Michaelmas 2012, NT III/IV, Solutions to Problem Sheet 2.

1. (i) Factorization of the norm of $8+9 i$ gives

$$
N(8+9 i)=145=5 \cdot 29
$$

which already shows that any possibly proper (and non-unit) factor has either norm equal to 5 or 29. The latter two are prime in \mathbb{Z} and thus irreducible, which entails that a proper (non-zero) factor of $8+9 i$ must be irreducible, too. 【If it weren't, the corresponding decomposition would cast a "shadow" decomposition in \mathbb{Z} also.]
Since $2^{2}+1^{2}=5$, candidates for divisors are $2 \pm i$, and trial division gives $\frac{8+9 i}{2+i}=5+2 i$, and by the above argument we already know that $2+i$ and $5+2 i$ must be irreducible.
(ii) We have $N(11+\sqrt{-5})=125=2 \cdot 3^{2} \cdot 7$, and we can find divisors $1 \pm \sqrt{-5}$ and $2 \pm \sqrt{-5}$ with norms 6 and 9 , respectively. Trial division gives

$$
\frac{11+\sqrt{-5}}{1-\sqrt{-5}}=1+2 \sqrt{-5} \quad \text { and } \quad \frac{11+\sqrt{-5}}{2+\sqrt{-5}}=3-\sqrt{-5}
$$

so that

$$
(1-\sqrt{-5})(1+2 \sqrt{-5})=(2+\sqrt{-5})(3-\sqrt{-5})
$$

All four factors are irreducible: they have norms 6,21 (on the left) and 9,14 (on the right), and any proper factor of either one would have norm 2,3 or 7 , neither one of which is of the form $a^{2}+5 b^{2}$ with $a, b \in \mathbb{Z}$.
Furthermore, since all 4 norms are mutually different, none of the factors can be associate to any of the others; thus we have two essentially different decompositions.
(iii) The norm of a proper non-unit factor of $1+\sqrt{-13}$ would need to properly divide $N(1+\sqrt{-13})=14=2 \cdot 7$ (and could not be a unit), so it would satisfy $a^{2}+13 b^{2} \in\{2,7\}$ which is not possible with a, $b \in \mathbb{Z}$. Thus $1+\sqrt{-13}$ must be irreducible.
But while $1+\sqrt{-13}$ divides its own norm $(1+\sqrt{-13})(1-\sqrt{-13})=$ $N(1+\sqrt{-13})=2 \cdot 7(*)$, it neither divides 2 nor $7 \llbracket$ e.g., $\frac{2}{1+\sqrt{-13}}=$ $\frac{2-2 \sqrt{-13}}{14} \notin \mathbb{Z}[\sqrt{-13}] \rrbracket$. Hence $1+\sqrt{-13}$ is not prime in $\mathbb{Z}[\sqrt{-13}]$.
From the lectures, we know that in a UFD "prime \Leftrightarrow irreducible", so $\mathbb{Z}[\sqrt{-13}]$ cannot be (our example $1+\sqrt{-13}$ violates this), Alternatively, we see that $1-\sqrt{-13}$ is similarly irreducible, as are 2 and 7 (no proper non-unit factor of their norms 2^{2} and 7^{2} can be a norm by the above), and so (*) above two essentially different decompositions into irreducibles.
2. Let $d<-2$. The norm of 2 in $\mathbb{Z}[\sqrt{d}]$ is equal to 2^{2}. Any proper non-unit factor $a+b \sqrt{d}$ of it would have to have norm 2 (since d is negative, all norms are $\geqslant 0$), i.e., we would have $a^{2}-b^{2} D=2$. But $-b^{2} d>2 b^{2}$ by assumption, so necessarily $b=0$ and $a^{2}=2$ which is impossible for $a \in \mathbb{Z}$.

In 2 (iii) we already had two essentially different decompositions into irreducibles (see $(*)$)

$$
(1+\sqrt{-13})(1-\sqrt{-13})=2 \cdot 7
$$

so neither of the 4 factors-and in particular the factor 2 - can be prime.
3. (i) As we saw in Q12, Sheet2, $1+\sqrt{-26}$ is irreducible in R and, hence, so also is $1-\sqrt{-26}$.

