Michaelmas 2012, NT III/IV, Solutions to Problem Sheet 2.

1. (i) Factorization of the norm of 8 + 9i gives

 $N(8+9i) = 145 = 5 \cdot 29,$

which already shows that any possibly *proper* (and non-unit) factor has either norm equal to 5 or 29. The latter two are prime in \mathbb{Z} and thus irreducible, which entails that a proper (non-zero) factor of 8+9i must be irreducible, too. [If it weren't, the corresponding decomposition would cast a "shadow" decomposition in \mathbb{Z} also.]]

Since $2^2 + 1^2 = 5$, candidates for divisors are $2 \pm i$, and trial division gives $\frac{8+9i}{2+i} = 5 + 2i$, and by the above argument we already know that 2 + i and 5 + 2i must be irreducible.

(ii) We have $N(11 + \sqrt{-5}) = 125 = 2 \cdot 3^2 \cdot 7$, and we can find divisors $1 \pm \sqrt{-5}$ and $2 \pm \sqrt{-5}$ with norms 6 and 9, respectively. Trial division gives

$$\frac{11+\sqrt{-5}}{1-\sqrt{-5}} = 1+2\sqrt{-5} \qquad \text{and} \qquad \frac{11+\sqrt{-5}}{2+\sqrt{-5}} = 3-\sqrt{-5}\,,$$

so that

$$(1 - \sqrt{-5})(1 + 2\sqrt{-5}) = (2 + \sqrt{-5})(3 - \sqrt{-5}).$$

All four factors are irreducible: they have norms 6, 21 (on the left) and 9, 14 (on the right), and any proper factor of either one would have norm 2, 3 or 7, neither one of which is of the form $a^2 + 5b^2$ with $a, b \in \mathbb{Z}$.

Furthermore, since all 4 norms are mutually different, none of the factors can be associate to any of the others; thus we have two essentially different decompositions.

- (iii) The norm of a proper non-unit factor of $1 + \sqrt{-13}$ would need to properly divide $N(1 + \sqrt{-13}) = 14 = 2 \cdot 7$ (and could not be a unit), so it would satisfy $a^2 + 13b^2 \in \{2,7\}$ which is not possible with a, $b \in \mathbb{Z}$. Thus $1 + \sqrt{-13}$ must be irreducible.
 - But while $1 + \sqrt{-13}$ divides its own norm $(1 + \sqrt{-13})(1 \sqrt{-13}) = N(1 + \sqrt{-13}) = 2 \cdot 7$ (*), it neither divides 2 nor 7 [[e.g., $\frac{2}{1 + \sqrt{-13}} = \frac{2 2\sqrt{-13}}{14} \notin \mathbb{Z}[\sqrt{-13}]$]. Hence $1 + \sqrt{-13}$ is not prime in $\mathbb{Z}[\sqrt{-13}]$. From the lectures, we know that in a UFD "prime \Leftrightarrow irreducible", so $\mathbb{Z}[\sqrt{-13}]$ cannot be (our example $1 + \sqrt{-13}$ violates this), Alternatively, we see that $1 - \sqrt{-13}$ is similarly irreducible, as are 2 and 7 (no proper non-unit factor of their norms 2^2 and 7^2 can be a norm by the above), and so (*) above two essentially different decompositions into irreducibles.
- 2. Let d < -2. The norm of 2 in $\mathbb{Z}[\sqrt{d}]$ is equal to 2². Any proper non-unit factor $a + b\sqrt{d}$ of it would have to have norm 2 (since d is negative, all norms are ≥ 0), i.e., we would have $a^2 b^2D = 2$. But $-b^2d > 2b^2$ by assumption, so necessarily b = 0 and $a^2 = 2$ which is impossible for $a \in \mathbb{Z}$.

In 2 (iii) we already had two essentially different decompositions into irreducibles (see (*))

$$(1+\sqrt{-13})(1-\sqrt{-13})=2\cdot 7\,,$$

so neither of the 4 factors—and in particular the factor 2—can be prime.

3. (i) As we saw in Q12, Sheet2, $1 + \sqrt{-26}$ is irreducible in R and, hence, so also is $1 - \sqrt{-26}$.

