Trilogarithms and volumes of hyperbolic 5-manifolds

Ruth Kellerhals
University of Fribourg, Switzerland

"Polylogarithms, Cluster Algebras, and Scattering Amplitudes"

Brin MRC, 11-15 September 2023

Non-euclidean volume

Let X_{K}^{n} be a standard geometric space of constant curvature $K \in\{-1,0,+1\}$ with its distance function d_{X}.

- For $K=+1$ and $\mathbb{S}^{n} \subset \mathbb{R}^{n+1}: \quad d_{\mathbb{S}}(x, y)=\arccos (x \cdot y)$
- For $K=-1$ and $\mathbb{H}^{n} \subset \mathbb{R}_{+}^{n}$ in the upper half space:

$$
\begin{aligned}
d_{\mathbb{H}}(x, y) & =\log \frac{y_{n}}{x_{n}} \text { for } \\
x=\left(0, \ldots, 0, x_{n}\right), y & =\left(0, \ldots, 0, y_{n}\right), y_{n} \geq x_{n}
\end{aligned}
$$

Consequences.

- For $K \neq 0$, distances are related to $\mathrm{Li}_{1}(z)=-\log (1-z)$
- The hyperbolic volume element equals

$$
d \mathrm{vol}_{n}=\frac{d x_{1} \cdots d x_{n}}{x_{n}^{n}}
$$

Non-euclidean polyhedra and Schläfli's volume differential

Theorem (L. Schläfli; H. Kneser; J. Milnor)
For a non-euclidean n-simplex $S \subset X_{K}^{n}$ with dihedral angles α_{F} at ($n-2$)-dimensional faces $F \subset S$, one has

$$
d \operatorname{vol}_{n}(S)=\frac{K}{n-1} \sum_{F} \operatorname{vol}_{n-2}(F) d \alpha_{F}
$$

where $\operatorname{vol}_{0}(S):=1$.
First implications.

- The non-euclidean volume problem is subdivided according to the dimension parity
- Excess formula resp. defect formula for $n=2$ and $K \neq 0$
- Schläfli's simplex reduction formula for $\operatorname{vol}_{2 m}(S) \subset \mathbb{S}^{2 m}$

Polylogarithms and related functions

Classical polylogarithms. (Leibniz, Johann Bernoulli)

$$
\begin{array}{cc}
\operatorname{Li}_{n}(z)=\sum_{r=1}^{\infty} \frac{z^{r}}{r^{n}} \quad, \quad z \in \mathbb{C} \text { with }|z|<1 \\
\operatorname{Li}_{1}(z)=-\log (1-z) \quad ; \quad \operatorname{Li}_{n}(z)=\int_{0}^{z} \operatorname{Li}_{n-1}(t) d \log t
\end{array}
$$

Lobachevsky function. Let $\alpha \in \mathbb{R}$.

$$
J_{2}(\alpha)=\frac{1}{2} \mathfrak{I} \operatorname{Li}_{2}\left(e^{2 i \alpha}\right)=\frac{1}{2} \sum_{r=1}^{\infty} \frac{\sin (2 r \alpha)}{r^{2}}
$$

Some modified dilogarithms (Bloch-Wigner,...)

$$
\begin{gathered}
\mathscr{L}_{1}(z)=\mathfrak{R} \log z=\log |z| \\
D(z)=\mathscr{L}_{2}(z)=\mathfrak{J}\left\{\operatorname{Li}_{2}(z)-\operatorname{Li}_{1}(z) \log |z|\right\} \\
\sum_{k=1}^{5}(-1)^{k} \mathscr{L}_{2}\left(r_{2}\left(z_{1}, \ldots, \widehat{z_{k}}, \ldots, z_{5}\right)\right)=0 \text { for } \quad z_{i} \neq z_{j} \\
\text { 5-term relation of Spence-Abel }
\end{gathered}
$$

The context of hyperbolic scissors congruences

For the scissors congruence group $\mathscr{P}\left(X_{K}^{n}\right)$ of polyhedra in X_{K}^{n} :
The (classes of) orthoschemes $\left[\alpha_{1}, \ldots, \alpha_{n}\right]$ generate $\mathscr{P}\left(X_{K}^{n}\right)$.

