
Michaelmas 2012, NT III/IV, Solutions to Problem Sheet 2.

1. (i) Factorization of the norm of 8 + 9i gives

N(8 + 9i) = 145 = 5 · 29 ,

which already shows that any possibly proper (and non-unit) factor has
either norm equal to 5 or 29. The latter two are prime in Z and thus
irreducible, which entails that a proper (non-zero) factor of 8+9i must
be irreducible, too. [[ If it weren’t, the corresponding decomposition
would cast a “shadow” decomposition in Z also. ]]
Since 22 + 12 = 5, candidates for divisors are 2 ± i, and trial division
gives 8+9i

2+i = 5 + 2i, and by the above argument we already know that
2 + i and 5 + 2i must be irreducible.

(ii) We have N(11 +
√
−5) = 125 = 2 · 32 · 7, and we can find divisors

1±
√
−5 and 2±

√
−5 with norms 6 and 9, respectively. Trial division

gives

11 +
√
−5

1−
√
−5

= 1 + 2
√
−5 and

11 +
√
−5

2 +
√
−5

= 3−
√
−5 ,

so that

(1−
√
−5)(1 + 2

√
−5) = (2 +

√
−5)(3−

√
−5) .

All four factors are irreducible: they have norms 6, 21 (on the left)
and 9, 14 (on the right), and any proper factor of either one would
have norm 2, 3 or 7, neither one of which is of the form a2 + 5b2 with
a, b ∈ Z.
Furthermore, since all 4 norms are mutually different, none of the fac-
tors can be associate to any of the others; thus we have two essentially
different decompositions.

(iii) The norm of a proper non-unit factor of 1 +
√
−13 would need to

properly divide N(1 +
√
−13) = 14 = 2 · 7 (and could not be a unit),

so it would satisfy a2 + 13b2 ∈ {2, 7} which is not possible with a,
b ∈ Z. Thus 1 +

√
−13 must be irreducible.

But while 1 +
√
−13 divides its own norm (1 +

√
−13)(1 −

√
−13) =

N(1 +
√
−13) = 2 · 7 (∗), it neither divides 2 nor 7 [[ e.g., 2

1+
√
−13

=
2−2
√
−13

14 /∈ Z[
√
−13] ]] . Hence 1 +

√
−13 is not prime in Z[

√
−13].

From the lectures, we know that in a UFD “prime ⇔ irreducible”, so
Z[
√
−13] cannot be (our example 1 +

√
−13 violates this), Alterna-

tively, we see that 1−
√
−13 is similarly irreducible, as are 2 and 7 (no

proper non-unit factor of their norms 22 and 72 can be a norm by the
above), and so (∗) above two essentially different decompositions into
irreducibles.

2. Let d < −2. The norm of 2 in Z[
√
d] is equal to 22. Any proper non-unit

factor a + b
√
d of it would have to have norm 2 (since d is negative, all

norms are > 0), i.e., we would have a2 − b2D = 2. But −b2d > 2b2 by
assumption, so necessarily b = 0 and a2 = 2 which is impossible for a ∈ Z.

In 2 (iii) we already had two essentially different decompositions into
irreducibles (see (∗))

(1 +
√
−13)(1−

√
−13) = 2 · 7 ,

so neither of the 4 factors—and in particular the factor 2—can be prime.
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3. (i) As we saw in Q12, Sheet2, 1 +
√
−26 is irreducible in R and, hence, so

also is 1−
√
−26.

Moreover, 3 is irreducible in R. [[ For if α (= a + b
√
−26 with a, b ∈ Z)

were a proper, non-unit, divisor of 3, then N(α) (= a2 + 26b2) would have
to be a proper divisor of N(3) = 9 other than 1. So a2 + 26b2 = 3, and this
is not possible with a, b ∈ Z, a contradiction. ]]

Thus we have two essentially different factorizations of 27:

33 = ββ̄. (∗)

(There are 3 irreducibles on the left and only two on the right so we don’t
even need to point out that the irreducibles are not associate!)

Conclusion: R is not a UFD.

4. Let u = 2 +
√

5 and v = −2 +
√

5 then u and v ∈ Z[
√

5].
Moreover, uv = −4 + 5 = 1. So u is a unit of Z[

√
5] and, clearly, u > 1.

Again u2v2 = (uv)2 = 1 and u2 > u > 1.
So u2 (= 9 + 4

√
5) is another unit greater than 1.

