ALGEBRA II Problems: Week 12

Epiphany Term 2012

Hwk: Problems 1, 3, 10, due Tuesday, Jan. 31, after the lecture.

1. Show that a k-cycle $(k \ge 2)$ can be written as a product of transpositions:

$$(i_1 i_2 \ldots i_k) = (i_1 i_k)(i_1 i_{k-1}) \ldots (i_1 i_2).$$

For k > 2, find a different product of transpositions which does the job.

2. Express each of the following permutations as (i) a product of disjoint cycles and (ii) a product of transpositions:

 $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 7 & 6 & 4 & 1 & 8 & 2 & 3 & 5 \end{pmatrix}; (4568)(1245); (624)(253)(876)(45).$

- 3. Let H be a subgroup of G. Show that gHg^{-1} is also a subgroup of G for any $g \in G$. Then show that every left coset of H is equal to a right coset of some subgroup (not necessarily H) of G.
- 4. How many different 5-cycles are there in S_5 ? [Justify your answer.]
- 5. Consider the following subset $W = \{ e, (12)(34), (13)(24), (14)(23) \}$ of S_4 .
 - (a) Show that W forms a subgroup of S_4 .
 - (b) Is W isomorphic to \mathbf{Z}_4 or to $\mathbf{Z}_2 \times \mathbf{Z}_2$? [Justify your answer.]
 - (c) Show that W is isomorphic to the group of plane symmetries of a chess board.
- 6. Find the centre of S_n for $n \ge 3$.
- 7. Find the inverse of the cycle $(i_1 i_2 \ldots i_k)$.
- 8. Find a subgroup of S_4 which contains six elements. How many subgroups of order six are there in S_4 ? (Remember that a group of order six is isomorphic to either \mathbf{Z}_6 or S_3 .)
- 9. For each of the groups \mathbf{Z}_6 , S_3 , D_4 , $\mathbf{Z}_2 \times \mathbf{Z}_2$ either find a subgroup of D_6 that is isomorphic to it, together with a specific isomorphism between the two, or explain why no such subgroup exists.
- 10. Let G be the set of all ordered triples (x, y, z) of real numbers. Show that the multiplication

$$(x, y, z)(x', y', z') = (x + x', y + y', xy' + z + z')$$

makes G into a group. Determine which of the following subsets of G are subgroups: $\{(x, y, z) \mid x = 0\}$; $\{(x, y, z) \mid x = y\}$; $\{(x, y, z) \mid z = 0\}$.

Is G abelian? Work out the nth power of (x, y, z) in G. Which elements of G have finite order?

Verify that $H = \{ (x, y, z) \mid x = y = 0 \}$ is a subgroup of G and that gh = hg for all $g \in G, h \in H$.