Moreover, 3 is irreducible in R. 【For if $\alpha(=a+b \sqrt{-26}$ with $a, b \in \mathbb{Z})$ were a proper, non-unit, divisor of 3 , then $\mathrm{N}(\alpha)\left(=a^{2}+26 b^{2}\right)$ would have to be a proper divisor of $\mathrm{N}(3)=9$ other than 1 . So $a^{2}+26 b^{2}=3$, and this is not possible with $a, b \in \mathbb{Z}$, a contradiction.】
Thus we have two essentially different factorizations of 27 :

$$
\begin{equation*}
3^{3}=\beta \bar{\beta} \tag{*}
\end{equation*}
$$

(There are 3 irreducibles on the left and only two on the right so we don't even need to point out that the irreducibles are not associate!)

Conclusion: R is not a UFD.
4. Let $u=2+\sqrt{5}$ and $v=-2+\sqrt{5}$ then u and $v \in \mathbb{Z}[\sqrt{5}]$.

Moreover, $u v=-4+5=1$. So u is a unit of $\mathbb{Z}[\sqrt{5}]$ and, clearly, $u>1$.
Again $u^{2} v^{2}=(u v)^{2}=1$ and $u^{2}>u>1$.
So $u^{2}(=9+4 \sqrt{5})$ is another unit greater than 1 .
5. (i) For this problem we work in $R=\mathbb{Z}[i]$. We are given that R is a UFD.

First note that $R^{*}=\{ \pm 1, \pm i\}$.
Also, $N(1+i)=2$ has no proper divisors in \mathbb{Z} (except units).
So $1+i$ is irreducible in R.
Suppose, then, that we have x and y in \mathbb{Z} such that $x^{2}+1=y^{7}$.
Put $\alpha=x+i \in R$, so that we have $\alpha \bar{\alpha}=y^{7}$.
Now if π is an irreducible of R which divides both α and $\bar{\alpha}$ then

$$
\begin{equation*}
\pi \mid(\alpha-\bar{\alpha})=2 i=(1+i)^{2} \tag{1}
\end{equation*}
$$

So, by uniqueness of factorization, $\pi \sim 1+i$.
We now write down a prime power factorization of α in R :

$$
\alpha=u(1+i)^{r} \pi_{1}^{s_{1}} \pi_{2}^{s_{2}} \cdots \pi_{t}^{s_{t}}
$$

where $u \in R^{*}$ and the π_{j} are irreducibles of R which are pairwise nonassociate and not associate to $1+i$, and where $r \in \mathbb{Z} \geq 0$ and the $s_{j} \in \mathbb{N}$.
Then (noting $1-i=(-i)(1+i))$

$$
\bar{\alpha}=\left(\bar{u}(-i)^{r}\right)(1+i)^{r} \bar{\pi}_{1}^{s_{1}} \bar{\pi}_{2}^{s_{2}} \cdots \bar{\pi}_{t}^{s_{t}} .
$$

By (1), the associates of $1+i$ are the only primes which can divide both α and $\bar{\alpha}$.
So $\bar{\pi}_{j} \nsim \pi_{k}$ for any j, k. Hence

$$
y^{7}=\alpha \bar{\alpha}=(-i)^{r}(1+i)^{2 r} \pi_{1}^{s_{1}} \pi_{2}^{s_{2}} \cdots \pi_{t}^{s_{t}} \bar{\pi}_{1}^{s_{1}} \bar{\pi}_{2}^{s_{2}} \cdots \bar{\pi}_{t}^{s_{t}}
$$

is a factorization of y^{7} as a product of (a unit and) powers of non-associate irreducibles. And by uniqueness of factorization, this must arise from the seventh power of a similar factorization of y. But then the power of each irreducible must be a multiple of 7 .

