Trilogarithms and volumes of hyperbolic 5-manifolds

Ruth Kellerhals University of Fribourg, Switzerland

"Polylogarithms, Cluster Algebras, and Scattering Amplitudes"

Brin MRC, 11-15 September 2023

Non-euclidean volume

Let X_K^n be a standard geometric space of constant curvature $K \in \{-1, 0, +1\}$ with its distance function d_X .

▶ For
$$K = +1$$
 and $\mathbb{S}^n \subset \mathbb{R}^{n+1}$: $d_{\mathbb{S}}(x, y) = \arccos(x \cdot y)$

▶ For K = -1 and $\mathbb{H}^n \subset \mathbb{R}^n_+$ in the upper half space:

$$d_{\mathbb{H}}(x,y) = \log \frac{y_n}{x_n} \quad \text{for}$$
$$x = (0, \dots, 0, x_n), \ y = (0, \dots, 0, y_n), \ y_n \ge x_n$$

Consequences.

- For $K \neq 0$, distances are related to $\text{Li}_1(z) = -\log(1-z)$
- The hyperbolic volume element equals

$$d \operatorname{vol}_n = \frac{dx_1 \cdots dx_n}{x_n^n}$$

Non-euclidean polyhedra and Schläfli's volume differential

Theorem (L. Schläfli; H. Kneser; J. Milnor)

For a non-euclidean n-simplex $S \subset X_K^n$ with dihedral angles α_F at (n-2)-dimensional faces $F \subset S$, one has

$$d\operatorname{vol}_n(S) = \frac{K}{n-1}\sum_F \operatorname{vol}_{n-2}(F) d\alpha_F$$
,

where $\operatorname{vol}_0(S) := 1$.

First implications.

- The non-euclidean volume problem is subdivided according to the dimension parity
- Excess formula resp. defect formula for n = 2 and $K \neq 0$
- ▶ Schläfli's simplex reduction formula for $vol_{2m}(S) \subset S^{2m}$

Polylogarithms and related functions

Classical polylogarithms. (Leibniz, Johann Bernoulli)

$$\operatorname{Li}_{n}(z) = \sum_{r=1}^{\infty} \frac{z^{r}}{r^{n}} \quad , \quad z \in \mathbb{C} \quad \text{with} \quad |z| < 1$$

$$\operatorname{Li}_{1}(z) = -\log(1-z) \quad ; \quad \operatorname{Li}_{n}(z) = \int_{0}^{z} \operatorname{Li}_{n-1}(t) d \log t$$

Lobachevsky function. Let $\alpha \in \mathbb{R}$.

$$\Pi_2(\alpha) = \frac{1}{2} \Im \operatorname{Li}_2(e^{2i\alpha}) = \frac{1}{2} \sum_{r=1}^{\infty} \frac{\sin(2r\alpha)}{r^2}$$

Some modified dilogarithms (Bloch-Wigner,...)

$$\begin{aligned} \mathscr{L}_{1}(z) &= \Re \log z = \log |z| \\ D(z) &= \mathscr{L}_{2}(z) = \Im \left\{ \operatorname{Li}_{2}(z) - \operatorname{Li}_{1}(z) \log |z| \right\} \\ \sum_{k=1}^{5} (-1)^{k} \mathscr{L}_{2}(r_{2}(z_{1}, \dots, \widehat{z_{k}}, \dots, z_{5})) &= 0 \quad \text{for} \quad z_{i} \neq z_{j} \\ & 5\text{-term relation of Spence-Abel} \end{aligned}$$

The context of hyperbolic scissors congruences

For the scissors congruence group $\mathscr{P}(X_{K}^{n})$ of polyhedra in X_{K}^{n} : The (classes of) **orthoschemes** $[\alpha_{1}, \ldots, \alpha_{n}]$ generate $\mathscr{P}(X_{K}^{n})$.

