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Non-euclidean volume
Let Xn

K be a standard geometric space of constant curvature
K ∈ {−1,0,+1} with its distance function dX .

▶ For K = +1 and Sn ⊂ Rn+1 : dS(x ,y) = arccos(x ·y)
▶ For K = −1 and Hn ⊂ Rn

+ in the upper half space:

dH(x ,y) = log yn
xn

for

x = (0, . . . ,0,xn) , y = (0, . . . ,0,yn) , yn ≥ xn

Consequences.
• For K ̸= 0, distances are related to Li1(z) = − log(1− z)
• The hyperbolic volume element equals

d voln = dx1 · · ·dxn
xn

n



Non-euclidean polyhedra and Schläfli’s volume differential

Theorem (L. Schläfli; H. Kneser; J. Milnor)
For a non-euclidean n-simplex S ⊂ Xn

K with dihedral angles αF at
(n−2)-dimensional faces F ⊂ S , one has

d voln(S) = K
n−1 ∑

F
voln−2(F )d αF ,

where vol0(S) := 1 .

First implications.
▶ The non-euclidean volume problem is subdivided according to

the dimension parity
▶ Excess formula resp. defect formula for n = 2 and K ̸= 0
▶ Schläfli’s simplex reduction formula for vol2m(S) ⊂ S2m



Polylogarithms and related functions
Classical polylogarithms. (Leibniz, Johann Bernoulli)

Lin(z) =
∞

∑
r=1

z r

rn , z ∈ C with |z |< 1

Li1(z) = − log(1− z) ; Lin(z) =
z∫

0

Lin−1(t)d log t

Lobachevsky function. Let α ∈ R .

L2(α) = 1
2 ℑLi2(e2iα) = 1

2

∞

∑
r=1

sin(2rα)
r2

Some modified dilogarithms (Bloch–Wigner,...)

L1(z) = ℜ logz = log |z |
D(z) = L2(z) = ℑ{Li2(z)−Li1(z) log |z |}

5

∑
k=1

(−1)k L2(r2(z1, . . . , ẑk , . . . ,z5)) = 0 for zi ̸= zj

5-term relation of Spence-Abel



The context of hyperbolic scissors congruences

For the scissors congruence group P(Xn
K ) of polyhedra in Xn

K :

The (classes of) orthoschemes [α1, . . . ,αn] generate P(Xn
K ) .

By results of Sah and Debrunner:
▶ For n ≥ 2, the image of P(Hn) in P(Hn) is generated by

1-asymptotic orthoschemes
▶ For n ≥ 3 and odd, P(Hn) is generated by 2-asymptotic

orthoschemes

Consequence. In odd dimensions, it suffices to solve the volume
problem for 2-asymptotic orthoschemes



Hyperbolic volume in three dimensions

Lobachevsky derived a closed volume formula for the generating
orthoschemes in P(H3) in terms of the dihedral angle parameters
α,β ,γ by introducing a new function, the Lobachevsky function
L2(ω) as introduced earlier.

For an orthoscheme R = [α,β ,γ] ⊂H3 with graph •—
α

——•—
β

——•—
γ

——•

vol3(R) = 1
4
{
L2(α + θ)−L2(α −θ)+L2(π

2 + β −θ)+

+L2(π

2 −β −θ)+L2(γ + θ)−L2(γ + θ)
}

,

0 ≤ θ = arctan
√

cos2 β − sin2
α sin2

γ

cosα cosγ
≤ π

2



Polyhedral dissection and functional equations
Different cutting and pasting procedures applied to a polyhedron
P ⊂H3 lead to functional equations of dilogarithm functions.

Example. The hyperbolic 2n-chain link complement manifold
Mn = S3 \D2n can be built on different polyhedral objects
providing the functional equation

4
{
L2(π

4 +α

2 )+L2(π

4 − α

2 )
}

=

L2(π

2 + α −θ)+L2(π

2 −α −θ)+4L2(θ)+2L2(π

2 −θ) ,

where α , θ ∈ [0, π

2 ) are such that tanθ = cosα .