So $7 \mid 2 r$ (whence $7 \mid r$) and $7 \mid s_{j}$ for each j.
Now we can take $\beta=u^{3}(1+i)^{r / 7} \pi_{1}^{s_{1} / 7} \pi_{2}^{s_{2} / 7} \cdots \pi_{t}^{s_{t} / 7} \in R$.
Noting (since $u^{4}=1$) that $\left(u^{3}\right)^{7}=u^{21}=u$, we have $\alpha=\beta^{7}$.
Putting $\beta=a+b i$ with a, b in \mathbb{Z} we have
$x+i=a^{7}+7 a^{6} b i-21 a^{5} b^{2}-35 a^{4} b^{3} i+35 a^{3} b^{4}+21 a^{2} b^{5} i-7 a b^{6}-b^{7} i$.
Equating imaginary parts we get
$1=7 a^{6} b-35 a^{4} b^{3}+21 a^{2} b^{5}-b^{7}=\left(7 a^{6}-35 a^{4} b^{2}+21 a^{2} b^{4}-b^{6}\right) b$.

Whence $b \mid 1$ and so $b= \pm 1, b^{2}=1$ and consequently $b=7 a^{6}-35 a^{4}+$ $21 a^{2}-1$.

But then $b \equiv-1 \bmod 7$ and so $b=-1$.
And now we have $7 a^{6}-35 a^{4}+21 a^{2}=0$. i.e. $a^{2}\left(a^{4}-5 a^{2}+3\right)=0$.
So either $a=0$ or, solving the quadratic, $a^{2}=(5 \pm \sqrt{13}) / 2 \notin \mathbb{Z}$.
Hence $a=0$ and $x+i=-(-1)^{7} i=i$. So $x=0$ and $y=1$. This is the only solution.
(ii) We work in $R=\mathbb{Z}[\sqrt{-2}]$ - a UFD. We sort out some preliminaries. Firstly, $R^{*}=\{ \pm 1\}$.
Secondly, $N(\sqrt{-2})=2$ has no proper (non-unit) divisors in \mathbb{Z}.
So $\sqrt{-2}$ is irreducible in R.
Suppose then that we have x and y in \mathbb{Z} such that $x^{2}+8=y^{3}$.
Put $\alpha=x+\sqrt{-2} \in R$ so that we have $\alpha \bar{\alpha}=y^{3}$.
Now if π is an irreducible of R which divides both α and $\bar{\alpha}$ then

$$
\begin{equation*}
\pi \mid(\alpha-\bar{\alpha})=4 \sqrt{-2}=(\sqrt{-2})^{5} \tag{1}
\end{equation*}
$$

So, by uniqueness of factorization, $\quad \pi \sim \sqrt{-2}$.
We now write down a prime power factorization of α in R :

$$
\alpha= \pm(\sqrt{-2})^{r} \pi_{1}^{s_{1}} \pi_{2}^{s_{2}} \cdots \pi_{t}^{s_{t}}
$$

where the π_{i} are irreducibles of R, pairwise non-associate and not associate to $\sqrt{-2}$, and where $r \in \mathbb{N} \cup\{0\}$ and the $s_{i} \in \mathbb{N}$. Then

$$
\bar{\alpha}= \pm(-1)^{r}(\sqrt{-2})^{r} \bar{\pi}_{1}^{s_{1}} \bar{\pi}_{2}^{s_{2}} \cdots \bar{\pi}_{t}^{s_{t}} .
$$

By (1), the associates of $\sqrt{-2}$ are the only irreducibles of R which can divide both α and $\bar{\alpha}$. So $\bar{\pi}_{i} \nsim \pi_{j}$ for any i, j. Hence

$$
y^{3}=\alpha \bar{\alpha}=(-1)^{r}(\sqrt{-2})^{2 r} \pi_{1}^{s_{1}} \pi_{2}^{s_{2}} \cdots \pi_{t}^{s_{t}} \bar{\pi}_{1}^{s_{1}} \bar{\pi}_{2}^{s_{2}} \cdots \bar{\pi}_{t}^{s_{t}}
$$