By results of Sah and Debrunner:

- For $n \geq 2$, the image of $\mathscr{P}\left(\mathbb{H}^{n}\right)$ in $\mathscr{P}\left(\overline{\mathbb{H}^{n}}\right)$ is generated by 1-asymptotic orthoschemes
- For $n \geq 3$ and odd, $\mathscr{P}\left(\overline{\mathbb{H}^{n}}\right)$ is generated by 2-asymptotic orthoschemes

Consequence. In odd dimensions, it suffices to solve the volume problem for 2-asymptotic orthoschemes

Hyperbolic volume in three dimensions

Lobachevsky derived a closed volume formula for the generating orthoschemes in $\mathscr{P}\left(\mathbb{H}^{3}\right)$ in terms of the dihedral angle parameters α, β, γ by introducing a new function, the Lobachevsky function $J_{2}(\omega)$ as introduced earlier.
For an orthoscheme $R=[\alpha, \beta, \gamma] \subset \mathbb{H}^{3}$ with graph $\bullet \beta \quad \gamma \quad$

$$
\begin{aligned}
\operatorname{vol}_{3}(R)= & \frac{1}{4}\left\{Л_{2}(\alpha+\theta)-Л_{2}(\alpha-\theta)+Л_{2}\left(\frac{\pi}{2}+\beta-\theta\right)+\right. \\
& \left.+Л_{2}\left(\frac{\pi}{2}-\beta-\theta\right)+Л_{2}(\gamma+\theta)-Л_{2}(\gamma+\theta)\right\} \\
0 \leq & \theta=\arctan \frac{\sqrt{\cos ^{2} \beta-\sin ^{2} \alpha \sin ^{2} \gamma}}{\cos \alpha \cos \gamma} \leq \frac{\pi}{2}
\end{aligned}
$$

Polyhedral dissection and functional equations

Different cutting and pasting procedures applied to a polyhedron $P \subset \mathbb{H}^{3}$ lead to functional equations of dilogarithm functions.

Example. The hyperbolic $2 n$-chain link complement manifold $M_{n}=\mathbb{S}^{3} \backslash \mathscr{D}_{2 n}$ can be built on different polyhedral objects providing the functional equation

$$
\begin{aligned}
& 4\left\{Л_{2}\left(\frac{\pi}{4}+\frac{\alpha}{2}\right)+Л_{2}\left(\frac{\pi}{4}-\frac{\alpha}{2}\right)\right\}= \\
& \quad Л_{2}\left(\frac{\pi}{2}+\alpha-\theta\right)+Л_{2}\left(\frac{\pi}{2}-\alpha-\theta\right)+4 Л_{2}(\theta)+2 Л_{2}\left(\frac{\pi}{2}-\theta\right),
\end{aligned}
$$

where $\alpha, \theta \in\left[0, \frac{\pi}{2}\right)$ are such that $\tan \theta=\cos \alpha$.

Milnor's volume formula

Let $S_{\infty}(z) \subset \mathbb{H}^{3}=\mathbb{C} \times\{t>0\}$ be an ideal tetrahedron with vertices $\infty, 0,1$ and $z \in \mathbb{C} \backslash \mathbb{R}$:

$$
\begin{gathered}
\operatorname{vol}_{3}\left(S_{\infty}(z)\right)=D(z)=Л_{2}(\alpha)+Л_{2}(\beta)+Л_{2}(\gamma), \quad \text { where } \\
\alpha=\arg z \quad, \quad \beta=\arg (1-1 / z) \quad, \quad \gamma=\pi-(\alpha+\beta)
\end{gathered}
$$

