Elementary Number Theory and Cryptography, Michaelmas 2011, Problem Sheet 6. (Roots mod p, RSA)

1. (a) Solve the congruence

$$x^{11} \equiv 2 \pmod{17},$$

in other words, compute the eleventh root of 2 modulo 17. Check your result using the method of successive squaring.

(b) Solve the following congruence

$$x^3 \equiv 7 \pmod{19}.$$

How many different solutions can you find (modulo 19)?

2. (a) Note that $2^3 \equiv 8 \pmod{23}$. By finding an inverse of 3 in $\mathbb{Z}/22\mathbb{Z}$, or otherwise, find an integer x such that

 $8^x \equiv 2 \pmod{23}$.

- (b) Try to find a square root of 23 modulo 19. Why does the method given in the lectures not apply here?
- 3. Michael and Nikita use the Diffie-Hellman key exchange protocol to produce a secret shared key. They have agreed on p = 101 and an element g = 15 of order p - 1, both of which have been made public.

You are the infamous Eve Stroppa and have the task to intercept and decode their messages.

Michael has chosen m and is sending $g^m = 42$ to Nikita, while Nikita has chosen n and is sending $g^n = 24$ to Michael, which establishes a shared secret key for them.

You intercept both messages (i.e. 42 and 24).

- (a) Try your luck: by checking the first few powers of $g \mod 101$, try to find m or n and hence produce their shared key.
- (b) Double check by producing the shared key in two possible ways from the data that they sent.
- 4. (a) Solve $7d \equiv 1 \pmod{30}$.
 - (b) Suppose you write a message as a number $m \pmod{31}$. Encrypt m as $m^7 \pmod{31}$. How would you decrypt a message, i.e. given $s \pmod{31}$, how do you find m with $s \equiv m^7 \pmod{31}$? [Hint: Establish an inverse map by raising to an appropriate power.]
- 5. We use the notation as in the description of the RSA algorithm.
 - (a) Your RSA modulus is n = 91 and your encoding exponent is e = 19. Find the decryption exponent d. Why would e = 9 be a bad choice?
 - (b) You receive public keys (n, e) = (55, 7) and (n', e') = (100160063, 17). Using the standard bijection of the alphabet and the set of numbers $\{1, \ldots, 26\}$, encode your own name (letterwise) using the public key above; then "fatten" each ensuing single digit number into a block of *two* digits, i.e., 1 as 01, ..., 9 as 09 (to ensure injectivity of the encoding); finally concatenate all these blocks to a single number N. Find a decryption exponent for the key (n', e') and decode N. Do you recognise yourself after identifying numbers with letters?
- 6. (a) (Computer problem:) Try to write a program that takes a string and produces a number for it (i.e. encodes it) using the public key (n', e') in 5(b); write a second program to decode the number into a string.
 - (b) Challenge a friend/your marker/your lecturer by producing a public key and a (polite) encoded message in this key that s/he should decode.