Milnor’s volume formula
Let S∞(z) ⊂H3 = C×{t > 0} be an ideal tetrahedron with
vertices ∞,0,1 and z ∈ C\R :

vol3(S∞(z)) = D(z) = L2(α)+L2(β )+L2(γ) , where

α = argz , β = arg(1−1/z) , γ = π − (α + β )

Milnor’s Conjecture. Let {θj } ⊂Qπ . Then, very Q-linear
relation

∑
j

qjL2(θj) = 0

is a consequence of the relations

L2(x + π) = L2(x) , L2(−x) = L2(x)

L2(nx) = n ∑
k mod n

L2(x + kπ

n ) distribution law



The generalised 3rd Problem of Hilbert

Problem : Two polyhedra P1,P2 ⊂ X 3
K are scissors congruent if

and only if their volumes and their Dehn invariants are equal, i.e.

vol3(P1) = vol3(P2) , Dehn(P1) = Dehn(P2)

where Dehn(P) = ∑
F

vol1(F )⊗αF ∈ R⊗ZR/πZ

Theorem (J. Dupont-H. Sah)
Let S∞(zn) = (∞,0,1,zn) ⊂H3 with zn = e2π i/n for n ≥ 7 .
Let θ ∈ ]1

6 ,
1
2 [ so that L2(θπ) = L2(π/n) = 1

2 vol3(S∞(zn)) .

Then, there is the following alternative :
▶ θ ∈ R−Q , i.e. Dehn(S∞(θ)) ̸= 0 , and hence there is a pair of

ideal tetrahedra with equal volume and different Dehn-values
▶ θ ∈Q , i.e. Milnor’s Conjecture is FALSE



Triangulated hyperbolic 3-manifolds
Theorem (W. Thurston, W. Neumann–D. Zagier,...)
Let M be an oriented hyperbolic 3-manifold of finite volume.
Then, there are finitely many algebraic numbers zi , i ∈ I , satisfying

∑
i∈I

zi ∧ (1− zi) = 0 in
∧2Q× (⋆)

such that vol3(M) = ∑i∈I L2(zi) .

Interpretation of (⋆). The Dehn invariant Dehn(P) can be
extended to a Dehn invariant ∆(P) for non-compact polyhedra
P ⊂H3 (cut off ideal vertices by means of small horospheres and
measure then edge length).

Example. ∆(S∞(z)) = 2{ log |1− z |⊗ argz − log |z |⊗arg(1− z)}

= z ∧ (1− z)− z̄ ∧ (1− z̄) where

R⊗Z R/2πZ ∼=
∧2(C×)− : r ⊗θ mod 2π 7→ −er ∧ eiθ



Higher Lobachevsky functions

L2k(α) = 1
22k−1 ℑ

(
Li2k(e2iα)

)
= 1

22k−1

∞

∑
r=1

sin(2rα)
r2k

L2k+1(α) = 1
22k ℜ

(
Li2k+1(e2iα)

)
= 1

22k

∞

∑
r=1

cos(2rα)
r2k+1

• L2k(α) =
∫

α

0 L2k−1(t)dt
• L2k+1(α) = 1

22k ζ (2k +1)−
∫

α

0 L2k(t)dt

• Lk(α) is π-periodic, even (odd) for k odd (even) and satisfies

1
mk−1 Lk(mα) =

m−1

∑
r=0

Lk

(
α + rπ

m

)
• L3(0) = 1

4 ζ (3) , L3(π

6 ) = 1
12 ζ (3) , L3(π

2 ) = − 3
16 ζ (3)

L3(π

5 )+L3(2π

5 ) = − 3
25 ζ (3)



A few volume formulae in five dimensions
Theorem (K, 1992)
For a 2-asymptotic orthoscheme R∞ ⊂H5

•—
α

——•—
β

——•—
γ

——•—
α

——•—
β

——•

with cos2 α +cos2 β +cos2 γ = 1 , the volume is given by

vol5(R∞) = 1
4 {L3(α)+L3(β )− 1

2L3(π

2 − γ)}−

− 1
16{L3(π

2 + α + β ) + L3(π

2 −α + β )}+ 3
64 ζ (3)

A result of Hild, 2007. The (unique) minimal volume
non-compact hyperbolic 5-orbifold H5/Γ∗ is of volume

vol5([3,4,3,3,3]) = 7
46080 ζ (3)



The volume of a doubly truncated 5-orthoscheme
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Ω(α) :

α

α

α α

α ′ α ′

α ′ α ′

, α ′ := π

2 −α

Proposition (K, 1995)
The volume of a doubly-truncated orthoscheme in H5 with cyclic
graph Ω(α) as given above equals

vol5(Ω(α)) = 1
32 ζ (3)− 1

2
{
L3(α)+L3(π

2 −α)
}
.

