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1) Perturbative bootstrap methods for computing scattering amplitudes and form
factors to high perturbative orders

o Example of supersymmetric three-particle form factors through eight loops

no clear connection to cluster algebras

2) A new antipodal duality relating supersymmetric form factors to amplitudes

o Relates three-particle form factors to six-particle amplitudes

direct connection
R — to cluster algebras

o Evidence for this duality through seven loops

o Extends to a self-duality for four particle form factors
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From Feynman Diagrams. ..

Feynman diagrams provide an intuitive picture for calculating scattering amplitudes and
related quantities perturbatively

Asyy = }m{ +
—_

tree level one loop two loops

Two sources of difficulty arise when using Feynman diagrams

o number of diagrams grows exponentially

99— 7 |99 999 9999 99999 999999
# tree diagrams ‘ 4 25 220 2485 34300

[Mangano, Parke (1990)]

o at loop level, each diagram becomes a complicated integral over loop momenta



... to Surprisingly Simple Expressions
Despite this computational complexity, scattering amplitudes exhibit striking simplicity

o At tree level, the n-particle maximum-helicity-violating (MHV) gluon amplitude recombines to
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o At tree level, the n-particle maximum-helicity-violating (MHV) gluon amplitude recombines to
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o Similar simplifications occur at loop level

The two-loop six-particle MHV amplitude in planar ' = 4 supersymmetric Yang-Mills theory

3

R (uy, ug, ug) = Z <L4(x;r,z;) - %Lm(l — 1/ul)>
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was first computed as a 17 page expression and later simplified to a two-line expression

[Del Duca, Duhr, Smirnov (2009)] [Goncharov, Spradlin, Vergu, Volovich (2010)]
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These key insights into the analytic structure of the six-particle amplitude led to the development of
novel bootstrap methods, by means of which it has been calculated to high loop orders

bootstrap results
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MHV [Del Duca, Duhr, Smirnov (2009)] [Dixon, Drummond, Henn (2011)] [Dixon, Drummond, von Hippel, Pennington (2013)] [Dixon, Drummond,
Duhr, Pennington (2014)] [Caron-Huot, Dixon, AJM, von Hippel (2016)] [Caron-Huot, Dixon, Dulat, von Hippel, AJM, Papathanasiou (2019)]

NHMV [Dixon, Drummond, Henn (2012)] [Dixon, von Hippel (2014)] [Dixon, von Hippel, AJM (2015)]

[Caron-Huot, Dixon, AJM, von Hippel (2016)] [Caron-Huot, Dixon, Dulat, von Hippel, AJM, Papathanasiou (2019)]

o these bootstrap methods bypass Feynman diagrams altogether, and just try to directly
construct the function that has all the right properties to be the amplitude



Form Factors

More recently, bootstap techniques have been used to compute form factors

o Form factors describe the interaction of on-shell external particles with a gauge-invariant
local operator insertion, which has a non-lightlike momentum ¢

fo(pl,..-,pn;q)=/d4a:e_iqx<p1,...,pn|(’)(x)|0>: : q

o these objects are just scattering amplitudes with special ‘composite’ particles



Form Factors
More recently, bootstap techniques have been used to compute form factors

o Form factors describe the interaction of on-shell external particles with a gauge-invariant
local operator insertion, which has a non-lightlike momentum ¢

fo(pl,..-,pn;q)=/d4a:e_iqx<p1,...,pn|C’)(x)|O>: : q

o these objects are just scattering amplitudes with special ‘composite’ particles

o such objects appear when modeling the real world, for instance in the heavy-top limit of QCD

> - >



Supersymmetric Form Factors

In this talk, we'll stay in the idealized world of planar N' =4 SYM theory, and consider form factors
involving the operator tr(¢?)

o This quantity first has nontrivial kinematic dependence for n = 3:
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Supersymmetric Form Factors

In this talk, we'll stay in the idealized world of planar N' =4 SYM theory, and consider form factors

involving the operator tr(¢?)

o This quantity first has nontrivial kinematic dependence for n = 3:

v
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Si.j=(pi+--+p5)
v=1—-—--—-
S12 S23 S13 .
= > = s = w=1 e
S123 S123 S123 N
\\ x
ut+v+w=1 S

o Computed using traditional methods through two loops

[Brandhuber, Travaglini, Yang (2012)]

u=v
I = decay / Euclidean
TTa,b,c¢ = scattering / spacelike operator
IIIa,b,c = scattering / timelike operator
e Y



Supersymmetric Form Factors

In this talk, we'll stay in the idealized world of planar N' =4 SYM theory, and consider form factors
involving the operator tr(¢?)

o This quantity first has nontrivial kinematic dependence for n = 3:

In the same paper, it was also shown that the answer
could be bootstrapped using a small number of constraints

o Computed using traditional methods through two loops
[Brandhuber, Travaglini, Yang (2012)]
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Bootstrap Methods

Perturbative bootstrap methods ask the question:

Do we know enough about the mathematical structure
of these form factors to construct them directly?

