Michaelmas 2012, NT III/IV, Problem Sheet 2.

- 1. (i) Factorize 8 + 9i into irreducibles in $\mathbb{Z}[i]$.
 - (ii) Let $R = \mathbb{Z}[\sqrt{-5}]$. Factorize $11 + \sqrt{-5}$ into irreducibles in R in two essentially different ways (i.e. the second factorization should use an irreducible which is not associate to any of the irreducibles used in the first). Deduce that R is not a unique factorization domain (UFD).
 - (iii) Let $R = \mathbb{Z}[\sqrt{-13}]$. Show that $1 + \sqrt{-13}$ is irreducible in R, but not prime and deduce that R is not a UFD. [*Hint:* using norms may be helpful.]
- 2. Suppose that d < -2. Show that 2 is irreducible in $\mathbb{Z}[\sqrt{d}]$. Find a value of d < -2 such that 2 is not prime in $\mathbb{Z}[\sqrt{d}]$.
- 3. Let $R = \mathbb{Z}[\sqrt{-26}]$. Show that each of the factors in the equation

$$3^3 = (1 + \sqrt{-26})(1 - \sqrt{-26})$$

is irreducible (which of these are prime?), and deduce that R is not a UFD.

- 4. Find two units in $\mathbb{Z}[\sqrt{5}]$ which are greater than 1.
- 5.* Find all the solutions $(X, Y) \in \mathbb{Z} \times \mathbb{Z}$ to
 - (i) $X^2 + 1 = Y^7$ given that $\mathbb{Z}[i]$ is a UFD and to
 - (ii) $X^2 + 8 = Y^3$ given that $\mathbb{Z}[\sqrt{-2}]$ is a UFD.
- (i) Factorize 5, 19, 43 and $19 \cdot 43 = 817$ as products of (one or more) 6.* irreducibles in $R = \mathbb{Z}[\sqrt{-2}]$.
 - (ii) Using the fact that R is a UFD, find all the elements $\alpha \in R$ such that $\alpha \bar{\alpha} = 817$.

(iii) Hence find all pairs of positive integers (a, b) such that $a^2 + 2b^2 = 817$.

- 7. Show that if H, I and J are (additive) subgroups of (R, +) (R a ring) then (i) HJ and H + J are subgroups of R;
 - (ii) H(I+J) = HI + HJ;
 - (iii) HI is an ideal if I is.
 - (iv) $RI = I \Leftrightarrow I$ is an ideal.
- 8. For a ring R and elements a_j $(1 \leq j \leq n)$ we introduce the notation $\langle a_1, \ldots, a_n \rangle_{\mathrm{gp}} := \mathbb{Z}a_1 + \cdots + \mathbb{Z}a_n.$

Note that this is in general *different* from the ideal $(a_1, \ldots, a_n)_R$. [Why?] Show that if a, b, c and $d \in R$ then

- (i) $(a)_R(b)_R = (ab)_R$,
- (ii) $\langle a \rangle_{\rm gp} \langle b \rangle_{\rm gp} = \langle ab \rangle_{\rm gp},$ (iii) $\langle a, b \rangle_{\rm gp} \langle c, d \rangle_{\rm gp} = \langle ac, ad, bc, bd \rangle_{\rm gp}.$
- 9. Let α , β and γ lie in an integral domain R. Show that if $(\alpha, \beta)_R = (\gamma)_R$ then γ is a gcd of α and β in R.
- 10. Let $R = \mathbb{Z}[\sqrt{-21}]$. Express the ideal $(5, 2 + \sqrt{-21})_R (3, \sqrt{-21})_R$ in the form $(N, \alpha)_R$ where $N \in \mathbb{Z}$ and $\alpha \in R$.
- 11. Let $I = (1 + \sqrt{-5}, 2)_R$ where $R = \mathbb{Z}[\sqrt{-5}]$.
 - (i) Show that I^2 is a principal ideal but that I, itself, is not.
 - (ii) Show that I is a maximal ideal. [Show $R/I \cong \mathbb{Z}_2$.]
- 12. Let $J = (1 + \sqrt{-26}, 3)_R$ where $R = \mathbb{Z}[\sqrt{-26}]$.
 - (i) Show that J^3 is a principal ideal but that J, itself, is not.
 - (ii) Deduce that J^2 , also, is not principal.
 - (iii) Show that J is a maximal ideal. [Show $R/J \cong \mathbb{Z}_3$.]