Moreover, 3 is irreducible in R. [For if $\alpha (= a + b\sqrt{-26} \text{ with } a, b \in \mathbb{Z})$ were a proper, non-unit, divisor of 3, then $N(\alpha) (= a^2 + 26b^2)$ would have to be a proper divisor of N(3) = 9 other than 1. So $a^2 + 26b^2 = 3$, and this is not possible with $a, b \in \mathbb{Z}$, a contradiction.]

Thus we have two essentially different factorizations of 27:

$$3^3 = \beta \bar{\beta}. \tag{(*)}$$

(1)

(There are 3 irreducibles on the left and only two on the right so we don't even need to point out that the irreducibles are not associate!)

Conclusion: R is not a UFD.

- 4. Let $u = 2 + \sqrt{5}$ and $v = -2 + \sqrt{5}$ then u and $v \in \mathbb{Z}[\sqrt{5}]$. Moreover, uv = -4 + 5 = 1. So u is a unit of $\mathbb{Z}[\sqrt{5}]$ and, clearly, u > 1. Again $u^2v^2 = (uv)^2 = 1$ and $u^2 > u > 1$. So $u^2 (= 9 + 4\sqrt{5})$ is another unit greater than 1.
- 5. (i) For this problem we work in R = Z[i]. We are given that R is a UFD.
 First note that R* = {±1, ±i}.
 - Also, N(1+i) = 2 has no proper divisors in \mathbb{Z} (except units). So 1+i is irreducible in R.

Suppose, then, that we have x and y in \mathbb{Z} such that $x^2 + 1 = y^7$. Put $\alpha = x + i \in \mathbb{R}$, so that we have $\alpha \bar{\alpha} = y^7$.

Now if π is an irreducible of R which divides both α and $\bar{\alpha}$ then

 $\pi \mid (\alpha - \bar{\alpha}) = 2i = (1+i)^2.$

So

, by uniqueness of factorization,
$$\pi \sim 1 + i$$
.

We now write down a prime power factorization of α in R:

$$\alpha = u(1+i)^r \pi_1^{s_1} \pi_2^{s_2} \cdots \pi_t^s$$

where $u \in R^*$ and the π_j are irreducibles of R which are pairwise nonassociate and not associate to 1 + i, and where $r \in \mathbb{Z}^{\geq 0}$ and the $s_j \in \mathbb{N}$.

Then (noting 1 - i = (-i)(1 + i))

$$\bar{\alpha} = (\bar{u}(-i)^r)(1+i)^r \bar{\pi}_1^{s_1} \bar{\pi}_2^{s_2} \cdots \bar{\pi}_t^{s_t}$$

By (1), the associates of 1 + i are the only primes which can divide both α and $\bar{\alpha}$.

So $\bar{\pi}_j \not\sim \pi_k$ for any j, k. Hence

$$y^{7} = \alpha \bar{\alpha} = (-i)^{r} (1+i)^{2r} \pi_{1}^{s_{1}} \pi_{2}^{s_{2}} \cdots \pi_{t}^{s_{t}} \bar{\pi}_{1}^{s_{1}} \bar{\pi}_{2}^{s_{2}} \cdots \bar{\pi}_{t}^{s_{t}}$$

is a factorization of y^7 as a product of (a unit and) powers of non-associate irreducibles. And by uniqueness of factorization, this must arise from the seventh power of a similar factorization of y. But then the power of each irreducible must be a multiple of 7.

So $7 \mid 2r$ (whence $7 \mid r$) and $7 \mid s_j$ for each j.