o identify the space of functions the form factor is expected to live in
e branch cuts only in physical locations
e types of functions consistent with expectations

basis of transcendental functions
v
E (',"f/,j = .F
rational coefficients

o require this ansatz to have all the known properties of the form factor, such as symmetries and
appropriate behavior in special kinematic limits

= unique function
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Bootstrapping the Three-Point Form Factor

To use bootstrap techniques to push to higher loop orders, we thus want to formulate an educated
guess for the space of functions that will appear in the three-point form factor at each loop order

o To simplify this problem, we first use the fact that the infrared divergences in these form factors
are already completely understood, so we can divide them out:

F3 = F3 exp(Rs)

o The remaining exponentiated function Rj3 is a finite function of u, v, and w

This reduces the problem of computing the infrared-divergent three-point form factor F3 to

determining the function RéL) at each loop order



Analytic Properties of Rj

L)

To formulate an ansatz for Rg at higher loops, we first analyze the two-loop answer

o This function is given by [Brandhuber, Travaglini, Yang (2012)]

4
R® = 22 { ( “Z"’“) ALis (1= 1) 4 u} In” (uvw)
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where {uy,us,us} = {u,v,w}, and

2(_
Ja(t) = Lia(t) — In(—t)Li3(¢) + In ; 2 Lig(t) —



Analytic Properties of Rj
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Analytic Properties of Rj
o Computing the symbol of R§2), it is observed to involve only six letters:
;i €{u, v, w, 1l —u, 1 —v, 1 —w}

o Moreover, R:(f) obeys the same branch cut conditions as scattering amplitudes—its first
branch cuts only appear on the boundary of the Euclidean region (where all s;._; < 0):

SR = Y ze..
ze{u,v,w}

o Finally, Rgf) is observed to have uniform transcendental weight four; this is consistent with the
observation that polylogarithmic amplitudes in this theory have uniform transcendental weight 2L

To attempt to bootstrap the three-point form factor, we assume that
RgL) exists within the space of functions defined by these properties
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Bootstrapping Form Factors

We then require a general ansatz of these types of functions to have the expected properties of Rj:

o Dihedral symmetry that exchanges the three on-shell states
o Expected behavior when any two external momenta become collinear

o Finally, this form factor is known to have a dual description in terms of periodic Wilson loops,

which can be used to compute the form factor as an expansion around the collinear limit
[Alday, Maldacena (2007)] [Maldacena, Zhiboedov (2010)] [Brandhuber, Spence, Travaglini, Yang (2010)]

‘ Jointly, these constraints allow us to bootstrap RéL) through eight loops




Bootstrapping Form Factors

The number of free parameters that remain at each stage in the bootstrap calculation:

L 2 3 4 5 6 7 8
*symbols in C 48 249 1290 6654 34219 7777 7077
dihedral symmetry 11 51 247 1219 7?2777 72777 12777
*(L —1) final entries 5 9 20 44 86 191 191
L™ discontinuity 2 5 17 38 75 171 164
collinear limit 0 1 2 8 19 70 6
OPE T2 In'~'T 0 0 0 4 12 56 0
OPE 72 In' 2T 0 0 0 0 0 36 0
OPE T2 Inl 3T 0 0 0 0 0 0 0
OPE T2 In'~%T 0 0 0 0 0 0 0
OPE T2 In'—°T 0 0 0 0 0 0 0

[Dixon, Giirdogan, AJM, Wilhelm (2022)]

*incorporate empirical constraints that will be described on the next slide
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Surprising Analytic Features

Two surprising types of analytic structure become apparent when one studies RgL) to high loop order

(¢) If we ‘minimally’ normalize the form factor, certain letters never appear next to each other:

F3 Z.F??Ds_likng = S(F3) D ... — ...

= This resembles the cluster adjacency relations that have been observed in amplitudes:
[Steinmann (1960)] [Cahill, Stapp (1975)] [Drummond, Foster, Giirdogan (2017)] [Caron-Huot, Dixon, Dulat, von Hippel, AJM, Papathanasiou (2019)]

et N o
N ///\5 Vs 2/\\\ /5 D|SCS234(D'SC8345 (AG)) =0
N N

However, it doesn’t seem to have the same physical or clustery interpretation



Surprising Analytic Features

Two surprising types of analytic structure become apparent when one studies R:(),L) to high loop order

(7) If we ‘minimally’ normalize the form factor, certain letters never appear next to each other:

1-u o 1w
F3 = ngDS_likng = S(F3) 2 M
1-u

(i) Only certain sequences of letters are observed to appear at the end of the symbol

transcendental weight 1 2 3 4 5 6 7 8

naive number of final entries 6 18 36 72 144 270 510 930
observed number of final entries 3 6 12 24 45 85 155 279




A New Amplitude/Form Factor Duality

It turns out these empirical features can be understood as arising from a new duality between 73
and six-particle amplitudes in planar N' = 4 supersymmetric Yang-Mills theory

o Naively, these two quantities have nothing to do with each other—the amplitude is a function of
three independent variables

512545 b= 523556 o= 534561

U = ) )
51235345 5$2345123 53455234

and involves nine symbol letters, some of which depend on the algebraic combination

VI =1 — 0 — )2 — 4di

o On the other hand, this amplitude is has been computed through seven loops using bootstrap
techniques, so there’s plenty of data to look for robust new relations . ..



