 6⊃





((((((((
. . . 1−uu ⊗ 1−v

v . . .

((((((((
. . . u

vw ⊗ 1−u
u . . .

((((((((
. . . 1−uu ⊗ u

vw . . .

⇒ This resembles the cluster adjacency relations that have been observed in amplitudes:
[Steinmann (1960)] [Cahill, Stapp (1975)] [Drummond, Foster, Gürdoğan (2017)] [Caron-Huot, Dixon, Dulat, von Hippel, AJM, Papathanasiou (2019)]

1

2

3 4

5

6

vs.

1

2

3 4

5

6

Discs234(Discs345(A6)) = 0

However, it doesn’t seem to have the same physical or clustery interpretation

(ii) Only certain sequences of letters are observed to appear at the end of the symbol

transcendental weight 1 2 3 4 5 6 7 8

näıve number of final entries 6 18 36 72 144 270 510 930
observed number of final entries 3 6 12 24 45 85 155 279
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näıve number of final entries 6 18 36 72 144 270 510 930
observed number of final entries 3 6 12 24 45 85 155 279



Andrew McLeod

Conclusion

Surprising Analytic Features

Two surprising types of analytic structure become apparent when one studies R
(L)
3 to high loop order

(i) If we ‘minimally’ normalize the form factor, certain letters never appear next to each other:

F3 = FBDS-like
3 F3 ⇒ S(F3) 6⊃





((((((((
. . . 1−uu ⊗ 1−v

v . . .

((((((((
. . . u

vw ⊗ 1−u
u . . .

((((((((
. . . 1−uu ⊗ u

vw . . .

⇒ This resembles the cluster adjacency relations that have been observed in amplitudes:
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A New Amplitude/Form Factor Duality

It turns out these empirical features can be understood as arising from a new duality between F3

and six-particle amplitudes in planar N = 4 supersymmetric Yang-Mills theory

◦ Näıvely, these two quantities have nothing to do with each other—the amplitude is a function of
three independent variables

û =
s12s45
s123s345

, v̂ =
s23s56
s234s123

, ŵ =
s34s61
s345s234

and involves nine symbol letters, some of which depend on the algebraic combination
√

(1− û− v̂ − ŵ)2 − 4ûv̂ŵ

◦ On the other hand, this amplitude is has been computed through seven loops using bootstrap
techniques, so there’s plenty of data to look for robust new relations . . .
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A New Amplitude/Form Factor Duality

Empirically, we find the surprising relation:

F
(L)
3 (u, v, w) = S

(
A

(L)
6 (û, v̂, ŵ)

) ∣∣∣
ûi→ûi(u,v,w) [Dixon, Gürdoğan, AJM, Wilhelm (2021)]

where S denotes the antipode map that is defined on polylogarithms, and we make the replacements

û1 = û(u, v, w) =
vw

(1− v)(1− w)

û2 = v̂(u, v, w) =
uw

(1− u)(1− w)

û3 = ŵ(u, v, w) =
uv

(1− u)(1− v)

◦ At symbol level, the antipode map merely reverses the order of integration:

S(x1 ⊗ x2 ⊗ · · · ⊗ xm) = (−1)mxm ⊗ · · · ⊗ x2 ⊗ x1
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A New Amplitude/Form Factor Duality

p3

p2

p1

p3

p2

p1

−p1

−p2

−p3
duality swaps
branch cuts

and derivatives←−−−−−−→

◦ The u+ v+w = 1 form factor constraint implies
√

(1− û− v̂ − ŵ)2 − 4ûv̂ŵ = 0, which can be
thought of as restricting to a ‘twisted forward scattering’ configuration

◦ Only six symbol letters survive on this kinematic surface

◦ This duality “explains” the surprising form factor properties:

⇒ The extended Steinmann relations obeyed by A6 imply the adjacency restrictions in F3

⇒ The multiple-final-entry conditions obeyed by F3 follow from a ‘coaction principle’ for A6

[Caron-Huot, Dixon, Dulat, von Hippel, AJM, Papathanasiou (2019)]
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2

0

10 1

0

1

û

v̂

ŵ

0 1

0

1

u

v
FIG. 1. Correspondence between various lines in the two-
parameter three-point form factor space (right) and their im-
ages in the three-parameter six-point amplitude kinematic
space (left) under the map (7)–(9). The white regions in the
right plot map to points outside of the region 0 < û, v̂, ŵ < 1
in the left plot.

where si...k = (pi + · · · + pk)2 are planar Mandelstam
invariants. In addition to rational functions of these cross
ratios, A6 depends on the square root of the six-point
Gram determinant, which takes the form

� = (1�û�v̂�ŵ)2 � 4ûv̂ŵ . (3)

Spacetime parity acts on the amplitude through the ex-
change

p
�! �

p
�.

Similarly, we consider a BDS-like and cosmically-
normalized version of the three-point MHV form factor
FMHV

3 ,

FMHV
3 = FBDS-like

3 ⇥ ⇢⇥ F3 , (4)

where FBDS-like
3 was defined in [43] and ⇢ is re-

lated to ⇢̂ via the cusp anomalous dimension �cusp:
⇢ = ⇢̂⇥ exp(�⇣2�cusp/2). F3 is a finite polylogarithmic
function3 that depends on three ratios of Mandelstam
invariants, which are usually chosen to be

u =
s12

s123
, v =

s23

s123
, w =

s13

s123
. (5)

We make use of all three variables in order to make mani-
fest the (dihedral) symmetry of the form factor, but only
two of these variables are independent due to momentum
conservation, which implies that u + v + w = 1.