Now we can take $\beta = u^3(1+i)^{r/7} \pi_1^{s_1/7} \pi_2^{s_2/7} \cdots \pi_t^{s_t/7} \in R$. Noting (since $u^4 = 1$) that $(u^3)^7 = u^{21} = u$, we have $\alpha = \beta^7$. Putting $\beta = a + bi$ with a, b in \mathbb{Z} we have

$$x + i = a^7 + 7a^6bi - 21a^5b^2 - 35a^4b^3i + 35a^3b^4 + 21a^2b^5i - 7ab^6 - b^7i.$$
(2)

Equating imaginary parts we get

$$1 = 7a^{6}b - 35a^{4}b^{3} + 21a^{2}b^{5} - b^{7} = (7a^{6} - 35a^{4}b^{2} + 21a^{2}b^{4} - b^{6})b^{4}$$

Whence $b \mid 1$ and so $b = \pm 1$, $b^2 = 1$ and consequently $b = 7a^6 - 35a^4 + 3b^2$ $21a^2 - 1.$

But then $b \equiv -1 \mod 7$ and so b = -1.

 α

And now we have $7a^6 - 35a^4 + 21a^2 = 0$. i.e. $a^2(a^4 - 5a^2 + 3) = 0$.

So either a = 0 or, solving the quadratic, $a^2 = (5 \pm \sqrt{13})/2 \notin \mathbb{Z}$. Hence a = 0 and $x + i = -(-1)^7 i = i$. So x = 0 and y = 1. This is the only solution.

(ii) We work in $R = \mathbb{Z}[\sqrt{-2}]$ — a UFD. We sort out some preliminaries. Firstly, $R^* = \{\pm 1\}.$

Secondly, $N(\sqrt{-2}) = 2$ has no proper (non-unit) divisors in \mathbb{Z} . So $\sqrt{-2}$ is irreducible in *R*.

Suppose then that we have x and y in \mathbb{Z} such that $x^2 + 8 = y^3$. Put $\alpha = x + \sqrt{-2} \in R$ so that we have $\alpha \bar{\alpha} = y^3$.

Now if π is an irreducible of R which divides both α and $\bar{\alpha}$ then $\pi \mid (\alpha - \bar{\alpha}) = 4\sqrt{-2} = (\sqrt{-2})^5.$

So, by uniqueness of factorization, $\pi \sim \sqrt{-2}.$ (1)We now

w write down a prime power factorization of
$$\alpha$$
 in R

$$= \pm (\sqrt{-2})^r \pi_1^{s_1} \pi_2^{s_2} \cdots \pi_t^{s_t},$$

where the π_i are irreducibles of R, pairwise non-associate and not associate to $\sqrt{-2}$, and where $r \in \mathbb{N} \cup \{0\}$ and the $s_i \in \mathbb{N}$. Then

$$\bar{\alpha} = \pm (-1)^r (\sqrt{-2})^r \bar{\pi}_1^{s_1} \bar{\pi}_2^{s_2} \cdots \bar{\pi}_t^{s_t}$$

By (1), the associates of $\sqrt{-2}$ are the only irreducibles of R which can divide both α and $\bar{\alpha}$. So $\bar{\pi}_i \not\sim \pi_j$ for any i, j. Hence

$$y^{3} = \alpha \bar{\alpha} = (-1)^{r} (\sqrt{-2})^{2r} \pi_{1}^{s_{1}} \pi_{2}^{s_{2}} \cdots \pi_{t}^{s_{t}} \bar{\pi}_{1}^{s_{1}} \bar{\pi}_{2}^{s_{2}} \cdots \bar{\pi}_{t}^{s_{t}}$$

is a factorization of y^3 as a product of (a unit and) powers of non-associate irreducibles and, by uniqueness of factorization, this must arise from the third power of a similar factorization of y.

But then the power of each irreducible must occur as a cube.

So $3 \mid 2r$ (whence $3 \mid r$) and $3 \mid s_i$ for each *i*.

Now we can take $\beta = \pm (\sqrt{-2})^{r/3} \pi_1^{s_1/3} \pi_2^{s_2/3} \cdots \pi_t^{s_t/3} \in R$ and we have $\alpha = \beta^3$.

Putting $\beta = a + b\sqrt{-2}$ with a, b in \mathbb{Z} we have

$$x + 2\sqrt{-2} = a^3 + 3a^2b\sqrt{-2} - 6ab^2 - 2b^3\sqrt{-2}.$$
 (2)

Equating imaginary parts (i.e. coefficients of $\sqrt{-2}$) we get

$$2 = 3a^{2}b - 2b^{3} = b(3a^{2} - 2b^{2}).$$
(3)

Whence $b \mid 2$ and so $b = \pm 1$, or ± 2 .

