# Number Theory challenge 

Matthew Palmer

Set $1 / 2 / 11$

## Show that

$$
2 x(x+1)=y(y+1)
$$

has infinitely many solutions $(x, y) \in \mathbb{Z}^{2}$.
Rewrite the equation as

$$
y^{2}+y-\left(2 x^{2}+2 x\right)=0 .
$$

Then we have (by the quadratic formula)

$$
y=\frac{-1+\sqrt{1+4\left(2 x^{2}+2 x\right)}}{2}=\frac{-1+\sqrt{8 x^{2}+8 x+1}}{2} .
$$

So for $y$ to be an integer, it is certainly necessary that $8 x^{2}+8 x+1$ is a perfect square. It is also sufficient, as $8 x^{2}+8 x+1$ will always be odd - so if it is a perfect square, then its square root will be odd, implying that $-1+\sqrt{8 x^{2}+8 x+1}$ is even and hence that $y$ is an integer.

So we need

$$
8 x^{2}+8 x+1=z^{2}
$$

for some integer $z$. Write $w=2 x+1$ - then we have

$$
z^{2}-2 w^{2}=-1 .
$$

This is an equation that we have already shown to have infinitely many solutions. The solutions are parametrised by

$$
z=\frac{u^{2 r+1}+\tilde{u}^{2 r+1}}{2}, \quad w=\frac{u^{2 r+1}-\tilde{u}^{2 r+1}}{2 \sqrt{2}}
$$

for $r \in \mathbb{Z}$, where $u=1+\sqrt{2}$ is the fundamental unit of $\mathbb{Z}[\sqrt{2}]$. We have

$$
x=\frac{w-1}{2}, \quad y=\frac{z-1}{2}
$$

- so we need to show that $z$ and $w$ are both odd for all $r$.

We have

$$
\begin{gathered}
u^{2 r+1}=(1+\sqrt{2})^{2 r+1}=1+\binom{2 r+1}{1} \sqrt{2}+\binom{2 r+1}{2} 2+\cdots+\binom{2 r+1}{2 r} \sqrt{2}^{2 r}+\sqrt{2}^{2 r+1}, \\
\tilde{u}^{2 r+1}=1-\binom{2 r+1}{1}+\binom{2 r+1}{2} 2-\cdots+\binom{2 r+1}{2 r} \sqrt{2}^{2 r}+\sqrt{2}^{2 r+1}
\end{gathered}
$$

- so

$$
z=1+2\binom{2 r+1}{2}+4\binom{2 r+1}{4}+\cdots+2^{i}\binom{2 r+1}{2 i}+\cdots+2^{r}\binom{2 r+1}{2 r}
$$

and

$$
w=\binom{2 r+1}{1}+2\binom{2 r+1}{3}+4\binom{2 r+1}{5}+\cdots+2^{i}\binom{2 r+1}{2 i+1}+\cdots+2^{r}\binom{2 r+1}{2 r+1}
$$

and hence $w, z$ are odd (in each series, every term but the first is even, and the first is odd). So there are infinitely many solutions, and we have a parametrisation

$$
x=r+\sum_{i=1}^{r} 2^{i-1}\binom{2 r+1}{2 i+1}, \quad y=\sum_{i=1}^{r} 2^{i-1}\binom{2 r+1}{2 i}
$$

where $r \in \mathbb{N}$.