By results of Sah and Debrunner:

- ▶ For $n \ge 2$, the image of $\mathscr{P}(\mathbb{H}^n)$ in $\mathscr{P}(\overline{\mathbb{H}^n})$ is generated by **1-asymptotic** orthoschemes
- For n≥3 and odd, 𝒫(𝔅n) is generated by 2-asymptotic orthoschemes

Consequence. In **odd** dimensions, it suffices to solve the volume problem for **2-asymptotic orthoschemes**

Hyperbolic volume in three dimensions

١

Lobachevsky derived a closed volume formula for the generating orthoschemes in $\mathscr{P}(\mathbb{H}^3)$ in terms of the dihedral angle parameters α, β, γ by introducing a new function, the *Lobachevsky function* $\Pi_2(\omega)$ as introduced earlier.

For an orthoscheme $R = [\alpha, \beta, \gamma] \subset \mathbb{H}^3$ with graph $\bullet \stackrel{\alpha}{\bullet} \stackrel{\beta}{\bullet} \stackrel{\gamma}{\bullet} \bullet \bullet \bullet \bullet \bullet$

$$\begin{aligned} \operatorname{vol}_{3}(R) &= \frac{1}{4} \left\{ \operatorname{J}_{2}(\alpha + \theta) - \operatorname{J}_{2}(\alpha - \theta) + \operatorname{J}_{2}(\frac{\pi}{2} + \beta - \theta) + \right. \\ &+ \operatorname{J}_{2}(\frac{\pi}{2} - \beta - \theta) + \operatorname{J}_{2}(\gamma + \theta) - \operatorname{J}_{2}(\gamma + \theta) \left. \right\} \quad , \\ &0 \leq \theta = \arctan \frac{\sqrt{\cos^{2}\beta - \sin^{2}\alpha \sin^{2}\gamma}}{\cos \alpha \cos \gamma} \leq \frac{\pi}{2} \end{aligned}$$

Polyhedral dissection and functional equations

Different cutting and pasting procedures applied to a polyhedron $P \subset \mathbb{H}^3$ lead to functional equations of dilogarithm functions.

Example. The hyperbolic 2*n*-chain link complement manifold $M_n = \mathbb{S}^3 \setminus \mathcal{D}_{2n}$ can be built on **different** polyhedral objects providing the functional equation

$$4\left\{ \Pi_2\left(\frac{\pi}{4} + \frac{\alpha}{2}\right) + \Pi_2\left(\frac{\pi}{4} - \frac{\alpha}{2}\right) \right\} = \\ \Pi_2\left(\frac{\pi}{2} + \alpha - \theta\right) + \Pi_2\left(\frac{\pi}{2} - \alpha - \theta\right) + 4 \Pi_2(\theta) + 2 \Pi_2\left(\frac{\pi}{2} - \theta\right),$$

where $\alpha, \theta \in [0, \frac{\pi}{2})$ are such that $\tan \theta = \cos \alpha$.

Milnor's volume formula

Let $S_{\infty}(z) \subset \mathbb{H}^3 = \mathbb{C} \times \{t > 0\}$ be an ideal tetrahedron with vertices $\infty, 0, 1$ and $z \in \mathbb{C} \setminus \mathbb{R}$:

$$\begin{aligned} \operatorname{vol}_3(S_{\infty}(z)) &= D(z) = \operatorname{II}_2(\alpha) + \operatorname{II}_2(\beta) + \operatorname{II}_2(\gamma), \quad \text{where} \\ \alpha &= \arg z \quad , \quad \beta = \arg (1 - 1/z) \quad , \quad \gamma = \pi - (\alpha + \beta) \end{aligned}$$

Milnor's Conjecture. Let $\{\theta_j\} \subset \mathbb{Q}\pi$. Then, very \mathbb{Q} -linear relation

$$\sum_{j} q_{j} \Pi_{2}(\theta_{j}) = 0$$

is a consequence of the relations

$$\begin{aligned} \Pi_2(x+\pi) &= \Pi_2(x) \quad , \quad \Pi_2(-x) = \Pi_2(x) \\ \Pi_2(nx) &= n \sum_{k \bmod n} \Pi_2(x + \frac{k\pi}{n}) \qquad \text{distribution law} \end{aligned}$$