is a factorization of y^{3} as a product of (a unit and) powers of non-associate irreducibles and, by uniqueness of factorization, this must arise from the third power of a similar factorization of y.
But then the power of each irreducible must occur as a cube.
So $3 \mid 2 r$ (whence $3 \mid r$) and $3 \mid s_{i}$ for each i.
Now we can take $\beta= \pm(\sqrt{-2})^{r / 3} \pi_{1}^{s_{1} / 3} \pi_{2}^{s_{2} / 3} \cdots \pi_{t}^{s_{t} / 3} \in R$ and we have $\alpha=\beta^{3}$.
Putting $\beta=a+b \sqrt{-2}$ with a, b in \mathbb{Z} we have

$$
\begin{equation*}
x+2 \sqrt{-2}=a^{3}+3 a^{2} b \sqrt{-2}-6 a b^{2}-2 b^{3} \sqrt{-2} . \tag{2}
\end{equation*}
$$

Equating imaginary parts (i.e. coefficients of $\sqrt{-2}$) we get

$$
\begin{equation*}
2=3 a^{2} b-2 b^{3}=b\left(3 a^{2}-2 b^{2}\right) \tag{3}
\end{equation*}
$$

Whence $b \mid 2$ and so $b= \pm 1$, or ± 2.
Reducing (3) mod 3 we find $-2 b^{3} \equiv 2 \bmod 3$.
But $b^{3} \equiv b \bmod 3$ (Fermat) and so $b \equiv-1 \bmod 3$. So $b=-1$ or 2 .
Putting $b=2$ in (3) gives $a^{2}=3$. So $b=-1$ and and (3) gives $a=0$.
Hence, from (2), $x=0$ and so $y=2$. This is the only solution.
6. (i) Suppose that $\alpha=a+b \sqrt{-2}(a, b \in \mathbb{Z})$ is a proper divisor of 5 in R
then $a^{2}+2 b^{2}=\alpha \bar{\alpha}$ is a proper divisor of 5^{2}.
So $a^{2}+2 b^{2}=1$ or 5 .
If $|b| \geq 2$ the LHS is too big and $|b|=1$ is clearly not possible.
So $b=0, a=1, \alpha \bar{\alpha}=1$ and α is a unit.
Thus the only proper divisors of 5 in R are units and so 5 is irreducible.
So $5=5$, as a product of one or more irreducibles.
$19=(1+3 \sqrt{-2})(1-3 \sqrt{-2})$ and we claim that this is a product of irreducibles.
Suppose that $\alpha=a+b \sqrt{-2}(a, b \in \mathbb{Z})$ is a proper divisor of $1+3 \sqrt{-2}$ in R.
Then $a^{2}+2 b^{2}=\alpha \bar{\alpha}$ is a proper divisor of $(1+3 \sqrt{-2})(1-3 \sqrt{-2})=19$ (and 19 is prime in \mathbb{Z}).

So $a^{2}+2 b^{2}=1, \alpha \bar{\alpha}=1$ and α is a unit.
Thus the only proper divisors of $1+3 \sqrt{-2}$ in R are units.
Hence $1+3 \sqrt{-2}$ and (similarly) $1-3 \sqrt{-2}$ are irreducible, as claimed.
$43=(5+3 \sqrt{-2})(5-3 \sqrt{-2})$ and we claim that this is a product of irreducibles.
Suppose that $\alpha=a+b \sqrt{-2}(a, b \in \mathbb{Z})$ is a proper divisor of $5+3 \sqrt{-2}$ in R.
Then $a^{2}+2 b^{2}=\alpha \bar{\alpha}$ is a proper divisor of $(5+3 \sqrt{-2})(5-3 \sqrt{-2})=43$ (and 43 is prime in \mathbb{Z}).

