Michaelmas 2012, NT III/IV, Problem Sheet 3.

1. Let $J=(2,1+\sqrt{-3})_{R}$ where $R=\mathbb{Z}[\sqrt{-3}]$. Show that
(i) the $\operatorname{map} f: R \rightarrow \mathbb{Z}_{2}$, defined by $f(a+b \sqrt{-3})=a+b \bmod 2$, is a ring homomorphism with kernel J. Deduce that J is a maximal ideal of R.
(ii) $J^{2}=(2)_{R} J$ yet $J \neq(2)_{R}$. 【This shows that we cannot always just "cancel" factors in products of ideals.】
(iii) if $\alpha \in R$ is such that $\alpha J \subseteq(2)_{R}$ then $\alpha \in J$.
(iv) with the obvious definition of an ideal being divisible by another, J does not divide $(2)_{R}$ even though $J \supseteq(2)_{R}$.
2. (a) Let d be a positive integer such that $\sqrt{d} \notin \mathbb{Q}$. Let $R=\mathbb{Z}[\sqrt{d}]$ and define the map $\varphi: R \rightarrow \mathbb{Z}$ by $\varphi(a+b \sqrt{d})=\left|a^{2}-d b^{2}\right|($ for $a, b \in \mathbb{Z})$. Show that φ satisfies the following three conditions:
(i) φ is multiplicative, i.e., $\varphi(\alpha \beta)=\varphi(\alpha) \varphi(\beta)$;
(ii) $\varphi(\alpha)=0 \quad \Rightarrow \quad \alpha=0$;
(iii) $\varphi(\alpha)=1 \quad \Rightarrow \quad \alpha \in R^{*}$ (i.e., α is a unit).
(b) Show that a function which satisfies the above three conditions (i)(iii) also satisfies the following
$\forall \beta, \gamma \in R \backslash\{0\}$ and $\beta \notin R^{*}$ we have $\varphi(\beta \gamma)>\varphi(\gamma)$.
(c) Show that in an integral domain, in which (1) holds, every element can be factorised into irreducibles.
3. Show that φ is a Euclidean norm on R in the following cases
(a) (i) $R=\mathbb{Q}[X], \varphi(f(X))=\operatorname{deg}(f(X))$ if $f(X) \neq 0$;
(ii) $R=\mathbb{Z}[i], \varphi(\alpha)=|\alpha|^{2}$;
(iii) $R=\mathbb{Z}[\sqrt{3}], \varphi(a+b \sqrt{3})=\left|a^{2}-3 b^{2}\right|$ if a and $b \in \mathbb{Z}$.
(b) With R and φ as in the corresponding part of (a), find a $\gamma \in R$ such that $\varphi(\beta-\alpha \gamma)<\varphi(\alpha)$ where
(i) $\alpha=X^{3}-1, \beta=X^{4}+X^{2}+6$;
(ii) $\alpha=4+5 i, \beta=15+8 i$;
(iii) $\alpha=1+3 \sqrt{3}, \beta=5-9 \sqrt{3}$.
4. Let R be the subring $\left\{\sum_{j=1}^{s} a_{j} 2^{r_{j}} \mid s \in \mathbb{Z}^{>0}, r_{j} \in \mathbb{Q}^{\geq 0}, a_{j} \in \mathbb{Z}\right\}$ of \mathbb{R} and let P be its subgroup $\left\{\sum_{j=1}^{s} a_{j} 2^{r_{j}} \mid s \in \mathbb{Z}^{>0}, r_{j} \in \mathbb{Q}^{>0}, a_{j} \in \mathbb{Z}\right\}$. Show that
(i) $P^{2}=P$,
(ii) P is a maximal ideal of R and
(iii) $R=P \cup(1+P)$.
5. Using the first isomorphism theorem for rings from Algebra II, or otherwise, show that $\mathbb{Q}[\sqrt{5}]$ is a field isomorphic to $\mathbb{Q}[X] /\left(X^{2}-5\right)$.
6. Let F be an extension of a field K with basis $\left\{\gamma_{1}, \ldots, \gamma_{n}\right\}$ over K.

Show that, for any $\gamma \in F^{*},\left\{\gamma \gamma_{1}, \ldots, \gamma \gamma_{n}\right\}$ is also a K-basis for F.
7. Let α be an (irrational) algebraic number and let a, b, c and d be rational numbers such that $a d \neq b c$. Show that $\mathbb{Q}[(a \alpha+b) /(c \alpha+d)]=\mathbb{Q}[\alpha]$.
8. Let K be an extension of \mathbb{Q} of prime degree p and suppose that $\alpha \in K \backslash \mathbb{Q}$. Use the Tower Theorem to show that $|\mathbb{Q}[\alpha]: \mathbb{Q}|=p$ (and hence that $K=\mathbb{Q}[\alpha])$.
9. Find $|\mathbb{Q}[\alpha]: \mathbb{Q}|$ when α is (i) $\sqrt{7}$ (ii) $\sqrt[3]{5}+2$, (iii) $e^{2 \pi i / 5}$ (a fifth root of 1).
10. Let p and q be coprime integers, where p is not a square. Show that the minimum polynomial of \sqrt{p} over $\mathbb{Q}[\sqrt{q}]$ is $X^{2}-p$.