The generalised 3rd Problem of Hilbert

Problem : Two polyhedra $P_1, P_2 \subset X_K^3$ are scissors congruent if and only if their volumes and their Dehn invariants are equal, i.e.

$$\operatorname{vol}_3(P_1) = \operatorname{vol}_3(P_2)$$
, $\operatorname{Dehn}(P_1) = \operatorname{Dehn}(P_2)$

where

$$\mathsf{Dehn}(P) = \sum_F \mathsf{vol}_1(F) \otimes \alpha_F \in \mathbb{R} \otimes_\mathbb{Z} \mathbb{R}/\pi\mathbb{Z}$$

Theorem (J. Dupont-H. Sah)

Let $S_{\infty}(z_n) = (\infty, 0, 1, z_n) \subset \mathbb{H}^3$ with $z_n = e^{2\pi i/n}$ for $n \ge 7$. Let $\theta \in]\frac{1}{6}, \frac{1}{2}[$ so that $\Pi_2(\theta\pi) = \Pi_2(\pi/n) = \frac{1}{2}\operatorname{vol}_3(S_{\infty}(z_n))$.

Then, there is the following alternative :

▶ $\theta \in \mathbb{R} - \mathbb{Q}$, *i.e.* Dehn $(S_{\infty}(\theta)) \neq 0$, and hence there is a pair of ideal tetrahedra with equal volume and different Dehn-values

▶
$$\theta \in \mathbb{Q}$$
, i.e. Milnor's Conjecture is FALSE

Triangulated hyperbolic 3-manifolds

Theorem (W. Thurston, W. Neumann-D. Zagier,...)

Let M be an oriented hyperbolic 3-manifold of finite volume. Then, there are finitely many algebraic numbers z_i , $i \in I$, satisfying

$$\sum_{i\in I} z_i \wedge (1-z_i) = 0 \quad in \quad \bigwedge^2 \mathbb{Q}^{\times} \tag{(\star)}$$

such that $\operatorname{vol}_3(M) = \sum_{i \in I} \mathscr{L}_2(z_i).$

Interpretation of (*). The Dehn invariant Dehn(P) can be extended to a Dehn invariant $\Delta(P)$ for non-compact polyhedra $P \subset \mathbb{H}^3$ (cut off ideal vertices by means of small horospheres and measure then edge length).

Example. $\Delta(S_{\infty}(z)) = 2\{ \log |1-z| \otimes \arg z - \log |z| \otimes \arg(1-z) \}$

$$= z \wedge (1-z) - \overline{z} \wedge (1-\overline{z})$$
 where
 $\mathbb{R} \otimes_{\mathbb{Z}} \mathbb{R}/2\pi\mathbb{Z} \cong \bigwedge^2 (\mathbb{C}^{ imes})^- : r \otimes heta \mod 2\pi \mapsto -e^r \wedge e^{i heta}$

Higher Lobachevsky functions

$$\Pi_{2k}(\alpha) = \frac{1}{2^{2k-1}} \Im \left(\text{Li}_{2k}(e^{2i\alpha}) \right) = \frac{1}{2^{2k-1}} \sum_{r=1}^{\infty} \frac{\sin(2r\alpha)}{r^{2k}}$$
$$\Pi_{2k+1}(\alpha) = \frac{1}{2^{2k}} \Re \left(\text{Li}_{2k+1}(e^{2i\alpha}) \right) = \frac{1}{2^{2k}} \sum_{r=1}^{\infty} \frac{\cos(2r\alpha)}{r^{2k+1}}$$

