Michaelmas 2012, NT III/IV, Problem Sheet 2.

1. (i) Factorize $8+9 i$ into irreducibles in $\mathbb{Z}[i]$.
(ii) Let $R=\mathbb{Z}[\sqrt{-5}]$. Factorize $11+\sqrt{-5}$ into irreducibles in R in two essentially different ways (i.e. the second factorization should use an irreducible which is not associate to any of the irreducibles used in the first). Deduce that R is not a unique factorization domain (UFD).
(iii) Let $R=\mathbb{Z}[\sqrt{-13}]$. Show that $1+\sqrt{-13}$ is irreducible in R, but not prime and deduce that R is not a UFD.
[Hint: using norms may be helpful.]
2. Suppose that $d<-2$. Show that 2 is irreducible in $\mathbb{Z}[\sqrt{d}]$. Find a value of $d<-2$ such that 2 is not prime in $\mathbb{Z}[\sqrt{d}]$.
3. Let $R=\mathbb{Z}[\sqrt{-26}]$. Show that each of the factors in the equation

$$
3^{3}=(1+\sqrt{-26})(1-\sqrt{-26})
$$

is irreducible (which of these are prime?), and deduce that R is not a UFD.
4. Find two units in $\mathbb{Z}[\sqrt{5}]$ which are greater than 1 .
5.* Find all the solutions $(X, Y) \in \mathbb{Z} \times \mathbb{Z}$ to
(i) $X^{2}+1=Y^{7}$ given that $\mathbb{Z}[i]$ is a UFD and to
(ii) $X^{2}+8=Y^{3}$ given that $\mathbb{Z}[\sqrt{-2}]$ is a UFD.
6.* (i) Factorize 5, 19, 43 and $19 \cdot 43=817$ as products of (one or more) irreducibles in $R=\mathbb{Z}[\sqrt{-2}]$.
(ii) Using the fact that R is a UFD, find all the elements $\alpha \in R$ such that

$$
\alpha \bar{\alpha}=817 .
$$

(iii) Hence find all pairs of positive integers (a, b) such that $a^{2}+2 b^{2}=817$.
7. Show that if H, I and J are (additive) subgroups of $(R,+)$ (R a ring) then
(i) $H J$ and $H+J$ are subgroups of R;
(ii) $H(I+J)=H I+H J$;
(iii) $H I$ is an ideal if I is.
(iv) $R I=I \Leftrightarrow I$ is an ideal.
8. For a ring R and elements $a_{j}(1 \leqslant j \leqslant n)$ we introduce the notation $\left\langle a_{1}, \ldots, a_{n}\right\rangle_{\text {gp }}:=\mathbb{Z} a_{1}+\cdots+\mathbb{Z} a_{n}$.
Note that this is in general different from the ideal $\left(a_{1}, \ldots, a_{n}\right)_{R}$. [Why?] Show that if a, b, c and $d \in R$ then
(i) $(a)_{R}(b)_{R}=(a b)_{R}$,
(ii) $\langle a\rangle_{\mathrm{gp}}\langle b\rangle_{\mathrm{gp}}=\langle a b\rangle_{\mathrm{gp}}$,
(iii) $\langle a, b\rangle_{\mathrm{gp}}\langle c, d\rangle_{\mathrm{gp}}=\langle a c, a d, b c, b d\rangle_{\mathrm{gp}}$.
9. Let α, β and γ lie in an integral domain R. Show that if $(\alpha, \beta)_{R}=(\gamma)_{R}$ then γ is a gcd of α and β in R.
10. Let $R=\mathbb{Z}[\sqrt{-21}]$. Express the ideal $(5,2+\sqrt{-21})_{R}(3, \sqrt{-21})_{R}$ in the form $(N, \alpha)_{R}$ where $N \in \mathbb{Z}$ and $\alpha \in R$.
11. Let $I=(1+\sqrt{-5}, 2)_{R}$ where $R=\mathbb{Z}[\sqrt{-5}]$.
(i) Show that I^{2} is a principal ideal but that I, itself, is not.
(ii) Show that I is a maximal ideal. [Show $R / I \cong \mathbb{Z}_{2}$.]
12. Let $J=(1+\sqrt{-26}, 3)_{R}$ where $R=\mathbb{Z}[\sqrt{-26}]$.
(i) Show that J^{3} is a principal ideal but that J, itself, is not.
(ii) Deduce that J^{2}, also, is not principal.
(iii) Show that J is a maximal ideal. [Show $R / J \cong \mathbb{Z}_{3}$.]