5. (i) For this problem we work in R = Z[i]. We are given that R is a UFD.
First note that R∗ = {±1, ±i}.

Also, N(1 + i) = 2 has no proper divisors in Z (except units).
So 1 + i is irreducible in R.

Suppose, then, that we have x and y in Z such that x2 + 1 = y7.
Put α = x+ i ∈ R, so that we have αᾱ = y7.
Now if π is an irreducible of R which divides both α and ᾱ then

π | (α− ᾱ) = 2i = (1 + i)2.
So, by uniqueness of factorization, π ∼ 1 + i. (1)

We now write down a prime power factorization of α in R:
α = u(1 + i)rπs1

1 π
s2
2 · · ·π

st
t

where u ∈ R∗ and the πj are irreducibles of R which are pairwise non-
associate and not associate to 1 + i, and where r ∈ Z≥0 and the sj ∈ N.
Then (noting 1− i = (−i)(1 + i))

ᾱ =
(
ū(−i)r

)
(1 + i)rπ̄s1

1 π̄
s2
2 · · · π̄

st
t .

By (1), the associates of 1 + i are the only primes which can divide both α
and ᾱ.
So π̄j 6∼ πk for any j, k. Hence

y7 = αᾱ = (−i)r(1 + i)2rπs1
1 π

s2
2 · · ·π

st
t π̄

s1
1 π̄

s2
2 · · · π̄

st
t

is a factorization of y7 as a product of (a unit and) powers of non-associate
irreducibles. And by uniqueness of factorization, this must arise from the
seventh power of a similar factorization of y. But then the power of each
irreducible must be a multiple of 7.

So 7 | 2r (whence 7 | r) and 7 | sj for each j.

Now we can take β = u3(1 + i)r/7π
s1/7
1 π

s2/7
2 · · ·πst/7

t ∈ R.
Noting (since u4 = 1) that (u3)7 = u21 = u, we have α = β7 .
Putting β = a+ bi with a, b in Z we have

x+ i = a7 + 7a6bi− 21a5b2 − 35a4b3i+ 35a3b4 + 21a2b5i− 7ab6 − b7i . (2)

Equating imaginary parts we get

1 = 7a6b− 35a4b3 + 21a2b5 − b7 = (7a6 − 35a4b2 + 21a2b4 − b6)b.
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Whence b | 1 and so b = ±1, b2 = 1 and consequently b = 7a6 − 35a4 +
21a2 − 1.

But then b ≡ −1 mod 7 and so b = −1.
And now we have 7a6 − 35a4 + 21a2 = 0. i.e. a2(a4 − 5a2 + 3) = 0.

So either a = 0 or, solving the quadratic, a2 = (5±
√

13)/2 /∈ Z.
Hence a = 0 and x + i = −(−1)7i = i. So x = 0 and y = 1. This is the
only solution.

(ii) We work in R = Z[
√
−2] — a UFD. We sort out some preliminaries.

Firstly, R∗ = {±1}.
Secondly, N(

√
−2) = 2 has no proper (non-unit) divisors in Z.

So
√
−2 is irreducible in R.

Suppose then that we have x and y in Z such that x2 + 8 = y3.
Put α = x+

√
−2 ∈ R so that we have αᾱ = y3.

Now if π is an irreducible of R which divides both α and ᾱ then
π | (α− ᾱ) = 4

√
−2 = (

√
−2)5.

So, by uniqueness of factorization, π ∼
√
−2. (1)

We now write down a prime power factorization of α in R:
α = ±(

√
−2)rπs1

1 π
s2
2 · · ·π

st
t ,

where the πi are irreducibles of R, pairwise non-associate and not associate
to
√
−2, and where r ∈ N ∪ {0} and the si ∈ N. Then

ᾱ = ±(−1)r(
√
−2)rπ̄s1

1 π̄
s2
2 · · · π̄

st
t .

By (1), the associates of
√
−2 are the only irreducibles of R which can

divide both α and ᾱ. So π̄i 6∼ πj for any i, j. Hence

y3 = αᾱ = (−1)r(
√
−2)2rπs1

1 π
s2
2 · · ·π

st
t π̄

s1
1 π̄

s2
2 · · · π̄

st
t

is a factorization of y3 as a product of (a unit and) powers of non-associate
irreducibles and, by uniqueness of factorization, this must arise from the
third power of a similar factorization of y.
But then the power of each irreducible must occur as a cube.