•
$$\Pi_{2k}(\alpha) = \int_0^\alpha \Pi_{2k-1}(t) dt$$

•
$$\Pi_{2k+1}(\alpha) = \frac{1}{2^{2k}} \zeta(2k+1) - \int_0^\alpha \Pi_{2k}(t) dt$$

• $\Pi_k(\alpha)$ is π -periodic, even (odd) for k odd (even) and satisfies

$$\frac{1}{m^{k-1}} \Pi_k(m\alpha) = \sum_{r=0}^{m-1} \Pi_k\left(\alpha + \frac{r\pi}{m}\right)$$

• $\Pi_3(0) = \frac{1}{4}\zeta(3)$, $\Pi_3(\frac{\pi}{6}) = \frac{1}{12}\zeta(3)$, $\Pi_3(\frac{\pi}{2}) = -\frac{3}{16}\zeta(3)$
 $\Pi_3(\frac{\pi}{5}) + \Pi_3(\frac{2\pi}{5}) = -\frac{3}{25}\zeta(3)$

A few volume formulae in five dimensions Theorem (K, 1992)

For a 2-asymptotic orthoscheme $R_{\infty} \subset \mathbb{H}^5$

with $\cos^2lpha+\cos^2eta+\cos^2\gamma=1$, the volume is given by

$$\operatorname{vol}_{5}(R_{\infty}) = \frac{1}{4} \{ \Pi_{3}(\alpha) + \Pi_{3}(\beta) - \frac{1}{2} \Pi_{3}(\frac{\pi}{2} - \gamma) \} - \frac{1}{16} \{ \Pi_{3}(\frac{\pi}{2} + \alpha + \beta) + \Pi_{3}(\frac{\pi}{2} - \alpha + \beta) \} + \frac{3}{64} \zeta(3)$$

A result of Hild, 2007. The (unique) minimal volume non-compact hyperbolic 5-orbifold \mathbb{H}^5/Γ_* is of volume

$$\mathsf{vol}_5([3,4,3,3,3]) = rac{7}{46080}\,\zeta(3)$$

The volume of a doubly truncated 5-orthoscheme

Proposition (K, 1995)

The volume of a doubly-truncated orthoscheme in \mathbb{H}^5 with cyclic graph $\Omega(\alpha)$ as given above equals

$$\operatorname{vol}_5(\Omega(\alpha)) = rac{1}{32}\zeta(3) - rac{1}{2}\left\{ \operatorname{II}_3(\alpha) + \operatorname{II}_3(rac{\pi}{2} - \alpha) \right\}.$$

Example. The Coxeter polyhedron $\Omega(\frac{\pi}{3})$ has volume $\frac{13}{288}\zeta(3)$

An application and the value $\zeta(3)$

The covolume of the hybrid quaternionic modular group $PSL_{\Delta}(2, \mathbb{H}yb) = PSL_{\Delta}(2, \mathbb{Z}[\omega, j])$ with $\omega = -\frac{1}{2} + \frac{1}{2}\sqrt{3}i$ acting discretely on \mathbb{H}^5 can be expressed (by using a particular dissection of a fundamental polyhedron) as follows.

Theorem (K, 2018)

$$\operatorname{covol}_5(\operatorname{PSL}_{\Delta}(2, \mathbb{H}yb)) = \frac{13}{180}\zeta(3) = 32 \cdot \operatorname{vol}_5(\Omega(\frac{\pi}{3}))$$

By means of Schläfli's volume differential, one deduces the identity

Corollary

$$\zeta(3) = \frac{360}{13} \left[\frac{\pi}{4} \, \Pi_2(\frac{\pi}{3}) + \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \left\{ \, \Pi_2(\frac{\pi}{6} + \beta(t)) + \Pi_2(\frac{\pi}{6} - \beta(t)) \right\} dt \, \right],$$
where $\cos \beta(t) = \frac{\sin t}{\sqrt{4 \sin^2 t - 1}}$