The antipodal duality that we find between these quan-
tities can be expressed as

F
(L)
3 (u, v, w) = S

⇣
A

(L)
6 (û, v̂, ŵ)

⌘ ���
ûi!ûi(u,v,w)

, (6)

where F
(L)
3 and A

(L)
6 denote the O(g2L) contributions to

3 The function ⇢⇥ F3 was referred to as E in [43].

û

v̂

ŵ

O

⇤

•

�
⌦

4

�

u

v

O
⇤

•

�

⌦

�

FIG. 2. Schematic correspondence between various interest-
ing points and lines in the two-parameter three-point form
factor space (right) and their images in the three-parameter
six-point amplitude kinematic space (left) under the map (7)–
(9). See Table I for the coordinates of the marked points.

F3 and A6, S is the antipode map, and

û1 = û(u, v, w) =
vw

(1� v)(1� w)
, (7)

û2 = v̂(u, v, w) =
uw

(1� u)(1� w)
, (8)

û3 = ŵ(u, v, w) =
uv

(1� u)(1� v)
. (9)

The antipode map is part of the larger Hopf algebra
structure of multiple polylogarithms, which also contains
the coproduct and symbol maps [46–50]. The symbol of
a polylogarithmic function G is recursively defined via its
total di↵erential as

dG =
X

x2L
Gx d ln x ) S(G) =

X

x2L
S(Gx )⌦x , (10)

where the set of logarithmic arguments L is referred to
as the symbol alphabet, and each of the functions Gx is
also a polylogarithm.

At symbol level, the antipode map simply reverses the
order of the letters in every word of the symbol (up to a
sign) [45, 57]:

S(x1⌦x2⌦· · ·⌦xm) = (�1)m xm⌦· · ·⌦x2⌦x1 . (11)

However, we find that relation (6) also holds4 for terms
involving transcendental constants, modulo contribu-
tions proportional to i⇡.

Due to the momentum conservation constraint on the
form factor variables, the substitutions (7)–(9) require
the amplitude to be evaluated on a two-dimensional sur-
face. In particular, the equation u + v + w = 1 gets
mapped to the constraint that � = 0. Since parity sendsp
� ! �

p
�, this is the surface on which the parity of

the amplitude is preserved.

4 Strictly speaking, the antipode map only makes sense on de
Rham periods, and as such is not defined on i⇡.

L number of symbol terms
1 6
2 12
3 636
4 11,208
5 263,880
6 4,916,466
7 92,954,568
8 1,671,656,292

◦ Explicitly checked through seven loops—exact match on over 92 million terms

◦ Transcendental constants (such as ζ3 and ζ5) also participate in this duality, but not iπ

◦ Physical interpretation of the antipode map completely obscure... one hint is that collinear and
soft limits are exchanged via the duality
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A Newer Form Factor Self-Duality
What about higher particle multiplicities?

◦ We have explored this question by bootstrapping the four-point form factor at two loops,

*

using knowledge of the symbol letters that appear in integrals contributing to this process
[Abreu, Ita, Moriello, Page, Tschernow (2020)] [Abreu, Ita,, Page, Tschernow (2021)]

◦ By exploring the properties of this form factor, we find that it obeys a similar but different
antipodal self-duality:

F4(ui, vi)|tr5=0 = S (F4(ui, vi)|tr5=0) |ui,vi→g(ui),g(vi)

where the constraint tr5 = 0 restricts us to parity-even kinematics

[Dixon, Gürdoğan, Liu, AJM, Wilhelm (2022)]

*now also three loops
[Dixon, Gürdoğan, Liu, AJM, Wilhelm, to appear]
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A Newer Form Factor Self-Duality

This new antipodal self-duality implies the duality between F4 and A6

[Dixon, Gürdoğan, Liu, AJM, Wilhelm (2022)]

Does this point to a more extensive web of antipodal relations
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Bootstrap techniques can be used to compute quantities to high loop orders in quantum field theory

◦ These high-loop results give us new insights into analytic and number-theoretic properties of
perturbative QFT

We have also identified a novel and surprising duality involving form factors and amplitudes

◦ What is physics underlying this duality, and can it be extended to all particle multiplicity?

◦ Can a connection between cluster algebras and form factors be made more directly?

◦ Has indirect connections to real-world QCD processes
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Conclusion

The Antipode

The antipode map S is defined recursively by the condition

µ(S ⊗ id)∆
(
G(~a; z)

)
= µ(id⊗ S)∆

(
G(~a; z)

)
= 0

◦ At weight one, we just get
S(G(a; z)) +G(a; z) = 0

◦ At weight two, we get

S(G(a, b; z)) + S(G(a; z))G(b; a) + S(G(b; z))
(
G(a; z)−G(a; b)

)
+G(a, b; z) = 0

◦ . . .
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