So 3 | 2r (whence 3 | r) and 3 | si for each i.

Now we can take β = ±(
√
−2)r/3π

s1/3
1 π

s2/3
2 · · ·πst/3

t ∈ R and we have
α = β3.
Putting β = a+ b

√
−2 with a, b in Z we have

x+ 2
√
−2 = a3 + 3a2b

√
−2− 6ab2 − 2b3

√
−2 . (2)

Equating imaginary parts (i.e. coefficients of
√
−2) we get

2 = 3a2b− 2b3 = b(3a2 − 2b2). (3)

Whence b | 2 and so b = ±1, or ±2.
Reducing (3) mod 3 we find −2b3 ≡ 2 mod 3.
But b3 ≡ b mod 3 (Fermat) and so b ≡ −1 mod 3. So b = −1 or 2.
Putting b = 2 in (3) gives a2 = 3. So b = −1 and and (3) gives a = 0.

Hence, from (2), x = 0 and so y = 2. This is the only solution.

6. (i) Suppose that α = a+ b
√
−2 (a, b ∈ Z) is a proper divisor of 5 in R

then a2 + 2b2 = αᾱ is a proper divisor of 52.
So a2 + 2b2 = 1 or 5.
If |b| ≥ 2 the LHS is too big and |b| = 1 is clearly not possible.
So b = 0, a = 1, αᾱ = 1 and α is a unit.

Thus the only proper divisors of 5 in R are units and so 5 is irreducible.
So 5 = 5, as a product of one or more irreducibles.
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19 = (1 + 3
√
−2)(1 − 3

√
−2) and we claim that this is a product of irre-

ducibles.
Suppose that α = a + b

√
−2 (a, b ∈ Z) is a proper divisor of 1 + 3

√
−2 in

R.
Then a2 +2b2 = αᾱ is a proper divisor of (1+3

√
−2)(1−3

√
−2) = 19 (and

19 is prime in Z).
So a2 + 2b2 = 1, αᾱ = 1 and α is a unit.

Thus the only proper divisors of 1 + 3
√
−2 in R are units.

Hence 1 + 3
√
−2 and (similarly) 1− 3

√
−2 are irreducible, as claimed.

43 = (5 + 3
√
−2)(5 − 3

√
−2) and we claim that this is a product of irre-

ducibles.
Suppose that α = a + b

√
−2 (a, b ∈ Z) is a proper divisor of 5 + 3

√
−2 in

R.
Then a2 +2b2 = αᾱ is a proper divisor of (5+3

√
−2)(5−3

√
−2) = 43 (and

43 is prime in Z).
So a2 + 2b2 = 1, αᾱ = 1 and α is a unit.

Thus the only proper divisors of 5 + 3
√
−2 in R are units and so 5 + 3

√
−2

and (similarly) 5− 3
√
−2 are irreducible, as claimed.

(ii) Note that, since R× = {±1}, no pair of the irreducibles found in (a)
can be associate. So, since R is a UFD,

817(= 19× 43) = (1 + 3
√
−2)1(1− 3

√
−2)1(5 + 3

√
−2)1(5− 3

√
−2)1

is a prime power factorization of 817 (in powers of non-associate primes of
R). So (using Uniqueness of Factorization) 817 has the following 32 factors

α = ±(1 + 3
√
−2)r(1− 3

√
−2)s(5 + 3

√
−2)t(5− 3

√
−2)u (∗)

where r, s, t and u are 0 or 1.
(iii) Putting α = a+ b

√
−2 ∈ R, we require αᾱ = 817. In particular,

α | 817 in R so α is as in (∗).
But, with α as in (∗), αᾱ = 19r+s43t+u.

So αᾱ = 817 iff r+s = 1 and t+u = 1. So we have a free choice of the sign
and r and t (to be 0 or 1), giving 8 solutions to αᾱ = 817 and 8 (integer)
solutions to a2 + 2b2 = 817.
We find that

(1 + 3
√
−2)(5 + 3

√
−2) = −13 + 18

√
−2 and (1 + 3

√
−2)(5− 3

√
−2) =

23 + 12
√
−2.

So the eight solutions to a2 + 2b2 = 817 must be
(a, b) = (±13,±18) or (±23,±12).

Therefore there are two solutions with a and b positive:
(a, b) = (13, 18) or (23, 12).

7. (i) HJ : By definition HJ is the subgroup generated by the elements hj
where h ∈ H and j ∈ J .
H + J : Let a and b be elements of H + J .