Milnor's Conjecture. Let $\left\{\theta_{j}\right\} \subset \mathbb{Q} \pi$. Then, very \mathbb{Q}-linear relation

$$
\sum_{j} q_{j} Л_{2}\left(\theta_{j}\right)=0
$$

is a consequence of the relations

$$
\begin{gathered}
J_{2}(x+\pi)=Л_{2}(x) \quad, \quad \Pi_{2}(-x)=J_{2}(x) \\
J_{2}(n x)=n \sum_{k \bmod n} J_{2}\left(x+\frac{k \pi}{n}\right) \quad \text { distribution law }
\end{gathered}
$$

The generalised 3rd Problem of Hilbert

Problem : Two polyhedra $P_{1}, P_{2} \subset X_{K}^{3}$ are scissors congruent if and only if their volumes and their Dehn invariants are equal, i.e.

$$
\operatorname{vol}_{3}\left(P_{1}\right)=\operatorname{vol}_{3}\left(P_{2}\right) \quad, \quad \operatorname{Dehn}\left(P_{1}\right)=\operatorname{Dehn}\left(P_{2}\right)
$$

where

$$
\operatorname{Dehn}(P)=\sum_{F} \operatorname{vol}_{1}(F) \otimes \alpha_{F} \in \mathbb{R} \otimes_{\mathbb{Z}} \mathbb{R} / \pi \mathbb{Z}
$$

Theorem (J. Dupont-H. Sah)
Let $S_{\infty}\left(z_{n}\right)=\left(\infty, 0,1, z_{n}\right) \subset \mathbb{H}^{3}$ with $z_{n}=e^{2 \pi i / n}$ for $n \geq 7$.
Let $\theta \in] \frac{1}{6}, \frac{1}{2}\left[\right.$ so that $\pi_{2}(\theta \pi)=Л_{2}(\pi / n)=\frac{1}{2} \operatorname{vol}_{3}\left(S_{\infty}\left(z_{n}\right)\right)$.
Then, there is the following alternative :

- $\theta \in \mathbb{R}-\mathbb{Q}$, i.e. $\operatorname{Dehn}\left(S_{\infty}(\theta)\right) \neq 0$, and hence there is a pair of ideal tetrahedra with equal volume and different Dehn-values
- $\theta \in \mathbb{Q}$, i.e. Milnor's Conjecture is FALSE

Triangulated hyperbolic 3-manifolds

Theorem (W. Thurston, W. Neumann-D. Zagier,...)
Let M be an oriented hyperbolic 3-manifold of finite volume.
Then, there are finitely many algebraic numbers $z_{i}, i \in I$, satisfying

$$
\sum_{i \in I} z_{i} \wedge\left(1-z_{i}\right)=0 \quad \text { in } \quad \bigwedge^{2} \mathbb{Q}^{\times}
$$

such that

$$
\operatorname{vol}_{3}(M)=\sum_{i \in I} \mathscr{L}_{2}\left(z_{i}\right) .
$$

Interpretation of (\star). The Dehn invariant Dehn (P) can be extended to a Dehn invariant $\Delta(P)$ for non-compact polyhedra $P \subset \mathbb{H}^{3}$ (cut off ideal vertices by means of small horospheres and measure then edge length).
Example. $\quad \Delta\left(S_{\infty}(z)\right)=2\{\log |1-z| \otimes \arg z-\log |z| \otimes \arg (1-z)\}$

$$
=z \wedge(1-z)-\bar{z} \wedge(1-\bar{z}) \quad \text { where }
$$

$$
\mathbb{R} \otimes_{\mathbb{Z}} \mathbb{R} / 2 \pi \mathbb{Z} \cong \bigwedge^{2}\left(\mathbb{C}^{\times}\right)^{-}: r \otimes \theta \bmod 2 \pi \mapsto-e^{r} \wedge e^{i \theta}
$$

Higher Lobachevsky functions

$$
\begin{aligned}
J_{2 k}(\alpha) & =\frac{1}{2^{2 k-1}} \mathfrak{J}\left(\operatorname{Li}_{2 k}\left(e^{2 i \alpha}\right)\right) \\
J_{2 k+1}(\alpha) & =\frac{1}{2^{2 k-1}} \sum_{r=1}^{\infty} \frac{\sin (2 r \alpha)}{2^{2 k}} \Re\left(\operatorname{Li}_{2 k+1}\left(e^{2 i \alpha}\right)\right)
\end{aligned}=\frac{1}{2^{2 k}} \sum_{r=1}^{\infty} \frac{\cos (2 r \alpha)}{r^{2 k+1}},
$$