A New Amplitude/Form Factor Duality

Empirically, we find the surprising relation:

B (w0, w) = 8 (A8 (0,0, 0))

[Dixon, Giirdogan, AJM, Wilhelm (2021)]

ﬁz—MlZ (U,’U,’UJ)

where S denotes the antipode map that is defined on polylogarithms, and we make the replacements
a1 = (u,v,w) = B —
1-v)1—-w)
uw

te = O(u, v, w) = A—wi-w)

Uz = W(u,v,w) = A—wi—v)

o At symbol level, the antipode map merely reverses the order of integration:

S(xl ®x2®®$m):(_1)mxm®®$2®fb1



A New Amplitude/Form Factor Duality

b1 b1 —D3
duality swaps
- J— branch cuts M.
P2 and derivatives b2 P2
—
D3 D3 -1

o The u+v+w = 1 form factor constraint implies /(1 — @ — & — )2 — 449w = 0, which can be
thought of as restricting to a ‘twisted forward scattering’ configuration

o Only six symbol letters survive on this kinematic surface



A New Amplitude/Form Factor Duality

p1 D1 —P3

duality swaps
D2 I branch cuts D2 —po

and derivatives

P3 Ps3 —D1

o The u+v+w = 1 form factor constraint implies /(1 — @ — & — )2 — 449w = 0, which can be
thought of as restricting to a ‘twisted forward scattering’ configuration

o Only six symbol letters survive on this kinematic surface
o This duality “explains” the surprising form factor properties:
= The extended Steinmann relations obeyed by Ag imply the adjacency restrictions in F3

= The multiple-final-entry conditions obeyed by Fj5 follow from a ‘coaction principle’ for Ag
[Caron-Huot, Dixon, Dulat, von Hippel, AJM, Papathanasiou (2019)]



A New Amplitude/Form Factor Duality

number of symbol terms
6

12

636

11,208

263,880

4,916,466

92,954,568
1,671,656,292

O ~NOOT A WN N

o Explicitly checked through seven loops—exact match on over 92 million terms
o Transcendental constants (such as (3 and (5) also participate in this duality, but not im

o Physical interpretation of the antipode map completely obscure... one hint is that collinear and
soft limits are exchanged via the duality
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o By exploring the properties of this form factor, we find that it obeys a similar but different
antipodal self-duality:
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where the constraint tr; = 0 restricts us to parity-even kinematics

[Dixon, Giirdogan, Liu, AJM, Wilhelm (2022)]



A Newer Form Factor Self-Duality
What about higher particle multiplicities?

o We have explored this question by bootstrapping the four-point form factor at two loops,*
using knowledge of the symbol letters that appear in integrals contributing to this process
[Abreu, Ita, Moriello, Page, Tschernow (2020)] [Abreu, Ita,, Page, Tschernow (2021)]

o By exploring the properties of this form factor, we find that it obeys a similar but different
antipodal self-duality:

F4(Uz‘, Ui)’tr5:0 =S (F4(uz‘, vi)’tr5:0) ’ui,uﬁg(ui),g(ui)

where the constraint tr; = 0 restricts us to parity-even kinematics

[Dixon, Giirdogan, Liu, AJM, Wilhelm (2022)]

*now also three loops
[Dixon, Giirdogan, Liu, AJM, Wilhelm, to appear|



A Newer Form Factor Self-Duality

This new antipodal self-duality implies the duality between Fj; and Ag

antipodal
self-duality

double collinear l

1
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[Dixon, Giirdogan, Liu, AJM, Wilhelm (2022)]



A Newer Form Factor Self-Duality

This new antipodal self-duality implies the duality between Fj; and Ag

antipodal
self-duality

double collinear l

1
! antipodal

duality
—

Does this point to a more extensive web of antipodal relations
between amplitudes and form factors at higher particle multiplicity?

[Dixon, Giirdogan, Liu, AJM, Wilhelm (2022)]
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o These high-loop results give us new insights into analytic and number-theoretic properties of
perturbative QFT
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o What is physics underlying this duality, and can it be extended to all particle multiplicity?
o Can a connection between cluster algebras and form factors be made more directly?

o Has indirect connections to real-world QCD processes



Conclusions

Bootstrap techniques can be used to compute quantities to high loop orders in quantum field theory

o These high-loop results give us new insights into analytic and number-theoretic properties of
perturbative QFT

We have also identified a novel and surprising duality involving form factors and amplitudes
o What is physics underlying this duality, and can it be extended to all particle multiplicity?
o Can a connection between cluster algebras and form factors be made more directly?

o Has indirect connections to real-world QCD processes

Thanks!



The Antipode

The antipode map S is defined recursively by the condition

1(S ®id)A(G(a@; 2)) = p(id ® S)A(G(@;2)) =0

o At weight one, we just get
S(G(a;2)) + G(a;2) =0

o At weight two, we get

S(G(a,b;2)) + S(G(a; 2))G(b;a) + S(G(b; z))(G(a; z) — G(a; b)) +G(a,b;z) =0



	Conclusion