We must show a± b ∈ H + J . (H + J is clearly non-empty.)
Well, a = h+ j and b = k + l for some h and k ∈ H and j and l ∈ J .
But H and J are subgroups. So h± k ∈ H and j ± l ∈ J .

Whence a± b = (h± k) + (j ± l) ∈ H + J , as required.

(ii) H(I + J) is the subgroup of R generated by
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all elements hk where h ∈ H and k ∈ I + J ,
i.e. all elements h(i+ j) where h ∈ H and i ∈ I and j ∈ J .
But h(i+ j) = hi+ hj ∈ HI +HJ .

So HI +HJ contains all the generators of H(I + J).
Hence HI +HJ contains H(I + J).

OTOH, HI and HJ are contained in H(I + J). So H(I + J) contains
HI +HJ .

Thus H(I + J) = HI +HJ .

(iii) (Using the associative and commutative rules: H(IJ) = (HI)J and
HI = IH and (iv).)
We know that HI is a subgroup.

Moreover, R(HI) = (RH)I = (HR)I = H(RI) = HI.
So, by (iv), HI is an ideal.

(iv) If RI = I then, for all r ∈ R and i ∈ I, ri ∈ I. So I is an ideal.
OTOH suppose that I is an ideal.
RI is the subgroup of R generated by all elements ri where r ∈ R and i ∈ I.

But all these elements lie in I, as I is an ideal.
So RI ⊆ I.

But 1 ∈ R. So, for all i ∈ I, i = 1i ∈ RI. So I ⊆ RI.
Hence RI = I.

8. (i) (a)R = {ra | r ∈ R} and (b)R = {sb | s ∈ R}.
So (a)R(b)R is generated by the elements rasb = rsab, with r, s ∈ R.
All these generators lie in (ab)R. So (a)R(b)R ⊆ (ab)R.

OTOH, clearly ab and all its multiples lie in (a)R(b)R. So (a)R(b)R ⊇ (ab)R.
Thus (a)R(b)R = (ab)R.

(ii) 〈a〉gp = {ra | r ∈ Z} and 〈b〉gp = {sb | s ∈ Z}.
So 〈a〉gp〈b〉gp is generated by the elements rasb = rsab, with r, s ∈ Z.
All these generators lie in 〈ab〉gp. So 〈a〉gp〈b〉gp ⊆ 〈ab〉gp.

OTOH, clearly ab and all its integer multiples lie in 〈a〉gp〈b〉gp.
So 〈a〉gp〈b〉gp ⊇ 〈ab〉gp.
Thus 〈a〉gp〈b〉gp = 〈ab〉gp.

(iii)

〈a, b〉gp〈c, d〉gp = (〈a〉gp + 〈b〉gp)(〈c〉gp + 〈d〉gp)
= 〈a〉gp(〈c〉gp + 〈d〉gp) + 〈b〉gp(〈c〉gp + 〈d〉gp)
= 〈a〉gp〈c〉gp + 〈a〉gp〈d〉gp + 〈b〉gp〈c〉gp + 〈b〉gp〈d〉gp
= 〈ac〉gp + 〈ad〉gp + 〈bc〉gp + 〈bd〉gp = 〈ac, ad, bc, bd〉gp

9. Suppose (α, β)R = (γ) (∗)
We have to show that γ is a gcd for α and β. i.e that
(i) γ divides α and β and

(ii) if δ ∈ R and δ divides α and β then δ divides γ.
But from (∗), α and β ∈ (γ)R. So γ | α and β. whence (i)

OTOH, (α, β)R = {lα+ µβ | l, µ ∈ R}.
So, again from (∗), we can write γ = lα+ µβ for some l, µ ∈ R.
Thus if δ ∈ R and δ | α and β then δ | lα+ µβ = γ. whence (ii)

Hence γ is a gcd for α and β.
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10. Multiplying the two ideals gives (denoting generators by g1, g2, . . . )

(5, 2 +
√
−21)(3,

√
−21) = (15, 5

√
−21, 6 + 3

√
−21,−21 + 2

√
−21)

= (15, 5
√
−21, 6 + 3

√
−21,−27−

√
−21) (g4 → g4 − g3)

= (15,−135, 6 + 3
√
−21,−27−

√
−21) (g2 → g2 + 5g4)

= (15,−135,−75,−27−
√
−21) (g3 → g3 + 3g4)

= (15,−27−
√
−21) (−135 and − 75 are multiples of g1 = 15) .