So $a^{2}+2 b^{2}=1, \alpha \bar{\alpha}=1$ and α is a unit.
Thus the only proper divisors of $5+3 \sqrt{-2}$ in R are units and so $5+3 \sqrt{-2}$ and (similarly) $5-3 \sqrt{-2}$ are irreducible, as claimed.
(ii) Note that, since $R^{\times}=\{ \pm 1\}$, no pair of the irreducibles found in (a) can be associate. So, since R is a UFD,
$817(=19 \times 43)=(1+3 \sqrt{-2})^{1}(1-3 \sqrt{-2})^{1}(5+3 \sqrt{-2})^{1}(5-3 \sqrt{-2})^{1}$
is a prime power factorization of 817 (in powers of non-associate primes of R). So (using Uniqueness of Factorization) 817 has the following 32 factors

$$
\begin{equation*}
\alpha= \pm(1+3 \sqrt{-2})^{r}(1-3 \sqrt{-2})^{s}(5+3 \sqrt{-2})^{t}(5-3 \sqrt{-2})^{u} \tag{*}
\end{equation*}
$$

where r, s, t and u are 0 or 1 .
(iii) Putting $\alpha=a+b \sqrt{-2} \in R$, we require $\alpha \bar{\alpha}=817$. In particular, $\alpha \mid 817$ in R so α is as in (*).

But, with α as in (*), $\alpha \bar{\alpha}=19^{r+s} 43^{t+u}$.
So $\alpha \bar{\alpha}=817$ iff $r+s=1$ and $t+u=1$. So we have a free choice of the sign and r and t (to be 0 or 1), giving 8 solutions to $\alpha \bar{\alpha}=817$ and 8 (integer) solutions to $a^{2}+2 b^{2}=817$.
We find that

$$
(1+3 \sqrt{-2})(5+3 \sqrt{-2})=-13+18 \sqrt{-2} \text { and }(1+3 \sqrt{-2})(5-3 \sqrt{-2})=
$$ $23+12 \sqrt{-2}$.

So the eight solutions to $a^{2}+2 b^{2}=817$ must be

$$
(a, b)=(\pm 13, \pm 18) \text { or }(\pm 23, \pm 12)
$$

Therefore there are two solutions with a and b positive:

$$
(a, b)=(13,18) \text { or }(23,12)
$$

7. (i) $\underline{H J}$: By definition $H J$ is the subgroup generated by the elements $h j$ where $h \in H$ and $j \in J$.
$\underline{H+J}$: Let a and b be elements of $H+J$.
We must show $a \pm b \in H+J . \quad(H+J$ is clearly non-empty.)
Well, $a=h+j$ and $b=k+l$ for some h and $k \in H$ and j and $l \in J$.
But H and J are subgroups. So $h \pm k \in H$ and $j \pm l \in J$.
Whence $a \pm b=(h \pm k)+(j \pm l) \in H+J$, as required.
(ii) $H(I+J)$ is the subgroup of R generated by
all elements $h k$ where $h \in H$ and $k \in I+J$,
i.e. all elements $h(i+j)$ where $h \in H$ and $i \in I$ and $j \in J$.

But $h(i+j)=h i+h j \in H I+H J$.
So $H I+H J$ contains all the generators of $H(I+J)$.
Hence $H I+H J$ contains $H(I+J)$.
$\mathrm{OTOH}, H I$ and $H J$ are contained in $H(I+J)$. So $H(I+J)$ contains $H I+H J$.

Thus $H(I+J)=H I+H J$.
(iii) (Using the associative and commutative rules: $H(I J)=(H I) J$ and $H I=I H$ and (iv).)
We know that $H I$ is a subgroup.
Moreover, $R(H I)=(R H) I=(H R) I=H(R I)=H I$.
So, by (iv), $H I$ is an ideal.
(iv) If $R I=I$ then, for all $r \in R$ and $i \in I$, $r i \in I$. So I is an ideal.

OTOH suppose that I is an ideal.
$R I$ is the subgroup of R generated by all elements $r i$ where $r \in R$ and $i \in I$.
But all these elements lie in I, as I is an ideal.
So $R I \subseteq I$.
But $1 \in R$. So, for all $i \in I, i=1 i \in R I$. So $I \subseteq R I$.
Hence $R I=I$.
8. (i) $(a)_{R}=\{r a \mid r \in R\}$ and $(b)_{R}=\{s b \mid s \in R\}$.