Example. The Coxeter polyhedron Ω(π

3 ) has volume 13
288 ζ (3)



An application and the value ζ (3)
The covolume of the hybrid quaternionic modular group
PSL∆(2,Hyb) = PSL∆(2,Z[ω, j]) with ω =− 1

2 + 1
2
√

3 i acting
discretely on H5 can be expressed (by using a particular dissection
of a fundamental polyhedron) as follows.

Theorem (K, 2018)
covol5(PSL∆(2,Hyb)) = 13

180 ζ (3) = 32 ·vol5(Ω(π

3 ))

By means of Schläfli’s volume differential, one deduces the identity

Corollary

ζ (3) = 360
13

[
π

4 L2(π

3 )+
π

2∫
π

3

{
L2(π

6 + β (t))+L2(π

6 −β (t)
}

dt
]
,

where cos β (t) = sint√
4 sin2 t−1



The generic case

Theorem (K, 1995)
Let R ⊂H5 be a 2-asymptotic orthoscheme with graph Σ(R)

•—
α1

——•—
α2

——•—
α3

——•—
α4

——•—
α5

——•

Put λ = tanΘ = |detΣ(R) |1/2

cosα1 cosα3 cosα5
, 0 ≤ Θ ≤ π

2 , and

0 ≤ α0 ≤
π

2 so that tanα0 = cotΘtanα3 .Then,

Then, vol5(R) =

−1
8
{

I(λ−1,0;α1)+ 1
2 I(λ ,0;α2)+ 1

2 I(λ ,0;α4)+ I(λ−1,0;α5)−
−I(λ−1,0;α ′

0)
}

+ 1
32 { I(λ ,−(π

2 + α1); π

2 + α1 + α2)+ I(λ ,−(π

2 −α1); π

2 −α1 + α2)
− I(λ ,−(π

2 + α1);π + α1)− I(λ ,−(π

2 −α1);π −α1)
− I(λ ,−(π

2 + α5);π + α5)− I(λ ,−(π2−α5);π −α5)
+ I(λ ,−(π

2 + α5); π

2 + α5 + α4)+ I(λ ,−(π

2 −α5); π

2 −α5 + α4)}



About the trilogarithmic function I(a,b;x)

For a,b ∈ R ,

I(a,b;x) =
x∫

π

2

L2(y)darctan(a tan(b + y))

I(1,b;x) = −L3(x)− 3
16ζ (3)

I(a,b;x) is closely related to the integral

J(a,b,c;z) =
z∫

0

log(1+at) log(1+bt)d log(1+ ct)

which can be expressed in terms of polylogarithms of orders ≤ 3.

Question. Simple relations of I , J to modified trilogarithms ?



Prasad’s formula for arithmetic lattices
Prasad’s volume formula was exploited by M. Belolipetsky (n ≥ 4
even) and Emery (n ≥ 5 odd). Here are some of Emery’s results for
weak variants of arithmetic hyperbolic lattices in PO(5,1).

Theorem (V. Emery, 2016)
Let Γ ⊂ Isom(H5) be a non-uniform quasi-arithmetic lattice with
associated field extension ℓ/Q.

1. If ℓ = Q, then vol5(H5/Γ) ∈ ζ (3) ·Q× ;
2. otherwise, vol5(H5/Γ) ∈ |Dℓ|5/2 · ζℓ(3)

ζ (3) ·Q
× .

Theorem (Emery-O. Mila, 2021)
Let Γ ⊂ Isom(H5) be a pseudo-arithmetic lattice of the 1st type,
and {Γi} a set of arithmetic lattices subordinated to the ambient
group of Γ. Then, there are βi ∈Q such that

vol5(H5/Γ) = ∑
i

βi vol5(H5/Γi) .



About the non-arithmetic hyperbolic Coxeter 5-simplex
The hyperbolic Coxeter 5-simplex groups ∆44 and ∆4 are
non-cocompact lattices. The group ∆44 is arithmetic while the
group ∆4 is not.

4

4

4

For their covolumes, the integration of Schläfli’s volume differential
yields (K, 1999)

vol5(H5/∆44) = 7
288ζ (3) ;

vol5(H5/∆4) = 7
288ζ (3)− 1

4

∫ π

3

π

4

vol3(F(t))dt (⋆)

≈ 0.007573474422...



Comparison with the result of Emery-Mila

The Coxeter group ∆4 is not arithmetic but pseudo-arithmetic of
the 1st type with 2 subordinated arithmetic lattices
Γi = POfi(Z) , i = 0,1 , where

f0 = −x2
0 + x2

1 + · · ·+ x2
5 , f1 = −x2

0 + x2
1 + · · ·+2x2

5 and

vol5(H5/Γ0) ∈ ζ (3) ·Q× , vol5(H5/Γ1) ∈
√

2L(χ8,3) ·Q×

Numerical approximation (up to 160 digits; S. Tschantz)

vol5(H5/∆4) ≈ 73
29325ζ (3)+ 1

23325
√

2L(χ8,3) (⋆)

= 0.00757347442200786763497722...