- $J_{2 k}(\alpha)=\int_{0}^{\alpha} J_{2 k-1}(t) d t$
- $J_{2 k+1}(\alpha)=\frac{1}{2^{2 k}} \zeta(2 k+1)-\int_{0}^{\alpha} J_{2 k}(t) d t$
- $J_{k}(\alpha)$ is π-periodic, even (odd) for k odd (even) and satisfies

$$
\frac{1}{m^{k-1}} J_{k}(m \alpha)=\sum_{r=0}^{m-1} J_{k}\left(\alpha+\frac{r \pi}{m}\right)
$$

- $\quad J_{3}(0)=\frac{1}{4} \zeta(3) \quad, \quad J_{3}\left(\frac{\pi}{6}\right)=\frac{1}{12} \zeta(3) \quad, \quad J_{3}\left(\frac{\pi}{2}\right)=-\frac{3}{16} \zeta(3)$

$$
Л_{3}\left(\frac{\pi}{5}\right)+\Pi_{3}\left(\frac{2 \pi}{5}\right)=-\frac{3}{25} \zeta(3)
$$

A few volume formulae in five dimensions

Theorem (K, 1992)
For a 2-asymptotic orthoscheme $R_{\infty} \subset \mathbb{H}^{5}$

with $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1$, the volume is given by

$$
\begin{aligned}
& \operatorname{vol}_{5}\left(R_{\infty}\right)=\frac{1}{4}\left\{Л_{3}(\alpha)+Л_{3}(\beta)-\frac{1}{2} Л_{3}\left(\frac{\pi}{2}-\gamma\right)\right\}- \\
& -\frac{1}{16}\left\{Л_{3}\left(\frac{\pi}{2}+\alpha+\beta\right)+Л_{3}\left(\frac{\pi}{2}-\alpha+\beta\right)\right\}+\frac{3}{64} \zeta(3)
\end{aligned}
$$

A result of Hild, 2007. The (unique) minimal volume non-compact hyperbolic 5-orbifold $\mathbb{H}^{5} / \Gamma_{*}$ is of volume

$$
\operatorname{vol}_{5}([3,4,3,3,3])=\frac{7}{46080} \zeta(3)
$$

The volume of a doubly truncated 5-orthoscheme

Proposition (K, 1995)
The volume of a doubly-truncated orthoscheme in \mathbb{H}^{5} with cyclic graph $\Omega(\alpha)$ as given above equals

$$
\operatorname{vol}_{5}(\Omega(\alpha))=\frac{1}{32} \zeta(3)-\frac{1}{2}\left\{Л_{3}(\alpha)+Л_{3}\left(\frac{\pi}{2}-\alpha\right)\right\}
$$

Example. The Coxeter polyhedron $\Omega\left(\frac{\pi}{3}\right)$ has volume $\frac{13}{288} \zeta(3)$

An application and the value $\zeta(3)$

The covolume of the hybrid quaternionic modular group $\mathrm{PSL}_{\Delta}(2, \mathbb{H} \mathrm{yb})=\mathrm{PSL}_{\Delta}(2, \mathbb{Z}[\omega, j])$ with $\omega=-\frac{1}{2}+\frac{1}{2} \sqrt{3} i$ acting discretely on \mathbb{H}^{5} can be expressed (by using a particular dissection of a fundamental polyhedron) as follows.