So $(a)_{R}(b)_{R}$ is generated by the elements rasb $=r s a b$, with $r, s \in R$.
All these generators lie in $(a b)_{R}$. So $(a)_{R}(b)_{R} \subseteq(a b)_{R}$.
OTOH, clearly $a b$ and all its multiples lie in $(a)_{R}(b)_{R}$. So $(a)_{R}(b)_{R} \supseteq(a b)_{R}$.
Thus $(a)_{R}(b)_{R}=(a b)_{R}$.
(ii) $\langle a\rangle_{\mathrm{gp}}=\{r a \mid r \in \mathbb{Z}\}$ and $\langle b\rangle_{\mathrm{gp}}=\{s b \mid s \in \mathbb{Z}\}$.

So $\langle a\rangle_{\mathrm{gp}}\langle b\rangle_{\mathrm{gp}}$ is generated by the elements rasb $=r s a b$, with $r, s \in \mathbb{Z}$.
All these generators lie in $\langle a b\rangle_{\mathrm{gp}}$. So $\langle a\rangle_{\mathrm{gp}}\langle b\rangle_{\mathrm{gp}} \subseteq\langle a b\rangle_{\mathrm{gp}}$.
OTOH, clearly $a b$ and all its integer multiples lie in $\langle a\rangle_{\mathrm{gp}}\langle b\rangle_{\mathrm{gp}}$.
So $\langle a\rangle_{\mathrm{gp}}\langle b\rangle_{\mathrm{gp}} \supseteq\langle a b\rangle_{\mathrm{gp}}$.
Thus $\langle a\rangle_{\mathrm{gp}}\langle b\rangle_{\mathrm{gp}}=\langle a b\rangle_{\mathrm{gp}}$.
(iii)

$$
\begin{aligned}
\langle a, b\rangle_{\mathrm{gp}}\langle c, d\rangle_{\mathrm{gp}} & =\left(\langle a\rangle_{\mathrm{gp}}+\langle b\rangle_{\mathrm{gp}}\right)\left(\langle c\rangle_{\mathrm{gp}}+\langle d\rangle_{\mathrm{gp}}\right) \\
& =\langle a\rangle_{\mathrm{gp}}\left(\langle c\rangle_{\mathrm{gp}}+\langle d\rangle_{\mathrm{gp}}\right)+\langle b\rangle_{\mathrm{gp}}\left(\langle c\rangle_{\mathrm{gp}}+\langle d\rangle_{\mathrm{gp}}\right) \\
& =\langle a\rangle_{\mathrm{gp}}\langle c\rangle_{\mathrm{gp}}+\langle a\rangle_{\mathrm{gp}}\langle d\rangle_{\mathrm{gp}}+\langle b\rangle_{\mathrm{gp}}\langle c\rangle_{\mathrm{gp}}+\langle b\rangle_{\mathrm{gp}}\langle d\rangle_{\mathrm{gp}} \\
& =\langle a c\rangle_{\mathrm{gp}}+\langle a d\rangle_{\mathrm{gp}}+\langle b c\rangle_{\mathrm{gp}}+\langle b d\rangle_{\mathrm{gp}}=\langle a c, a d, b c, b d\rangle_{\mathrm{gp}}
\end{aligned}
$$

9. Suppose $\quad(\alpha, \beta)_{R}=(\gamma) \quad(*)$

We have to show that γ is a gcd for α and β. i.e that
(i) γ divides α and β and
(ii) if $\delta \in R$ and δ divides α and β then δ divides γ.

But from $(*), \alpha$ and $\beta \in(\gamma)_{R}$. So $\gamma \mid \alpha$ and β. whence (i)
OTOH, $\quad(\alpha, \beta)_{R}=\{l \alpha+\mu \beta \mid l, \mu \in R\}$.
So, again from (*), we can write $\gamma=l \alpha+\mu \beta$ for some $l, \mu \in R$.
Thus if $\delta \in R$ and $\delta \mid \alpha$ and β then $\delta \mid l \alpha+\mu \beta=\gamma$. whence (ii)
Hence γ is a gcd for α and β.

