
Michaelmas 2012, NT III/IV, Solutions to Problem Sheet 1.
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and note that the sum of the first and last summand on the right is not too
far away from being a square itself:
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for the expression in parentheses above we see a similar expression
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When adding n times the latter to the former, the two contributions corre-
sponding to the grey terms cancel and we get the RHS of (1). Therefore,
our original product has at least two ways in which it can be written in the
form (square)+ n×(square):

= (x1x2 ± ny1y2)
2 + n(x1y2 ∓ ny1x2)

2 .

2. Write M = pm1

1 . . . pmr

r , where the pi are distinct primes and mi ∈ N, and
suppose that M = AB with A and B in N .

Then A = pa1

1 . . . par

r and B = pb1
1 . . . pbr

r where ai and bi ∈ N ∪ {0} and

ai + bi = mi for each i.

(i) Suppose gcd(A, B) = 1.

Then, for each s = 1, . . . , r, one of as and bs must be 0 and the other ms.
That is as = msǫs and bs = ms(1 − ǫs) where ǫs = 0 or 1. So

A = pm1ǫ1
1 . . . pmrǫr

r and B = p
m1(1−ǫ1)
1 . . . pmr(1−ǫr)

r .

Thus A and B are uniquely determined by the ǫs and each choice of the
ǫs (to be 0 or 1) gives a different (since the ms 6= 0) coprime pair (A, B)
with product M .

So the number of such pairs is 2r, the number of choices for the ǫs.

(ii) and (iii): If M is an nth power then M = Ln for some L ∈ N.

Since L | M , the factorization of L involves the same primes as M and so

L = pl1
1 . . . plr

r ,
with li ∈ N ∪ {0}. Thus

M = Ln = pnl1
1 . . . pnlr

r .
So for each s we have ms = nls, and
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r
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are nth powers also.

3. Suppose X, Y, Z ∈ N, gcd(X, Y, Z) = 1 and X2 + 2Y 2 = Z2.

Now gcd(X, Z) = 1. [[ For if some prime p were to divide gcd(X, Z) then p2

would divide X2 − Z2 = 2Y 2 and, even if p were 2, p would divide Y 2 and
therefore Y . So p would divide gcd(X, Y, Z) = 1, a contradiction. ]]

Furthermore, both X and Z are odd. [[ If one of them were even then the
other would be even also (since 2Y 2 is even) and 2 would be a common
factor. ]]

Thus Z ± X are both even, and we may put Z + X = 2D, Z − X = 2E,
with D and E ∈ Z and D > E > 0.
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Thus 2Y 2 = Z2 − X2 = (Z + X)(Z − X) = 4DE is divisible by 4, and
hence 2 divides Y . Put Y = 2T .

Now the integers D and E are coprime (∗)
[[ since D + E = Z and D − E = X are coprime ]] .

Moreover DE = 2T 2. So one of D and E must be even.

If D is even, then (D/2)E = T 2, where the factors on the left are coprime
(by (∗)) and positive. So D/2 = R2 and E = S2 for some coprime positive
integers R and S.

Similarly, if E is even, then E/2 = R2 and D = S2, for some coprime
positive integers R and S.

In either case we find

Z = S2 + 2R2, X = |S2 − 2R2|, Y = 2RS ,

where R and S ∈ N and, in fact, gcd(2R, S) = 1 since Z has to be odd.

Now this is the general solution. For it is easily verified that that all such
X, Y, and Z satisfy the required conditions, except perhaps the condition
gcd(X, Y, Z) = 1. But the latter holds as well; in fact, we have already

gcd(X, Z) = gcd(2R2 − S2, 2R2 + S2) = gcd(2R2 − S2, 4R2)

= gcd(2R2 − S2, R2) = gcd(S2, R2) = 1 .