Reducing (3) mod 3 we find $-2b^3 \equiv 2 \mod 3$.

But $b^3 \equiv b \mod 3$ (Fermat) and so $b \equiv -1 \mod 3$. So b = -1 or 2.

Putting b = 2 in (3) gives $a^2 = 3$. So b = -1 and and (3) gives a = 0. Hence, from (2), x = 0 and so y = 2. This is the only solution.

6. (i) Suppose that $\alpha = a + b\sqrt{-2}$ $(a, b \in \mathbb{Z})$ is a proper divisor of 5 in R then $a^2 + 2b^2 = \alpha \bar{\alpha}$ is a proper divisor of 5^2 .

So $a^2 + 2b^2 = 1$ or 5.

If $|b| \ge 2$ the LHS is too big and |b| = 1 is clearly not possible.

So b = 0, a = 1, $\alpha \overline{\alpha} = 1$ and α is a unit.

Thus the only proper divisors of 5 in R are units and so 5 is irreducible. So 5 = 5, as a product of one or more irreducibles.

 $19 = (1 + 3\sqrt{-2})(1 - 3\sqrt{-2})$ and we claim that this is a product of irreducibles.

Suppose that $\alpha = a + b\sqrt{-2}$ $(a, b \in \mathbb{Z})$ is a proper divisor of $1 + 3\sqrt{-2}$ in R.

Then $a^2 + 2b^2 = \alpha \bar{\alpha}$ is a proper divisor of $(1 + 3\sqrt{-2})(1 - 3\sqrt{-2}) = 19$ (and 19 is prime in \mathbb{Z}).

So $a^2 + 2b^2 = 1$, $\alpha \bar{\alpha} = 1$ and α is a unit.

Thus the only proper divisors of $1 + 3\sqrt{-2}$ in R are units.

Hence $1 + 3\sqrt{-2}$ and (similarly) $1 - 3\sqrt{-2}$ are irreducible, as claimed.

 $43 = (5 + 3\sqrt{-2})(5 - 3\sqrt{-2})$ and we claim that this is a product of irreducibles.

Suppose that $\alpha = a + b\sqrt{-2}$ $(a, b \in \mathbb{Z})$ is a proper divisor of $5 + 3\sqrt{-2}$ in R.

Then $a^2 + 2b^2 = \alpha \bar{\alpha}$ is a proper divisor of $(5 + 3\sqrt{-2})(5 - 3\sqrt{-2}) = 43$ (and 43 is prime in \mathbb{Z}).

So $a^2 + 2b^2 = 1$, $\alpha \bar{\alpha} = 1$ and α is a unit.

Thus the only proper divisors of $5 + 3\sqrt{-2}$ in R are units and so $5 + 3\sqrt{-2}$ and (similarly) $5 - 3\sqrt{-2}$ are irreducible, as claimed.

(ii) Note that, since $R^{\times} = \{\pm 1\}$, no pair of the irreducibles found in (a) can be associate. So, since R is a UFD,

$$817(=19 \times 43) = (1+3\sqrt{-2})^1(1-3\sqrt{-2})^1(5+3\sqrt{-2})^1(5-3\sqrt{-2})^1$$

is a prime power factorization of 817 (in powers of non-associate primes of R). So (using Uniqueness of Factorization) 817 has the following 32 factors

$$\alpha = \pm (1 + 3\sqrt{-2})^r (1 - 3\sqrt{-2})^s (5 + 3\sqrt{-2})^t (5 - 3\sqrt{-2})^u \qquad (*)$$

where r, s, t and u are 0 or 1.

(iii) Putting $\alpha = a + b\sqrt{-2} \in R$, we require $\alpha \bar{\alpha} = 817$. In particular, $\alpha \mid 817$ in R so α is as in (*).

But, with α as in (*), $\alpha \bar{\alpha} = 19^{r+s} 43^{t+u}$.