10．Multiplying the two ideals gives（denoting generators by $\mathrm{g}_{1}, \mathrm{~g}_{2}, \ldots$ ）

$$
\begin{aligned}
(5,2+\sqrt{-21})(3, \sqrt{-21}) & =(15,5 \sqrt{-21}, 6+3 \sqrt{-21},-21+2 \sqrt{-21}) \\
& =(15,5 \sqrt{-21}, 6+3 \sqrt{-21},-27-\sqrt{-21}) \quad\left(\mathrm{g}_{4} \rightarrow \mathrm{~g}_{4}-\mathrm{g}_{3}\right) \\
& =(15,-135,6+3 \sqrt{-21},-27-\sqrt{-21}) \quad\left(\mathrm{g}_{2} \rightarrow \mathrm{~g}_{2}+5 \mathrm{~g}_{4}\right) \\
& =(15,-135,-75,-27-\sqrt{-21}) \quad\left(\mathrm{g}_{3} \rightarrow \mathrm{~g}_{3}+3 \mathrm{~g}_{4}\right) \\
& =(15,-27-\sqrt{-21}) \quad\left(-135 \text { and }-75 \text { are multiples of } \mathrm{g}_{1}=15\right)
\end{aligned}
$$

Hence e．g．$N=15$ and $\alpha=-27-\sqrt{-21}$ will do．
11．See Problems Class．
12．（i）Put $\beta=1+\sqrt{-26}$ ．Note that β is irreducible in R ．
【If $\alpha(=a+b \sqrt{-26}$ with $a, b \in \mathbb{Z})$ is a proper，non－unit，divisor of β ，then $\mathrm{N}(\alpha)\left(=a^{2}+26 b^{2}\right)$ must be a proper divisor of $\mathrm{N}(\beta)=27$ other than 1．So $a^{2}+26 b^{2}=3$ or 9 ，giving $b=0, \alpha=a= \pm 3$ and $\beta / \alpha= \pm(1+\sqrt{-26}) / 3 \notin R$ ，a contradiction．】
Now，denoting by g_{i} the i－th generator in a given presentation of an ideal，we can deduce

$$
\begin{aligned}
J^{3} & =(\beta, 3)_{R}^{2}(\beta, 3)_{R}=\left(\beta^{2}, 3 \beta, 3^{2}\right)_{R}(\beta, 3)_{R} \\
& =\left(\beta^{3}, 3 \beta^{2}, 3^{2} \beta, 3^{3}\right)_{R} \\
& =\beta\left(\beta^{2}, 3 \beta, 9, \bar{\beta}\right)_{R}=\beta(-25+2 \sqrt{-26}, 3+3 \sqrt{-26}, 9,1-\sqrt{-26})_{R} \\
& =\beta(-23,6,9,1-\sqrt{-26})_{R}, \quad \text { replace } \mathrm{g}_{1} \text { by } \mathrm{g}_{1}+2 \mathrm{~g}_{4} \text { and } \mathrm{g}_{2} \text { by } \mathrm{g}_{2}+3 \mathrm{~g}_{4}, \\
& =\beta(1,6,9,1-\sqrt{-26})_{R}, \quad \text { replace } \mathrm{g}_{1} \text { by } \mathrm{g}_{1}+4 \mathrm{~g}_{2}, \\
& =\beta R=(\beta)_{R} .
\end{aligned}
$$

since any ideal containing 1 is R ．Thus J^{3} is a principal ideal．
【Note that if an ideal I is generated by multiples of a given element x ，say $I=\left(a_{1} x, \ldots, a_{n} x\right)_{R}$ ，one can only deduce that it is contained in the principal ideal $(x)_{R}$ but need not itself contain x ；the latter still needs to be shown if equality is to be proved．】