Theorem (K, 2018)

$$
\operatorname{covol}_{5}\left(\operatorname{PSL}_{\Delta}(2, \mathbb{H y b})\right)=\frac{13}{180} \zeta(3)=32 \cdot \operatorname{vol}_{5}\left(\Omega\left(\frac{\pi}{3}\right)\right)
$$

By means of Schläfli's volume differential, one deduces the identity

Corollary
$\zeta(3)=\frac{360}{13}\left[\frac{\pi}{4} Л_{2}\left(\frac{\pi}{3}\right)+\int_{\frac{\pi}{3}}^{\frac{\pi}{2}}\left\{Л_{2}\left(\frac{\pi}{6}+\beta(t)\right)+Л_{2}\left(\frac{\pi}{6}-\beta(t)\right\} d t\right]\right.$,
where $\cos \beta(t)=\frac{\sin t}{\sqrt{4 \sin ^{2} t-1}}$

The generic case

Theorem (K, 1995)

Let $R \subset \mathbb{H}^{5}$ be a 2-asymptotic orthoscheme with graph $\Sigma(R)$

$$
\text { Put } \begin{aligned}
\lambda= & \tan \Theta=\frac{|\operatorname{det} \Sigma(R)|^{1 / 2}}{\cos \alpha_{1} \cos \alpha_{3} \cos \alpha_{5}}, 0 \leq \Theta \leq \frac{\pi}{2} \text {, and } \\
& 0 \leq \alpha_{0} \leq \frac{\pi}{2} \text { so that } \tan \alpha_{0}=\cot \Theta \tan \alpha_{3} \text {. Then, }
\end{aligned}
$$

Then, $\operatorname{vol}_{5}(R)=$

$$
\begin{aligned}
& -\frac{1}{8}\left\{I\left(\lambda^{-1}, 0 ; \alpha_{1}\right)+\frac{1}{2} I\left(\lambda, 0 ; \alpha_{2}\right)+\frac{1}{2} I\left(\lambda, 0 ; \alpha_{4}\right)+I\left(\lambda^{-1}, 0 ; \alpha_{5}\right)-\right. \\
& \left.-I\left(\lambda \lambda^{-1}, 0 ; \alpha_{0}^{\prime}\right)\right\} \\
& +\frac{1}{32}\left\{I\left(\lambda,-\left(\frac{\pi}{2}+\alpha_{1}\right) ; \frac{\pi}{2}+\alpha_{1}+\alpha_{2}\right)+I\left(\lambda,-\left(\frac{\pi}{2}-\alpha_{1}\right) ; \frac{\pi}{2}-\alpha_{1}+\alpha_{2}\right)\right. \\
& \quad-I\left(\lambda,-\left(\frac{\pi}{2}+\alpha_{1}\right) ; \pi+\alpha_{1}\right)-I\left(\lambda,-\left(\frac{\pi}{2}-\alpha_{1}\right) ; \pi-\alpha_{1}\right) \\
& \quad-I\left(\lambda,-\left(\frac{\pi}{2}+\alpha_{5}\right) ; \pi+\alpha_{5}\right)-I\left(\lambda,-\left(\pi 2-\alpha_{5}\right) ; \pi-\alpha_{5}\right) \\
& \left.+I\left(\lambda,-\left(\frac{\pi}{2}+\alpha_{5}\right) ; \frac{\pi}{2}+\alpha_{5}+\alpha_{4}\right)+I\left(\lambda,-\left(\frac{\pi}{2}-\alpha_{5}\right) ; \frac{\pi}{2}-\alpha_{5}+\alpha_{4}\right)\right\}
\end{aligned}
$$

About the trilogarithmic function $I(a, b ; x)$

For $a, b \in \mathbb{R}$,

$$
\begin{aligned}
& I(a, b ; x)=\int_{\frac{\pi}{2}}^{x} \Pi_{2}(y) d \arctan (a \tan (b+y)) \\
& I(1, b ; x)=-\Pi_{3}(x)-\frac{3}{16} \zeta(3)
\end{aligned}
$$

$I(a, b ; x)$ is closely related to the integral

$$
J(a, b, c ; z)=\int_{0}^{z} \log (1+a t) \log (1+b t) d \log (1+c t)
$$

which can be expressed in terms of polylogarithms of orders ≤ 3.
Question. Simple relations of I, J to modified trilogarithms ?