The generic case

Theorem (K, 1995) Let $R \subset \mathbb{H}^5$ be a 2-asymptotic orthoscheme with graph $\Sigma(R)$ $\alpha_1 \quad \alpha_2 \quad \alpha_3 \quad \alpha_4 \quad \alpha_5$ Put $\lambda = \tan \Theta = \frac{|\det \Sigma(R)|^{1/2}}{\cos \alpha_1 \cos \alpha_2 \cos \alpha_5}$, $0 \le \Theta \le \frac{\pi}{2}$, and $0\leq lpha_0\leq rac{\pi}{2}$ so that $an lpha_0= \cot \Theta an lpha_3$. Then, Then, $\operatorname{vol}_5(R) =$ $-\frac{1}{8}$ { $I(\lambda^{-1}, 0; \alpha_1) + \frac{1}{2}I(\lambda, 0; \alpha_2) + \frac{1}{2}I(\lambda, 0; \alpha_4) + I(\lambda^{-1}, 0; \alpha_5) -I(\lambda^{-1}, 0; \alpha'_0)$ $+\frac{1}{22}$ { $I(\lambda, -(\frac{\pi}{2}+\alpha_1); \frac{\pi}{2}+\alpha_1+\alpha_2) + I(\lambda, -(\frac{\pi}{2}-\alpha_1); \frac{\pi}{2}-\alpha_1+\alpha_2)$ $-I(\lambda, -(\frac{\pi}{2}+\alpha_1); \pi+\alpha_1) - I(\lambda, -(\frac{\pi}{2}-\alpha_1); \pi-\alpha_1)$ $-I(\lambda, -(\frac{\pi}{2}+\alpha_5); \pi+\alpha_5) - I(\lambda, -(\pi 2-\alpha_5); \pi-\alpha_5)$ $+ I(\lambda, -(\frac{\pi}{2} + \alpha_5); \frac{\pi}{2} + \alpha_5 + \alpha_4) + I(\lambda, -(\frac{\pi}{2} - \alpha_5); \frac{\pi}{2} - \alpha_5 + \alpha_4) \}$

About the trilogarithmic function I(a, b; x)

For $a, b \in \mathbb{R}$, $I(a, b; x) = \int_{\frac{\pi}{2}}^{x} \Pi_2(y) d\arctan(a\tan(b+y))$ $I(1, b; x) = -\Pi_3(x) - \frac{3}{16}\zeta(3)$

I(a,b;x) is closely related to the integral

$$J(a, b, c; z) = \int_{0}^{z} \log(1 + at) \log(1 + bt) d \log(1 + ct)$$

which can be expressed in terms of polylogarithms of orders ≤ 3 . **Question.** Simple relations of *I*, *J* to modified trilogarithms ?

Prasad's formula for arithmetic lattices

Prasad's volume formula was exploited by M. Belolipetsky ($n \ge 4$ even) and Emery ($n \ge 5$ odd). Here are some of Emery's results for weak variants of arithmetic hyperbolic lattices in PO(5,1).

Theorem (V. Emery, 2016)

Let $\Gamma \subset \text{Isom}(\mathbb{H}^5)$ be a non-uniform quasi-arithmetic lattice with associated field extension ℓ/\mathbb{Q} .

- 1. If $\ell = \mathbb{Q}$, then $\operatorname{vol}_5(\mathbb{H}^5/\Gamma) \in \zeta(3) \cdot \mathbb{Q}^{\times}$;
- 2. otherwise, $\operatorname{vol}_5(\mathbb{H}^5/\Gamma) \in |D_\ell|^{5/2} \cdot \frac{\zeta_\ell(3)}{\zeta(3)} \cdot \mathbb{Q}^{\times}$.