So $\alpha \bar{\alpha} = 817$ iff r + s = 1 and t + u = 1. So we have a free choice of the sign and r and t (to be 0 or 1), giving 8 solutions to $\alpha \bar{\alpha} = 817$ and 8 (integer) solutions to $a^2 + 2b^2 = 817$.

We find that

$$(1+3\sqrt{-2})(5+3\sqrt{-2}) = -13 + 18\sqrt{-2}$$
 and $(1+3\sqrt{-2})(5-3\sqrt{-2}) = 23 + 12\sqrt{-2}$.

So the eight solutions to $a^2 + 2b^2 = 817$ must be

 $(a,b) = (\pm 13, \pm 18)$ or $(\pm 23, \pm 12)$.

Therefore there are two solutions with a and b positive:

(a,b) = (13,18) or (23,12).

7. (i) <u>*HJ*</u>: By definition *HJ* is the subgroup generated by the elements hj where $h \in H$ and $j \in J$.

 $\underline{H+J}$: Let a and b be elements of H+J.

We must show $a \pm b \in H + J$. (H + J is clearly non-empty.)

Well, a = h + j and b = k + l for some h and $k \in H$ and j and $l \in J$. But H and J are subgroups. So $h \pm k \in H$ and $j \pm l \in J$.

Whence $a \pm b = (h \pm k) + (j \pm l) \in H + J$, as required.

(ii) H(I+J) is the subgroup of R generated by

4

all elements hk where $h \in H$ and $k \in I + J$,

i.e. all elements h(i+j) where $h \in H$ and $i \in I$ and $j \in J$.

But $h(i+j) = hi + hj \in HI + HJ$.

So HI + HJ contains all the generators of H(I + J).

Hence HI + HJ contains H(I + J).

OTOH, HI and HJ are contained in H(I + J). So H(I + J) contains HI + HJ.

Thus H(I+J) = HI + HJ.

(iii) (Using the associative and commutative rules: H(IJ) = (HI)J and HI = IH and (iv).)

We know that HI is a subgroup. Moreover, R(HI) = (RH)I = (HR)I = H(RI) = HI.

So, by (iv), HI is an ideal.

(iv) If RI = I then, for all $r \in R$ and $i \in I$, $ri \in I$. So I is an ideal.

OTOH suppose that I is an ideal.

RI is the subgroup of R generated by all elements ri where $r \in R$ and $i \in I$. But all these elements lie in I, as I is an ideal.

So $RI \subseteq I$.

But $1 \in R$. So, for all $i \in I$, $i = 1i \in RI$. So $I \subseteq RI$. Hence RI = I.

8. (i) $(a)_R = \{ra \mid r \in R\}$ and $(b)_R = \{sb \mid s \in R\}$. So $(a)_R(b)_R$ is generated by the elements rasb = rsab, with $r, s \in R$. All these generators lie in $(ab)_R$. So $(a)_R(b)_R \subseteq (ab)_R$.

OTOH, clearly ab and all its multiples lie in $(a)_R(b)_R$. So $(a)_R(b)_R \supseteq (ab)_R$. Thus $(a)_R(b)_R = (ab)_R$.

(ii) $\langle a \rangle_{\rm gp} = \{ ra \mid r \in \mathbb{Z} \}$ and $\langle b \rangle_{\rm gp} = \{ sb \mid s \in \mathbb{Z} \}$. So $\langle a \rangle_{\rm gp} \langle b \rangle_{\rm gp}$ is generated by the elements rasb = rsab, with $r, s \in \mathbb{Z}$. All these generators lie in $\langle ab \rangle_{\rm gp}$. So $\langle a \rangle_{\rm gp} \langle b \rangle_{\rm gp} \subseteq \langle ab \rangle_{\rm gp}$.

OTOH, clearly ab and all its integer multiples lie in $\langle a \rangle_{\rm gp} \langle b \rangle_{\rm gp}$. So $\langle a \rangle_{\rm gp} \langle b \rangle_{\rm gp} \supseteq \langle ab \rangle_{\rm gp}$.

Thus $\langle a \rangle_{\rm gp} \langle b \rangle_{\rm gp} = \langle ab \rangle_{\rm gp}$.