Prasad's formula for arithmetic lattices

Prasad's volume formula was exploited by M. Belolipetsky ($n \geq 4$ even) and Emery ($n \geq 5$ odd). Here are some of Emery's results for weak variants of arithmetic hyperbolic lattices in $\mathrm{PO}(5,1)$.

Theorem (V. Emery, 2016)

Let $\Gamma \subset \operatorname{Isom}\left(\mathbb{H}^{5}\right)$ be a non-uniform quasi-arithmetic lattice with associated field extension ℓ / \mathbb{Q}.

1. If $\ell=\mathbb{Q}$, then $\operatorname{vol}_{5}\left(\mathbb{H}^{5} / \Gamma\right) \in \zeta(3) \cdot \mathbb{Q}^{\times}$;
2. otherwise, $\quad \operatorname{vol}_{5}\left(\mathbb{H}^{5} / \Gamma\right) \in\left|D_{\ell}\right|^{5 / 2} \cdot \frac{\zeta_{\ell}(3)}{\zeta(3)} \cdot \mathbb{Q}^{\times}$.

Theorem (Emery-O. Mila, 2021)

Let $\Gamma \subset \operatorname{Isom}\left(\mathbb{H}^{5}\right)$ be a pseudo-arithmetic lattice of the 1st type, and $\left\{\Gamma_{i}\right\}$ a set of arithmetic lattices subordinated to the ambient group of Γ. Then, there are $\beta_{\mathrm{i}} \in \mathbb{Q}$ such that

$$
\operatorname{vol}_{5}\left(\mathbb{H}^{5} / \Gamma\right)=\sum_{\mathrm{i}} \beta_{\mathrm{i}} \operatorname{vol}_{5}\left(\mathbb{H}^{5} / \Gamma_{\mathrm{i}}\right)
$$

About the non-arithmetic hyperbolic Coxeter 5-simplex

The hyperbolic Coxeter 5-simplex groups Δ_{44} and Δ_{4} are non-cocompact lattices. The group Δ_{44} is arithmetic while the group Δ_{4} is not.

For their covolumes, the integration of Schläfli's volume differential yields (K, 1999)

$$
\begin{align*}
\operatorname{vol}_{5}\left(\mathbb{H}^{5} / \Delta_{44}\right) & =\frac{7}{288} \zeta(3) \\
\operatorname{vol}_{5}\left(\mathbb{H}^{5} / \Delta_{4}\right) & =\frac{7}{288} \zeta(3)-\frac{1}{4} \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \operatorname{vol}_{3}(\mathrm{~F}(\mathrm{t})) \mathrm{dt} \\
& \approx 0.007573474422 \ldots
\end{align*}
$$

Comparison with the result of Emery-Mila

The Coxeter group Δ_{4} is not arithmetic but pseudo-arithmetic of the 1st type with 2 subordinated arithmetic lattices
$\Gamma_{\mathrm{i}}=\mathrm{PO}_{\mathrm{f}_{\mathrm{i}}}(\mathbb{Z}), \mathrm{i}=0,1$, where

$$
\begin{array}{ll}
\mathrm{f}_{0}=-\mathrm{x}_{0}^{2}+\mathrm{x}_{1}^{2}+\cdots+\mathrm{x}_{5}^{2} \quad, \quad \mathrm{f}_{1}=-\mathrm{x}_{0}^{2}+\mathrm{x}_{1}^{2}+\cdots+2 \mathrm{x}_{5}^{2} \quad \text { and } \\
\operatorname{vol}_{5}\left(\mathbb{H}^{5} / \Gamma_{0}\right) \in \zeta(3) \cdot \mathbb{Q}^{\times} \quad, \quad \operatorname{vol}_{5}\left(\mathbb{H}^{5} / \Gamma_{1}\right) \in \sqrt{2} \mathrm{~L}\left(\chi_{8}, 3\right) \cdot \mathbb{Q}^{\times}
\end{array}
$$

Numerical approximation (up to 160 digits; S. Tschantz)

$$
\begin{aligned}
\operatorname{vol}_{5}\left(\mathbb{H}^{5} / \Delta_{4}\right) & \approx \frac{73}{2^{9} 3^{2} 5} \zeta(3)+\frac{1}{2^{3} 3^{2} 5} \sqrt{2} \mathrm{~L}\left(\chi_{8}, 3\right) \quad(\star) \\
& =0.00757347442200786763497722 \ldots
\end{aligned}
$$

Goncharov's structural result part I

Predicted by Zagier's Conjecture, to express $\mathrm{L}_{\ell_{0} / \mathrm{k}_{0}}(3)$, for example, as a sum of the modified trilogarithms \mathscr{L}_{3} evaluated at integers of k_{0}, is the following result.