Theorem (Emery-O. Mila, 2021)

Let $\Gamma \subset Isom(\mathbb{H}^5)$ be a pseudo-arithmetic lattice of the 1st type, and $\{\Gamma_i\}$ a set of arithmetic lattices subordinated to the ambient group of Γ . Then, there are $\beta_i \in \mathbb{Q}$ such that

$$\operatorname{vol}_{5}(\mathbb{H}^{5}/\Gamma) = \sum_{i} \beta_{i} \operatorname{vol}_{5}(\mathbb{H}^{5}/\Gamma_{i}).$$

About the non-arithmetic hyperbolic Coxeter 5-simplex

The hyperbolic Coxeter 5-simplex groups Δ_{44} and Δ_4 are non-cocompact lattices. The group Δ_{44} is arithmetic while the group Δ_4 is not.

For their covolumes, the integration of Schläfli's volume differential yields (K, 1999)

$$\operatorname{vol}_{5}(\mathbb{H}^{5}/\Delta_{44}) = \frac{7}{288}\zeta(3);$$

$$\operatorname{vol}_{5}(\mathbb{H}^{5}/\Delta_{4}) = \frac{7}{288}\zeta(3) - \frac{1}{4}\int_{\frac{\pi}{4}}^{\frac{\pi}{3}}\operatorname{vol}_{3}(F(t))dt \qquad (\star)$$

$$\approx 0.007573474422...$$

Comparison with the result of Emery-Mila

The Coxeter group Δ_4 is not arithmetic but *pseudo-arithmetic of* the 1st type with 2 subordinated arithmetic lattices $\Gamma_i = PO_{f_i}(\mathbb{Z}), i = 0, 1$, where

$$\begin{split} f_0 &= -x_0^2 + x_1^2 + \dots + x_5^2 \quad , \quad f_1 = -x_0^2 + x_1^2 + \dots + 2x_5^2 \quad \text{and} \\ \text{vol}_5(\mathbb{H}^5/\Gamma_0) &\in \zeta(3) \cdot \mathbb{Q}^{\times} \quad , \quad \text{vol}_5(\mathbb{H}^5/\Gamma_1) \in \sqrt{2}L(\chi_8,3) \cdot \mathbb{Q}^{\times} \end{split}$$

Numerical approximation (up to 160 digits; S. Tschantz)

$$\begin{aligned} \mathsf{vol}_5(\mathbb{H}^5/\Delta_4) &\approx \frac{73}{2^9 3^2 5} \zeta(3) + \frac{1}{2^3 3^2 5} \sqrt{2} L(\chi_8,3) \quad (\star) \\ &= 0.00757347442200786763497722... \end{aligned}$$

Goncharov's structural result part I

Predicted by Zagier's Conjecture, to express $L_{\ell_0/k_0}(3)$, for example, as a sum of the **modified trilogarithms** \mathscr{L}_3 evaluated at integers of k_0 , is the following result.

Theorem (A. Goncharov, 1998)

Let M be an oriented hyperbolic 5-manifold of finite volume. Then, there are finitely many $z_i\in\overline{\mathbb{Q}},i\in I,$ satisfying

$$\sum_{i\in I} \{z_i\} \otimes z_i = 0$$
 in $G(\overline{\mathbb{Q}}) \otimes \overline{\mathbb{Q}}^{ imes}$ such that

$$\mathrm{vol}_5(\mathrm{M}) = q \sum_{i \in \mathrm{I}} \mathscr{L}_3(z_i)$$
 for some $q \in \mathbb{Q}^{ imes}$

Here, $\{x\}$ is an element of the following group G(F) ...

