Michaelmas 2012, NT III/IV, Problem Sheet 1.

- 1. For any natural number n, show an "Euler identity", i.e. that the product of two numbers of the form $x_i^2 + ny_i^2$ (i = 1, 2) is again of that form (i.e. the sum of a square and n times a square).
- 2. Let $M \in \mathbb{N}$ (= {1,2,3...}) and write $M = p_1^{m_1} p_2^{m_2} \dots p_r^{m_r}$ where the p_i are distinct prime numbers and the m_i are positive integers.
 - (i) How many pairs (A, B) of coprime positive integers are there such that M = AB? [Hint: To obtain a guess for the answer, try to investigate special cases first.]

Suppose that M = AB with A and B as in (i).

- (ii) Show that if M is a square (of an integer) then so are A and B.
- (iii) Show, further, that if M is an n^{th} power (of an integer) then so are A and B.
- 3. Find a formula (similar to that for the Pythagorean triples, given for a coprime triple by $(X, Y, Z) = (2rs, r^2 s^2, r^2 + s^2)$) giving all the solutions to the equation $X^2 + 2Y^2 = Z^2$ with X, Y and Z in \mathbb{N} and gcd(X, Y, Z) = 1.
- 4. (i) Show that $X^5 3Y^5 = 11$ has no integer solutions. [*Hint: Find the* 5th powers mod 11.]
 - (ii) Show, using infinite descent, that $3X^4 2Y^4 = 55Z^2$ has no integer solutions except X = Y = Z = 0. [*Hint: Look mod 5.*]
- 5. [This exercise finishes off the proof of the 4-squares theorem in the notes.] Let p be an odd prime. Show that there are integers a, b, k with k > 0 such that

$$kp = a^2 + b^2 + 1$$

Hint: Work modulo p. Find the cardinality of the sets $\{a^2 \pmod{p} \mid 0 \leq a \leq \frac{p-1}{2}\}$ and $\{-1 - b^2 \pmod{p} \mid 0 \leq b \leq \frac{p-1}{2}\}$. Conclude that they have an element in common. (Recall the pigeon-hole principle.)

- 6. [Infinite descent problems.]
 - (i) Show by infinite descent that \sqrt{N} is irrational for any squarefree integer N > 1.
 - (ii*) Show using infinite descent (or otherwise) that there are no two Pythagorean triples with two lengths in common, i.e. there are no positive integers a, b, c and d such that

$$a^{2} + b^{2} = c^{2}$$
 and
 $b^{2} + c^{2} = d^{2}$.

- 7. Show: A prime p > 2 is a sum of two squares if and only if $p \equiv 1 \pmod{4}$. Hint: apart from using an "Euler identity",
 - First use congruences to show that $p \equiv 3 \pmod{4}$ cannot be a sum of two squares (what do squares of integers look like $\pmod{4}$?).
 - Then, for $p \equiv 1 \pmod{4}$, try to use the strategy of the proof of the 4-squares theorem.
 - i) Show that a (non-zero) multiple of p, say mp, has the desired form $mp = a^2 + b^2$ for some a, b, m. (Put b = 1 and use the fact, known from ANTII, that \mathbb{F}_p^* , the units in the field with pelements, is a cyclic group. Now use that $p \equiv 1 \pmod{4}$.)
 - ii) Reduce a solution $mp = a^2 + b^2$, if m > 1, to one of the form $m'p = a'^2 + b'^2$, 0 < m' < m.