Michaelmas 2012, NT III/IV, Problem Sheet 1.

1. For any natural number n, show an "Euler identity", i.e. that the product of two numbers of the form $x_{i}^{2}+n y_{i}^{2}(i=1,2)$ is again of that form (i.e. the sum of a square and n times a square).
2. Let $M \in \mathbb{N}(=\{1,2,3 \ldots\})$ and write $M=p_{1}^{m_{1}} p_{2}^{m_{2}} \ldots p_{r}^{m_{r}}$ where the p_{i} are distinct prime numbers and the m_{i} are positive integers.
(i) How many pairs (A, B) of coprime positive integers are there such that $M=A B$? [Hint: To obtain a guess for the answer, try to investigate special cases first.]
Suppose that $M=A B$ with A and B as in (i).
(ii) Show that if M is a square (of an integer) then so are A and B.
(iii) Show, further, that if M is an $n^{\text {th }}$ power (of an integer) then so are A and B.
3. Find a formula (similar to that for the Pythagorean triples, given for a coprime triple by $\left.(X, Y, Z)=\left(2 r s, r^{2}-s^{2}, r^{2}+s^{2}\right)\right)$ giving all the solutions to the equation $X^{2}+2 Y^{2}=Z^{2}$ with X, Y and Z in \mathbb{N} and $\operatorname{gcd}(X, Y, Z)=1$.
4. (i) Show that $X^{5}-3 Y^{5}=11$ has no integer solutions. [Hint: Find the $5^{\text {th }}$ powers mod 11.]
(ii) Show, using infinite descent, that $3 X^{4}-2 Y^{4}=55 Z^{2}$ has no integer solutions except $X=Y=Z=0$. [Hint: Look mod 5.]
5. [This exercise finishes off the proof of the 4 -squares theorem in the notes.] Let p be an odd prime. Show that there are integers a, b, k with $k>0$ such that

$$
k p=a^{2}+b^{2}+1
$$

Hint: Work modulo p. Find the cardinality of the sets
$\left\{a^{2}(\bmod p) \left\lvert\, 0 \leqslant a \leqslant \frac{p-1}{2}\right.\right\}$ and $\left\{-1-b^{2}(\bmod p) \left\lvert\, 0 \leqslant b \leqslant \frac{p-1}{2}\right.\right\}$. Conclude that they have an element in common. (Recall the pigeon-hole principle.)
6. [Infinite descent problems.]
(i) Show by infinite descent that \sqrt{N} is irrational for any squarefree integer $N>1$.
(ii*) Show using infinite descent (or otherwise) that there are no two Pythagorean triples with two lengths in common, i.e. there are no positive integers a, b, c and d such that

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} \quad \text { and } \\
b^{2}+c^{2} & =d^{2}
\end{aligned}
$$

7. Show: A prime $p>2$ is a sum of two squares if and only if $p \equiv 1(\bmod 4)$.

Hint: apart from using an "Euler identity",

- First use congruences to show that $p \equiv 3(\bmod 4)$ cannot be a sum of two squares (what do squares of integers look like $(\bmod 4) ?$).
- Then, for $p \equiv 1(\bmod 4)$, try to use the strategy of the proof of the 4-squares theorem.
i) Show that a (non-zero) multiple of p, say $m p$, has the desired form $m p=a^{2}+b^{2} \quad$ for some a, b, m. (Put $b=1$ and use the fact, known from ANTII, that \mathbb{F}_{p}^{*}, the units in the field with p elements, is a cyclic group. Now use that $p \equiv 1(\bmod 4)$.)
ii) Reduce a solution $m p=a^{2}+b^{2}$, if $m>1$, to one of the form $m^{\prime} p=a^{\prime 2}+b^{2}, 0<m^{\prime}<m$.