Goncharov's structural result - part II

Let F be a number field. Then,

Problem. Find an example with explicit q and z_i 's such that

$$\operatorname{vol}_5(M) = q \sum_{i \in I} \mathscr{L}_3(z_i) \quad \text{for some } q \in \mathbb{Q}^{ imes}$$

Zagier's Conjecture and Goncharov's result

Let F be a number field of degree d and of discriminant D_F with r_1 real and $2r_2$ non-real embeddings $\sigma_j : F \hookrightarrow \mathbb{C}$. Let ζ_F be the zeta function of F, and put

$$d_n := \begin{cases} r_1 + r_2 & \text{if } n \text{ is odd} \\ r_2 & \text{if } n \text{ is even} \end{cases}$$

Zagier's Conjecture. For $n \ge 2$, there is $q_n \in \mathbb{Q}^{\times}$ such that

$$\zeta_F(n) = q_n \pi^{n(d-d_n)} D_F^{-1/2} R_n$$
 , where

 R_n is a sum of \mathscr{L}_n -values taken at elements and their conjugates of F.

Example.
$$\zeta_{\mathbb{Q}(\sqrt{5})}(3) = \frac{24}{25\sqrt{5}} \mathscr{L}_3(1) \left(\mathscr{L}_3(\frac{1+\sqrt{5}}{2}) - \mathscr{L}_3(\frac{1-\sqrt{5}}{2}) \right)$$

Theorem (A. Goncharov, 1995)

Let F be a number field with r_1 real and $2r_2$ non-real embeddings $\sigma_j : F \hookrightarrow \mathbb{C}$ such that $\sigma_{r_1+k} = \overline{\sigma_{r_1+r_2+k}}$ as above. Then, there are certain algebraic numbers $\alpha_1, \ldots, \alpha_{r_1+r_2}$ such that

$$\zeta_{\mathcal{F}}(3) = \pi^{3r_2} D_{\mathcal{F}}^{-1/2} \det\left(\left|\mathscr{L}_3(\sigma_j(\alpha_k))\right|\right) \quad (1 \le i, k \le r_1 + r_2)$$

Open problems

- For n = 7, find a closed volume formula for an infinite family of polyhedra in ℍ⁷
- Hilbert's 3rd problem for $\mathscr{P}(X_K^3)$ for $K \neq 0$

Pseudo-arithmetic lattices of the 1st type

- An algebraic group G_K is pseudo-admissible (over K/k) if K = k(√a₁,...,√a_r) is totally real and G is an admissible k-group
- For n > 3, a lattice Γ ⊂ PO(n,1) is pseudo-arithmetic (over K/k) if its ambient group is pseudo-admissible
- ► Let K = k(√a₁,...,√a_r) be totally real field and f the diagonal quadratic form in x₀,...,x_n with negative coefficient in x₀:

For a multi-index $i \in \{0,1\}^r$, put

$$lpha_i := \sqrt{a_1^{i_1} \cdots a_r^{i_r}}$$
 and $f_i := f(x_0, \dots, x_{n-1}, \alpha_i x_n)$

- For each $i \in \{0,1\}^r$, choose an arithmetic subgroup $\Gamma_i \subset PO_{f_i}(k)$ (commensurable with $PO_{f_i}(\mathscr{O}_k)$)
- Then, the set of of arithmetic lattices {Γ_i | 0 ≤ i ≤ 2^r} is subordinated to PO_{f,K}

A structural result about the volume spectrum \mathscr{V}_3

Compare the result of Emery-Mila with the classical result of Borel for hyperbolic 3-manifolds.

Theorem (A. Borel)

For any number field F with r complex places, there are $v_1, \ldots, v_r \in \mathbb{R}$ such that for **any** finite-volume hyperbolic 3-manifold M whose invariant trace field is F, there are r numbers $a_1, \ldots, a_r \in \mathbb{Q}$ with

$$\operatorname{vol}_3(M) = a_1 v_1 + \cdots + a_r v_r$$

Remark. If *F* is a number field with exactly one complex place, then there is a number $v \in \mathbb{R}$ such that every *arithmetic* hyperbolic 3-orbifold (or 3-manifold) *Q* whose defining field is *k* has volume which is *rational* multiple of *v*. In fact, for $d = [F : \mathbb{Q}]$, one can take

$$v = rac{\mid D_F \mid^{3/2} \zeta_k(2)}{(4\pi^2)^{d-1}}$$