Goncharov’s structural result part I

Predicted by Zagier’s Conjecture, to express Lℓ0/k0(3), for example,
as a sum of the modified trilogarithms L3 evaluated at integers
of k0 , is the following result.

Theorem (A. Goncharov, 1998)
Let M be an oriented hyperbolic 5-manifold of finite volume.
Then, there are finitely many zi ∈Q , i ∈ I , satisfying

∑
i∈I

{zi}⊗ zi = 0 in G(Q)⊗Q× such that

vol5(M) = q ∑
i∈I

L3(zi) for some q ∈Q×

Here, {x} is an element of the following group G(F) ...



Goncharov’s structural result - part II

Let F be a number field. Then,

G(F) = Z[P1(F) ]

<
5
∑

k=1
(−1)k [ r2(x1, . . . , x̂k, . . . ,x5) ], [0], [∞] | xi ̸= xj >

L3(z) = ℜ{Li3(z)−Li2(z) log |z|+ 1
3 Li1(z) log2 |z|}

Problem. Find an example with explicit q and zi’s such that

vol5(M) = q ∑
i∈I

L3(zi) for some q ∈Q×



Zagier’s Conjecture and Goncharov’s result
Let F be a number field of degree d and of discriminant DF with r1 real
and 2r2 non-real embeddings σj : F ↪→ C. Let ζF be the zeta function
of F , and put

dn :=
{

r1 + r2 if n is odd
r2 if n is even

Zagier’s Conjecture. For n ≥ 2 , there is qn ∈Q× such that

ζF (n) = qn π
n(d−dn) D−1/2

F Rn , where

Rn is a sum of Ln-values taken at elements and their conjugates of F .

Example. ζQ(
√

5)(3) = 24
25

√
5 L3(1)

(
L3( 1+

√
5

2 )−L3( 1−
√

5
2 )

)
Theorem (A. Goncharov, 1995)
Let F be a number field with r1 real and 2r2 non-real embeddings
σj : F ↪→ C such that σr1+k = σr1+r2+k as above. Then, there are
certain algebraic numbers α1, . . . ,αr1+r2 such that

ζF (3) = π
3r2 D−1/2

F det
(
|L3(σj(αk)) |

)
(1≤i ,k≤r1+r2)



Open problems

▶ For n = 7, find a closed volume formula for an infinite family
of polyhedra in H7

▶ Hilbert’s 3rd problem for P(X 3
K ) for K ̸= 0



Pseudo-arithmetic lattices of the 1st type
▶ An algebraic group GK is pseudo-admissible (over K/k) if

K = k(√a1, . . . ,
√ar ) is totally real and G is an admissible

k-group
▶ For n > 3, a lattice Γ ⊂ PO(n,1) is pseudo-arithmetic (over

K/k) if its ambient group is pseudo-admissible
▶ Let K = k(√a1, . . . ,

√ar ) be totally real field and f the
diagonal quadratic form in x0, . . . ,xn with negative coefficient
in x0:
For a multi-index i ∈ {0,1}r , put

αi :=
√

ai1
1 · · ·airr and fi := f (x0, . . . ,xn−1,α ixn)

▶ For each i ∈ {0,1}r , choose an arithmetic subgroup
Γi ⊂ POfi (k) (commensurable with POfi (Ok))

▶ Then, the set of of arithmetic lattices {Γi | 0 ≤ i ≤ 2r} is
subordinated to POf ,K



A structural result about the volume spectrum V3
Compare the result of Emery-Mila with the classical result of Borel
for hyperbolic 3-manifolds.

Theorem (A. Borel)
For any number field F with r complex places, there are
v1, . . . ,vr ∈ R such that for any finite-volume hyperbolic
3-manifold M whose invariant trace field is F , there are r numbers
a1, . . . ,ar ∈Q with

vol3(M) = a1v1 + · · ·+ar vr

Remark. If F is a number field with exactly one complex place,
then there is a number v ∈ R such that every arithmetic hyperbolic
3-orbifold (or 3-manifold) Q whose defining field is k has volume
which is rational multiple of v . In fact, for d = [F : Q], one can
take

v = | DF |3/2 ζk(2)
(4π2)d−1


