Elementary Number Theory and Cryptography, M'mas 2011, Problem Sheet 5. (Fermat, Euler φ , Chinese Remainder)

- 1. For the following question, Fermat's Little Theorem may be helpful.
 - (a) Find a number $0 \le a < 67$ such that $a \equiv 9^{728} \pmod{67}$. [Justify your answer.]
 - (b) Solve the congruence $x^{86} \equiv 6 \pmod{29}$.
 - (c) Solve the congruence $x^{39} \equiv 8 \pmod{13}$.
- 2. Carefully state Fermat's Little Theorem and check for each of the following statements whether it is applicable or not.
 - (a) The congruence $7^{1734250} \equiv 1660565 \pmod{1734251}$ is true. Can you conclude that 1734251 is a composite number?
 - (b) The congruence $301^{64026} \equiv 29670 \pmod{64027}$ is true. Can you conclude that 64027 is a composite number?
 - (c) The congruence $2^{52632} \equiv 1 \pmod{52633}$ is true. Can you conclude that 52633 is a prime number?
- 3. For each part, find an x that solves the simultaneous congruences
 - (a) $x \equiv 3 \pmod{5}$ and $x \equiv 7 \pmod{11}$.
 - (b) $x \equiv 3 \pmod{37}$ and $x \equiv 1 \pmod{87}$.
 - (c) $x \equiv 5 \pmod{7}$, $x \equiv 3 \pmod{12}$ and $x \equiv 8 \pmod{13}$.
- 4. (a) Show that $2^{341} \equiv 2 \pmod{341}$. [Hint: Consider, e.g., 2^5 modulo the different prime powers in the factorization of 341.]
 - (b*) Factor 561 and prove that $a^{561} \equiv a \pmod{561}$ for any $a \in \mathbb{Z}$ (not easy!).
- 5. (a) For which values of $n \in \mathbb{N}$ is Euler's totient function $\varphi(n)$ odd?
 - (b) Find all values of $n \in \mathbb{N}$ that solve

(i) $\varphi(n) = n/2$ or (ii) $\varphi(n) = n/3$.

- 6. (a) Find the last two decimal digits of 3^{400} "by hand". [Hint: Look at smaller powers and try to "compose" the results to deduce the last two digits for 3^d with d some divisor of 400. Or else use a result from the lectures.]
 - (b) Use the method of successive squaring to compute each of the following powers:
 - (i) $5^{13} \pmod{23}$,
 - (ii) 28⁷⁴⁹ (mod 1147).

7. Partially experimental/computer question:

- (a) For $2 \leq a \leq 10$, find the last four digits of a^{1000} . (Without computer, you should actually be able to answer this for gcd(a, 10) = 1.)
- (b) Based on your experience in (a), give a simple criterion that allows you to predict the last four digits for any a^{1000} , $a \in \mathbb{N}$.
- (c^{*}) Prove that your criterion in (b) is correct. [Possibly helpful: Euler– Fermat, binomial expansion, Chinese Remainder Theorem]