Theorem (A. Goncharov, 1998)
Let M be an oriented hyperbolic 5-manifold of finite volume. Then, there are finitely many $\mathrm{z}_{\mathrm{i}} \in \overline{\mathbb{Q}}, \mathrm{i} \in \mathrm{I}$, satisfying

$$
\begin{aligned}
& \sum_{\mathrm{i} \in \mathrm{I}}\left\{\mathrm{z}_{\mathrm{i}}\right\} \otimes \mathrm{z}_{\mathrm{i}}=0 \quad \text { in } \quad \mathrm{G}(\overline{\mathbb{Q}}) \otimes \overline{\mathbb{Q}}^{\times} \quad \text { such that } \\
& \quad \operatorname{vol}_{5}(\mathrm{M})=\mathrm{q} \sum_{\mathrm{i} \in \mathrm{I}} \mathscr{L}_{3}\left(\mathrm{z}_{\mathrm{i}}\right) \quad \text { for some } \mathrm{q} \in \mathbb{Q}^{\times}
\end{aligned}
$$

Here, $\{x\}$ is an element of the following group $G(F)$...

Goncharov's structural result - part II

Let F be a number field. Then,

$$
\begin{gathered}
\mathrm{G}(\mathrm{~F})=\frac{\mathbb{Z}\left[\mathrm{P}_{1}(\mathrm{~F})\right]}{<\sum_{\mathrm{k}=1}^{5}(-1)^{\mathrm{k}}\left[\mathrm{r}_{2}\left(\mathrm{x}_{1}, \ldots, \widehat{\mathrm{x}_{\mathrm{k}}}, \ldots, \mathrm{x}_{5}\right)\right],[0],[\infty] \mid \mathrm{x}_{\mathrm{i}} \neq \mathrm{x}_{\mathrm{j}}>} \\
\mathscr{L}_{3}(\mathrm{z})=\mathfrak{R}\left\{\mathrm{Li}_{3}(\mathrm{z})-\mathrm{Li}_{2}(\mathrm{z}) \log |\mathrm{z}|+\frac{1}{3} \mathrm{Li}(\mathrm{z}) \log ^{2}|\mathrm{z}|\right\}
\end{gathered}
$$

Problem. Find an example with explicit q and z_{i} 's such that

$$
\operatorname{vol}_{5}(\mathrm{M})=\mathrm{q} \sum_{\mathrm{i} \in \mathrm{I}} \mathscr{L}_{3}\left(\mathrm{z}_{\mathrm{i}}\right) \quad \text { for some } \mathrm{q} \in \mathbb{Q}^{\times}
$$

Zagier's Conjecture and Goncharov's result

Let F be a number field of degree d and of discriminant D_{F} with r_{1} real and $2 r_{2}$ non-real embeddings $\sigma_{j}: F \hookrightarrow \mathbb{C}$. Let ζ_{F} be the zeta function of F, and put

$$
d_{n}:= \begin{cases}r_{1}+r_{2} & \text { if } n \text { is odd } \\ r_{2} & \text { if } n \text { is even }\end{cases}
$$

Zagier's Conjecture. For $n \geq 2$, there is $q_{n} \in \mathbb{Q}^{\times}$such that

$$
\zeta_{F}(n)=q_{n} \pi^{n\left(d-d_{n}\right)} D_{F}^{-1 / 2} R_{n} \quad, \quad \text { where }
$$