(iii)

$$\begin{aligned} \langle a, b \rangle_{\rm gp} \langle c, d \rangle_{\rm gp} &= (\langle a \rangle_{\rm gp} + \langle b \rangle_{\rm gp})(\langle c \rangle_{\rm gp} + \langle d \rangle_{\rm gp}) \\ &= \langle a \rangle_{\rm gp}(\langle c \rangle_{\rm gp} + \langle d \rangle_{\rm gp}) + \langle b \rangle_{\rm gp}(\langle c \rangle_{\rm gp} + \langle d \rangle_{\rm gp}) \\ &= \langle a \rangle_{\rm gp} \langle c \rangle_{\rm gp} + \langle a \rangle_{\rm gp} \langle d \rangle_{\rm gp} + \langle b \rangle_{\rm gp} \langle c \rangle_{\rm gp} + \langle b \rangle_{\rm gp} \langle d \rangle_{\rm gp} \\ &= \langle ac \rangle_{\rm gp} + \langle ad \rangle_{\rm gp} + \langle bc \rangle_{\rm gp} + \langle bd \rangle_{\rm gp} = \langle ac, ad, bc, bd \rangle_{\rm gp} \end{aligned}$$

9. Suppose $(\alpha, \beta)_R = (\gamma)$ (*)

We have to show that γ is a gcd for α and β . i.e that

(i) γ divides α and β and

(ii) if $\delta \in R$ and δ divides α and β then δ divides γ .

But from (*), α and $\beta \in (\gamma)_R$. So $\gamma \mid \alpha$ and β . whence (i) OTOH, $(\alpha, \beta)_R = \{l\alpha + \mu\beta \mid l, \mu \in R\}.$ So, again from (*), we can write $\gamma = l\alpha + \mu\beta$ for some $l, \mu \in R$. Thus if $\delta \in R$ and $\delta \mid \alpha$ and β then $\delta \mid l\alpha + \mu\beta = \gamma$. whence (ii)

Hence γ is a gcd for α and β .

10. Multiplying the two ideals gives (denoting generators by g_1, g_2, \ldots)

$$\begin{aligned} (5,2+\sqrt{-21})(3,\sqrt{-21}) &= & (15,5\sqrt{-21},6+3\sqrt{-21},-21+2\sqrt{-21}) \\ &= & (15,5\sqrt{-21},6+3\sqrt{-21},-27-\sqrt{-21}) & (g_4 \to g_4 - g_3) \\ &= & (15,-135,6+3\sqrt{-21},-27-\sqrt{-21}) & (g_2 \to g_2 + 5g_4) \\ &= & (15,-135,-75,-27-\sqrt{-21}) & (g_3 \to g_3 + 3g_4) \\ &= & (15,-27-\sqrt{-21}) & (-135 \text{ and } -75 \text{ are multiples of } g_1 = 15) \,. \end{aligned}$$

Hence e.g. N = 15 and $\alpha = -27 - \sqrt{-21}$ will do.

- 11. See Problems Class.
- 12. (i) Put $\beta = 1 + \sqrt{-26}$. Note that β is irreducible in R. [If $\alpha (= a + b\sqrt{-26} \text{ with } a, b \in \mathbb{Z})$ is a proper, non-unit, divisor of β , then $N(\alpha) (= a^2 + 26b^2)$ must be a proper divisor of $N(\beta) = 27$ other than 1. So $a^2 + 26b^2 = 3$ or 9, giving b = 0, $\alpha = a = \pm 3$ and $\beta/\alpha = \pm (1 + \sqrt{-26})/3 \notin R$, a contradiction.]]

Now, denoting by \mathbf{g}_i the i-th generator in a given presentation of an ideal, we can deduce

$$J^{3} = (\beta, 3)_{R}^{2} (\beta, 3)_{R} = (\beta^{2}, 3\beta, 3^{2})_{R} (\beta, 3)_{R}$$

= $(\beta^{3}, 3\beta^{2}, 3^{2}\beta, 3^{3})_{R}$
= $\beta(\beta^{2}, 3\beta, 9, \bar{\beta})_{R} = \beta(-25 + 2\sqrt{-26}, 3 + 3\sqrt{-26}, 9, 1 - \sqrt{-26})_{R}$

 $= \beta(-23, 6, 9, 1 - \sqrt{-26})_R$, replace g_1 by $g_1 + 2g_4$ and g_2 by $g_2 + 3g_4$,

$$= \beta(1, 6, 9, 1 - \sqrt{-26})_R$$
, replace g_1 by $g_1 + 4g_2$

$$= \beta R = (\beta)_R.$$

since any ideal containing 1 is R. Thus J^3 is a principal ideal.