[[ For the second and fourth equalities use that gcd(m, n) = gcd(m, am+n).
For the third one, note that the 2R2 −S2 is odd. The fifth equality follows
since gcd(R, S) = 1. ]]

4. (i) Note first that the fifth powers modulo 11 are 0 and ±1.
[[ To show this either work out the fifth powers, mod 11, of 0, ±1,
±2, . . . ,±5 (a bit laborious) or, more elegantly, recall that if T 6≡ 0
mod 11 then, by Fermat’s little theorem,

(T 5)2 = T 10 ≡ 1 mod 11.

Since Z11 is a field, 1 can only have two square roots (in fact, ±1)

there and so T 5 ≡ ±1, as required. ]]

Suppose, then, that we have X and Y in Z such that X5 − 3Y 5 = 11.
Then we would have X5 ≡ 3Y 5 mod 11.

Now 11 |/ Y . [[ For if 11 | Y then 11 | 11 + 3Y 5 = X5, so 11 | X . But
then 115 | X5 − 3Y 5 = 11, which is impossible. ]]

Hence Y 3 ≡ ±1 mod 11 and X5 ≡ 3Y 5 ≡ ±3 mod 11. But this is
impossible, since X5 ≡ 0 or ±1 mod 11. So no such X and Y exist.

(ii) Suppose, for a contradiction, that 3X4 − 2Y 4 = 55Z2 has an integer
solution (X, Y, Z) = (a, b, c) other than a = b = c = 0.

Let d = gcd(a, b). We can assume that d is as small as possible. (†)
We claim that 5 does not divide either a or b.

For if 5 | a then 2b4 ≡ 0 mod 5 and so 5 | b and then 54 | (3a4 +2b4) =
55c2 so 53 | c2. Whence 52 | c. But then (X, Y, Z) = (a/5, b/5, c/52) is
a new solution with gcd(X, Y ) < d and this contradicts the assumed
minimality (†) of d. So 5 |/ a, and similarly, 5 |/ b.
Now, by Fermat’s little theorem (or by finding n4 mod 5 for n =
1, 2, 3, 4), we have a4 ≡ b4 ≡ 1 mod 5.
But then, mod 5 we get 0 ≡ 55c4 ≡ 3a4 − 2b4 ≡ 3 − 2 ≡ 1, and
we have the desired contradiction.
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5. Put S0 := {a2 (mod p) | 0 6 a 6
p−1
2 } and

S1 := {−1 − b2 (mod p) | 0 6 b 6
p−1
2 }.

Claim 1:
∣

∣S0

∣

∣ = p+1
2 .

In other words: we claim that all these residue classes are different.

[[ Suppose a2 ≡ (a′)2 (mod p) for some 0 6 a, a′ 6
p−1
2 . (We need to

show that a = a′.) Then 0 ≡ a2 − (a′)2 = (a − a′)(a + a′) (mod p), and so

p|(a − a′) or p|(a + a′). But both a ± a′ lie between −(p − 1)

and (p− 1), and the only number in that interval which is divisible by p is
0. Hence we have the equalities (not just congruences) a − a′ = 0

or a + a′ = 0, of which the latter is only possible for a = a′ = 0, while the
former means a = a′. ]]

Claim 2:
∣

∣S1

∣

∣ = p+1
2 . This follows in complete analogy with Claim 1

(the differences of elements are the same).

Claim 3: S0 and S1 have an element in common.

[[ Put S = {all residues mod p}. Then |S \ S0| = p − p+1
2 = p−1

2 and

the pigeonhole principle prevents us from “filling” the remaining p−1
2 slots

with p+1
2 elements in S1 without “doubling up”. Hence S0 and S1 must

have a non-empty intersection. ]]

6. (i) Descent for
√

2 irrational: suppose
√

2 is rational, i.e.
√

2 = q

r
for

some (positive) integers q, r (obviously q > r). We can assume q to be
smallest possible in such a presentation, and in particular (q, r) = 1
[[ otherwise we could cancel factors and get a smaller q ]] .