Hence e.g. N = 15 and α = −27−
√
−21 will do.

11. See Problems Class.

12. (i) Put β = 1 +
√
−26. Note that β is irreducible in R.

[[ If α (= a + b
√
−26 with a, b ∈ Z) is a proper, non-unit, divisor of

β, then N(α) (= a2 + 26b2) must be a proper divisor of N(β) = 27
other than 1. So a2 + 26b2 = 3 or 9, giving b = 0, α = a = ±3 and
β/α = ±(1 +

√
−26)/3 /∈ R, a contradiction. ]]

Now, denoting by gi the i-th generator in a given presentation of an
ideal, we can deduce

J3 = (β, 3)2R(β, 3)R = (β2, 3β, 32)R(β, 3)R

= (β3, 3β2, 32β, 33)R

= β(β2, 3β, 9, β̄)R = β(−25 + 2
√
−26, 3 + 3

√
−26, 9, 1−

√
−26)R

= β(−23, 6, 9, 1−
√
−26)R, replace g1 by g1 + 2g4 and g2 by g2 + 3g4,

= β(1, 6, 9, 1−
√
−26)R, replace g1 by g1 + 4g2,

= βR = (β)R.

since any ideal containing 1 is R. Thus J3 is a principal ideal.

[[ Note that if an ideal I is generated by multiples of a given element
x, say I = (a1x, . . . , anx)R, one can only deduce that it is contained
in the principal ideal (x)R but need not itself contain x; the latter still
needs to be shown if equality is to be proved. ]]

Now suppose that J were principal, i.e. J = (γ)R with γ ∈ R.
Then (β)R = J3 = (γ3)R. So β = uγ3 where u ∈ R×.
This is impossible, since β is irreducible.
Conclusion: J is not principal.

(ii) Again, suppose, for a contradiction, that J2 were principal, say J2 =
(δ)R.
Then (δ3)R = (δ)3R = J6 = (β)2R = (β2)R with β as in (i).
So δ3 = uβ2, for some unit u ∈ R×.
And, hence, (δδ̄)3 = (N(β))2 = 36, and N(δ) = 9.
But β ∈ J3 ⊆ J2 = (δ)R.
Since N(δ) < N(β), δ is a proper divisor of the irreducible β but is not
a unit. There are no such elements δ.
Conclusion: J2 is not principal. (There are many ways to show this.)

(iii) Consider φ : Z[
√
−26] → Z3, by φ : a + b

√
−26 7→ a − b mod 3.

Note that the coefficient in front of b on the RHS has to be a square
root of −26, viewed mod 3, i.e. has to be a residue r which satisfies
r2 ≡ −26 (mod 3).
Claim: φ is a ring homomorphism:
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• φ(1) = φ(1 + 0
√
−26) = 1 mod 3 . [[ We can usually drop this

check. ]]

• φ
(
(a+ b

√
−26) + (a′ + b′

√
−26)

)
= φ((a+ a′) + (b+ b′)

√
−26))

= a+ a′ − (b+ b′) mod 3
= a− b+ a′ − b′ mod 3
= φ(a+ b

√
−26) + φ(a′ + b′

√
−26).

• φ
(
(a+ b

√
−26)(a′ + b′

√
−26)

)
= φ((aa′ − 26bb′) + (a′b+ ab′)

√
−26)

= aa′ − 26bb′ − (a′b+ ab′) mod 3
= aa′ + bb′ − (a′b+ ab′) mod 3
= (a− b)(a′ − b′) mod 3

= φ(a+ b
√
−26)φ(a′ + b′

√
−26).

So φ is a ring homomorphism.

Claim: kerφ = J .
Now φ(3) = 0 = φ(1 +

√
−26) whence 3 and 1 +

√
−26 lie in kerφ. So

J = (3, 1 +
√
−26)R ⊆ kerφ.

On the other hand, if α = a + b
√
−26 ∈ kerφ then a− b ≡ 0 mod 3,

say a = b+ 3t, with t ∈ Z.
So α = 3t+ b(1 +

√
−26) ∈ (3, 1 +

√
−26)R = J .

Hence kerφ ⊆ J and so kerφ = J .

Now φ is clearly surjective with image Z3. So, by the first isomorphism
theorem for rings, R/J ∼= Z3, a field. And hence J is maximal, as
required.