Now suppose that J were principal，i．e．$J=(\gamma)_{R}$ with $\gamma \in R$ ．
Then $(\beta)_{R}=J^{3}=\left(\gamma^{3}\right)_{R}$ ．So $\beta=u \gamma^{3}$ where $u \in R^{\times}$．
This is impossible，since β is irreducible．
Conclusion：J is not principal．
（ii）Again，suppose，for a contradiction，that J^{2} were principal，say $J^{2}=$ $(\delta)_{R}$ ．
Then $\left(\delta^{3}\right)_{R}=(\delta)_{R}^{3}=J^{6}=(\beta)_{R}^{2}=\left(\beta^{2}\right)_{R}$ with β as in（i）．
So $\delta^{3}=u \beta^{2}$ ，for some unit $u \in R^{\times}$．
And，hence，$(\delta \bar{\delta})^{3}=(\mathrm{N}(\beta))^{2}=3^{6}$ ，and $\mathrm{N}(\delta)=9$ ．
But $\beta \in J^{3} \subseteq J^{2}=(\delta)_{R}$ ．
Since $\mathrm{N}(\delta)<\mathrm{N}(\beta), \delta$ is a proper divisor of the irreducible β but is not a unit．There are no such elements δ ．
Conclusion：J^{2} is not principal．（There are many ways to show this．）
（iii）Consider $\phi: \mathbb{Z}[\sqrt{-26}] \rightarrow \mathbb{Z}_{3}$ ，by $\quad \phi: a+b \sqrt{-26} \mapsto a-b \bmod 3$ ． Note that the coefficient in front of b on the RHS has to be a square root of -26 ，viewed $\bmod 3$ ，i．e．has to be a residue r which satisfies $r^{2} \equiv-26 \quad(\bmod 3)$ ．
Claim：ϕ is a ring homomorphism：

- $\phi(1)=\phi(1+0 \sqrt{-26})=1 \bmod 3$. 【We can usually drop this check.】
- $\left.\phi\left((a+b \sqrt{-26})+\left(a^{\prime}+b^{\prime} \sqrt{-26}\right)\right)=\phi\left(\left(a+a^{\prime}\right)+\left(b+b^{\prime}\right) \sqrt{-26}\right)\right)$
$=a+a^{\prime}-\left(b+b^{\prime}\right) \bmod 3$
$=a-b+a^{\prime}-b^{\prime} \bmod 3$

$$
=\phi(a+b \sqrt{-26})+\phi\left(a^{\prime}+b^{\prime} \sqrt{-26}\right) .
$$

- $\phi\left((a+b \sqrt{-26})\left(a^{\prime}+b^{\prime} \sqrt{-26}\right)\right)=\phi\left(\left(a a^{\prime}-26 b b^{\prime}\right)+\left(a^{\prime} b+a b^{\prime}\right) \sqrt{-26}\right)$

$$
=a a^{\prime}-26 b b^{\prime}-\left(a^{\prime} b+a b^{\prime}\right) \quad \bmod 3
$$

$$
=a a^{\prime}+b b^{\prime}-\left(a^{\prime} b+a b^{\prime}\right) \quad \bmod 3
$$

$$
=(a-b)\left(a^{\prime}-b^{\prime}\right) \quad \bmod 3
$$

$$
=\phi(a+b \sqrt{-26}) \phi\left(a^{\prime}+b^{\prime} \sqrt{-26}\right)
$$

So ϕ is a ring homomorphism.
Claim: $\operatorname{ker} \phi=J$.
Now $\phi(3)=0=\phi(1+\sqrt{-26})$ whence 3 and $1+\sqrt{-26}$ lie in $\operatorname{ker} \phi$. So $J=(3,1+\sqrt{-26})_{R} \subseteq \operatorname{ker} \phi$.
On the other hand, if $\alpha=a+b \sqrt{-26} \in \operatorname{ker} \phi$ then $a-b \equiv 0 \bmod 3$, say $a=b+3 t$, with $t \in \mathbb{Z}$.
So $\alpha=3 t+b(1+\sqrt{-26}) \in(3,1+\sqrt{-26})_{R}=J$.
Hence $\operatorname{ker} \phi \subseteq J$ and so $\operatorname{ker} \phi=J$.
Now ϕ is clearly surjective with image \mathbb{Z}_{3}. So, by the first isomorphism theorem for rings, $R / J \cong \mathbb{Z}_{3}$, a field. And hence J is maximal, as required.