[Note that if an ideal I is generated by multiples of a given element x, say $I = (a_1x, \ldots, a_nx)_R$, one can only deduce that it is *contained* in the principal ideal $(x)_R$ but need not itself contain x; the latter still needs to be shown if equality is to be proved.]]

Now suppose that J were principal, i.e. $J = (\gamma)_R$ with $\gamma \in R$. Then $(\beta)_R = J^3 = (\gamma^3)_R$. So $\beta = u\gamma^3$ where $u \in R^{\times}$.

This is impossible, since β is irreducible.

Conclusion: J is not principal.

(ii) Again, suppose, for a contradiction, that J^2 were principal, say $J^2 = (\delta)_R$.

Then $(\delta^3)_R = (\delta)_R^3 = J^6 = (\beta)_R^2 = (\beta^2)_R$ with β as in (i). So $\delta^3 = u\beta^2$, for some unit $u \in R^{\times}$.

And, hence, $(\delta \bar{\delta})^3 = (N(\beta))^2 = 3^6$, and $N(\delta) = 9$.

But $\beta \in J^3 \subseteq J^2 = (\delta)_R$.

Since $N(\delta) < N(\beta)$, δ is a proper divisor of the irreducible β but is not a unit. There are no such elements δ .

Conclusion: J^2 is not principal. (There are many ways to show this.)

(iii) Consider $\phi : \mathbb{Z}[\sqrt{-26}] \to \mathbb{Z}_3$, by $\phi : a + b\sqrt{-26} \mapsto a - b \mod 3$. Note that the coefficient in front of b on the RHS has to be a square root of -26, viewed mod 3, i.e. has to be a residue r which satisfies $r^2 \equiv -26 \pmod{3}$.

Claim: ϕ is a ring homomorphism:

• $\phi(1) = \phi(1 + 0\sqrt{-26}) = 1 \mod 3$. [[We can usually drop this check.]]

•
$$\phi((a+b\sqrt{-26}) + (a'+b'\sqrt{-26})) = \phi((a+a')+(b+b')\sqrt{-26}))$$

= $a+a'-(b+b') \mod 3$
= $a-b+a'-b' \mod 3$
= $\phi(a+b\sqrt{-26}) + \phi(a'+b'\sqrt{-26}).$

•
$$\phi((a + b\sqrt{-26})(a' + b'\sqrt{-26})) = \phi((aa' - 26bb') + (a'b + ab')\sqrt{-26})$$

 $= aa' - 26bb' - (a'b + ab') \mod 3$
 $= (a - b)(a' - b') \mod 3$
 $= \phi(a + b\sqrt{-26})\phi(a' + b'\sqrt{-26}).$

So ϕ is a ring homomorphism.

Claim: ker $\phi = J$. Now $\phi(3) = 0 = \phi(1 + \sqrt{-26})$ whence 3 and $1 + \sqrt{-26}$ lie in ker ϕ . So $J = (3, 1 + \sqrt{-26})_R \subseteq \ker \phi$. On the other hand, if $\alpha = a + b\sqrt{-26} \in \ker \phi$ then $a - b \equiv 0 \mod 3$, say a = b + 3t, with $t \in \mathbb{Z}$.

So $\alpha = 3t + b(1 + \sqrt{-26}) \in (3, 1 + \sqrt{-26})_R = J.$

Hence ker $\phi \subseteq J$ and so ker $\phi = J$.

Now ϕ is clearly surjective with image \mathbb{Z}_3 . So, by the first isomorphism theorem for rings, $R/J \cong \mathbb{Z}_3$, a field. And hence J is maximal, as required.