ALGEBRA II Problems: Week 14 (Identifying, distinguishing groups) Epiphany Term 2014

Hwk: Q4, 6, 11 due Thursday Feb 20, after the lectures.

- 1. Show that a k-cycle in S_n $(1 \le k \le n)$ has order k. Moreover, show that the product of a k_1 -cycle and a k_2 -cycle which are disjoint has as its order the least common multiple $lcm(k_1, k_2)$.
- **2.** For any $\sigma \in S_n$ $(n \ge 2)$ put

$$P_{n,\sigma} = \prod_{1 \le i < j \le n} (x_{\sigma(i)} - x_{\sigma(j)}),$$

where x_1, \ldots, x_n are independent variables. Show that, for any transposition $\tau \in S_n$, one has

 $P_{n,\tau\sigma} = -P_{n,\sigma}$.

[Hint: Try to prove it for $\sigma = e$ first, and investigate which ones of the factors $(x_i - x_j)$ change their sign under τ . Do you see a pattern?]

3. Check that none of the following groups are isomorphic to one another:

$$\mathbb{Z}_8, \quad \mathbb{Z}_4 imes \mathbb{Z}_2, \quad D_4, \quad A_4$$
 .

4. Which of the following groups are isomorphic to one another? Justify your answers.

(a) $\mathbb{Z}_4 \times \mathbb{Z}_3$, $\mathbb{Z}_6 \times \mathbb{Z}_2$, $V \times \mathbb{Z}_3$, $S_3 \times \mathbb{Z}_2$.

(b) $\mathbb{Z}_6 \times \mathbb{Z}_4$, $D_4 \times \mathbb{Z}_3$, D_{12} , $A_4 \times \mathbb{Z}_2$, $\mathbb{Z}_2 \times D_6$, S_4 , $\mathbb{Z}_{12} \times \mathbb{Z}_2$. (Here V, as usual, denotes the Klein 4-group.)

- Show that, for a prime p, the direct product of Z_p with itself is not isomorphic to Z_{p²}.
- 6. Show that A_4 has no subgroup of order 6. Why does this show that the converse of Lagrange's Theorem is false?
- 7. Show that the integers 1,3,7,9,11,13,17,19 form a group under multiplication mod 20. Identify this group as a direct product of cyclic groups.
- 8. Produce a specific isomorphism between S_3 and D_3 . How many different isomorphisms are there from S_3 to D_3 ?
- **9.** Let G and H be groups. Show that $G \times H$ is abelian if and only if both G and H are abelian. If $G \times H$ is cyclic, prove that G and H are both cyclic.
- 10. Show that $\mathbb{Z} \times \mathbb{Z}$ is not isomorphic to \mathbb{Z} .
- 11. Prove that a group G is abelian if and only if the correspondence $x \mapsto x^{-1}$ is an isomorphism from G to G.
- 12. If G is a group and if g is an element of G, show that the function $\phi: G \to G$ defined by $\phi(x) = gxg^{-1}$ is an isomorphism. Work out this isomorphism when G is A_4 and g is the permutation (123).