R_{n} is a sum of \mathscr{L}_{n}-values taken at elements and their conjugates of F.
Example. $\quad \zeta_{\mathbb{Q}(\sqrt{5})}(3)=\frac{24}{25 \sqrt{5}} \mathscr{L}_{3}(1)\left(\mathscr{L}_{3}\left(\frac{1+\sqrt{5}}{2}\right)-\mathscr{L}_{3}\left(\frac{1-\sqrt{5}}{2}\right)\right)$
Theorem (A. Goncharov, 1995)
Let F be a number field with r_{1} real and $2 r_{2}$ non-real embeddings $\sigma_{j}: F \hookrightarrow \mathbb{C}$ such that $\sigma_{r_{1}+k}=\overline{\sigma_{r_{1}+r_{2}+k}}$ as above. Then, there are certain algebraic numbers $\alpha_{1}, \ldots, \alpha_{r_{1}+r_{2}}$ such that

$$
\zeta_{F}(3)=\pi^{3 r_{2}} D_{F}^{-1 / 2} \operatorname{det}\left(\left|\mathscr{L}_{3}\left(\sigma_{j}\left(\alpha_{k}\right)\right)\right|\right) \quad\left(1 \leq i, k \leq r_{1}+r_{2}\right)
$$

Open problems

- For $n=7$, find a closed volume formula for an infinite family of polyhedra in \mathbb{H}^{7}
- Hilbert's 3 rd problem for $\mathscr{P}\left(X_{K}^{3}\right)$ for $K \neq 0$

Pseudo-arithmetic lattices of the 1st type

- An algebraic group G_{K} is pseudo-admissible (over K / k) if $K=k\left(\sqrt{a_{1}}, \ldots, \sqrt{a_{r}}\right)$ is totally real and G is an admissible k-group
- For $n>3$, a lattice $\Gamma \subset \mathrm{PO}(n, 1)$ is pseudo-arithmetic (over K / k) if its ambient group is pseudo-admissible
- Let $K=k\left(\sqrt{a_{1}}, \ldots, \sqrt{a_{r}}\right)$ be totally real field and f the diagonal quadratic form in x_{0}, \ldots, x_{n} with negative coefficient in x_{0} :
For a multi-index $i \in\{0,1\}^{r}$, put

$$
\alpha_{i}:=\sqrt{a_{1}^{i_{1}} \cdots a_{r}^{i_{r}}} \quad \text { and } \quad f_{i}:=f\left(x_{0}, \ldots, x_{n-1}, \alpha_{i} x_{n}\right)
$$

- For each $i \in\{0,1\}^{r}$, choose an arithmetic subgroup $\Gamma_{i} \subset \mathrm{PO}_{f_{i}}(k)$ (commensurable with $\left.\mathrm{PO}_{f_{i}}\left(\mathscr{O}_{k}\right)\right)$
- Then, the set of of arithmetic lattices $\left\{\Gamma_{i} \mid 0 \leq i \leq 2^{r}\right\}$ is subordinated to $\mathrm{PO}_{f, K}$

A structural result about the volume spectrum $1 / 3$

Compare the result of Emery-Mila with the classical result of Borel for hyperbolic 3-manifolds.

Theorem (A. Borel)

For any number field F with r complex places, there are $v_{1}, \ldots, v_{r} \in \mathbb{R}$ such that for any finite-volume hyperbolic 3-manifold M whose invariant trace field is F, there are r numbers $a_{1}, \ldots, a_{r} \in \mathbb{Q}$ with

$$
\operatorname{vol}_{3}(M)=a_{1} v_{1}+\cdots+a_{r} v_{r}
$$

Remark. If F is a number field with exactly one complex place, then there is a number $v \in \mathbb{R}$ such that every arithmetic hyperbolic 3-orbifold (or 3-manifold) Q whose defining field is k has volume which is rational multiple of v. In fact, for $d=[F: \mathbb{Q}]$, one can take

$$
v=\frac{\left|D_{F}\right|^{3 / 2} \zeta_{k}(2)}{\left(4 \pi^{2}\right)^{d-1}}
$$