From this we will construct a strictly smaller solution (i.e.
√

2 = q′

r′

with q′ < q), which then establishes a contradiction to our assumption

that
√

2 is rational.
By squaring our original equation we get

2 = (
√

2)2 =
q2

r2
, hence 2r2 = q2 .

Since 2|q2 and 2 is prime, we find 2|q and in fact 22|q2, and so we find

2r2 = 22
(q

2

)2

, hence r2 = 2
(q

2

)2

.

Clearly r > q

2 . Finally we can write

2 =
r2

(q/2)2
hence

√
2 =

r

q/2

and we recall from above that r < q.
But q was smallest possible in such a representation of

√
2.

(ii) Hints: suppose there are coprime positive integers a, b, c and d with
a2 + b2 = c2 and b2 + c2 = d2, then we can use our knowledge on
Pythagorean triples to deduce that i) b must be even; ii) a = u2 − v2,
b = 2uv, c = u2+v2 as well as b = 2xy , c = x2−y1 and d = x2+y2 for
some integers u, v, x, y. iii) x must be odd; iv) define gcd’s e = (x, u),
f = (x, v), g = (y, u) and h = (y, v) and express x2 in two ways (one
using u2 + v2 + y2) in terms of e, f , g, h. v) Now try to construct a
smaller quadruple which satisfies two Pythagorean triple equations as
above.
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7. Case p ≡ 3 (mod 4): For the first claim that a prime p ≡ 3(4) cannot be
a sum of two squares, simply note that the residues modulo 4 of squares
can only be 0 (for even numbers) or 1 (for odd numbers), and two of these
cannot add up to 3 (mod 4).

i) Check that the following Euler-type identity holds:

(a2 + b2)(c2 + d2) = (ac + bd)2 + (ad − bc)2 .

Case p ≡ 1(4):

ii) Claim: mp = a2 + 1 for some m > 1.

We are allowed to use that Z/pZ ∼= Fp is a field with p elements, and
that F

×

p = Fp \ {0} is a cyclic group. In particular we know that the order
of a generator, say h, of that cyclic group is p − 1. Since 4|(p − 1), we can

form h
p−1

4 which has order 4 (and behaves like i =
√
−1).

Let H be a representative of the residue class of h
p−1

4 in F
×

p , then H2 is

the only non-trivial element of order 2 in (Z/pZ)×, so must be −1 (mod p),
i.e. H2 + 1 ≡ 0 (mod p). We can of course choose H to be positive—in
fact, we can even choose it < p, which entails that we can even impose
0 < m < p in the above claim.

iii) The reduction step (successively decrease m in the above claim) now
follows very closely the argument for the 4-square theorem. Suppose

mp = a2 + b2 for some a, b ∈ Z .

We can assume that m is odd, since if m is even, then a ≡ b (mod 2) and
we find

m

2
p =

(a + b

2

)2

+
(a − b

2

)2

,

with integers on the RHS, so we can replace m by m/2.
For m odd we get that a and b must have opposite parity (recall that

p is odd). Now we use the clever trick of reducing the statement modulo
m instead. We can find a0 ≡ a (mod m) and b0 ≡ b (mod m) such that
−m/2 < a0, b0 < m/2.

Then we find that

0 < a2
0 + b2

0 < 2
m2

4
and a2

0 + b2
0 ≡ a2 + b2 ≡ 0 (mod m)

which implies that

a2
0 + b2

0 = km with k <
m

2
.

Finally use the Euler-type identity above to deduce that

km · mp = (a2
0 + b2

0)(a
2 + b2) = (a0b − b0a)2 + (a0a + b0b)

2

and note that m|(a0b − b0a) as well as m|(a0a + b0b). This allows us to
divide both sides by m2 while still retaining an equality kp = r2 + s2 with
integers r, s, and in fact with a multiple k on the LHS which is smaller than
the one we started out with (viz. m). After finitely many steps, we arrive
at k = 1 and we have found a presentation of p as a sum of two squares.


