
Michaelmas 2012, NT III/IV, Problem Sheet 1.

1. For any natural number n, show an “Euler identity”, i.e. that the product
of two numbers of the form x2

i + ny2

i (i = 1, 2) is again of that form (i.e.
the sum of a square and n times a square).

2. Let M ∈ N (= {1, 2, 3 . . .}) and write M = pm1

1
pm2

2
. . . pmr

r where the pi are
distinct prime numbers and the mi are positive integers.
(i) How many pairs (A, B) of coprime positive integers are there such that

M = AB? [Hint: To obtain a guess for the answer, try to investigate

special cases first.]
Suppose that M = AB with A and B as in (i).
(ii) Show that if M is a square (of an integer) then so are A and B.
(iii) Show, further, that if M is an nth power (of an integer) then so are

A and B.

3. Find a formula
(

similar to that for the Pythagorean triples, given for a

coprime triple by (X, Y, Z) = (2rs, r2 − s2, r2 + s2)
)

giving all the solutions

to the equation X2+2Y 2 = Z2 with X , Y and Z in N and gcd(X, Y, Z) = 1.

4. (i) Show that X5 − 3Y 5 = 11 has no integer solutions. [Hint: Find the

5th powers mod 11.]
(ii) Show, using infinite descent, that 3X4 − 2Y 4 = 55Z2 has no integer

solutions except X = Y = Z = 0. [Hint: Look mod 5.]

5. [This exercise finishes off the proof of the 4-squares theorem in the notes.]

Let p be an odd prime. Show that there are integers a, b, k with k > 0 such
that

kp = a2 + b2 + 1 .

Hint: Work modulo p. Find the cardinality of the sets
{a2 (mod p) | 0 6 a 6

p−1

2
} and {−1 − b2 (mod p) | 0 6 b 6

p−1

2
}.

Conclude that they have an element in common. (Recall the pigeon-hole
principle.)

6. [Infinite descent problems.]

(i) Show by infinite descent that
√

N is irrational for any squarefree inte-
ger N > 1.

(ii∗) Show using infinite descent (or otherwise) that there are no two Pythagorean
triples with two lengths in common, i.e. there are no positive integers
a, b, c and d such that

a2 + b2 = c2 and

b2 + c2 = d2 .

7. Show: A prime p > 2 is a sum of two squares if and only if p ≡ 1 (mod 4).

Hint: apart from using an “Euler identity”,
• First use congruences to show that p ≡ 3 (mod 4) cannot be a sum of

two squares (what do squares of integers look like (mod 4)?).
• Then, for p ≡ 1 (mod 4), try to use the strategy of the proof of the

4-squares theorem.
i) Show that a (non-zero) multiple of p, say mp, has the desired

form mp = a2 + b2 for some a, b, m . (Put b = 1 and use the
fact, known from ANTII, that F

∗

p, the units in the field with p

elements, is a cyclic group. Now use that p ≡ 1 (mod 4).)
ii) Reduce a solution mp = a2 + b2, if m > 1, to one of the form

m′p = a′2 + b′2, 0 < m′ < m.
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