
Michaelmas 2012, NT III/IV, Solutions to Problem Sheet 3.

1 (i) Define φ : Z[
√
−3] → Z2, by φ : a + b

√
−3 7→ (a + b) (mod 2). We will write,

for a ∈ Z, the class of a in Z2 by ā (not to be confused with the “conjugation” in
Z[
√
−3], which we don’t use here).

Claim: φ is a ring homomorphism:

1) φ(1) = φ(1 + 0
√
−3) = 1̄ . [[ We can usually drop this check. ]]

2)

φ((a + b
√
−3) + (a′ + b′

√
−3) = φ((a + a′) + (b + b′)

√
−3))

= a + a′ + b + b′ = a + b + [a′ + b′

= φ(a + b
√
−3) + φ(a′ + b′

√
−3).

3)

φ((a + b
√
−3)(a′ + b′

√
−3)) = φ((aa′ − 3bb′) + (a′b + ab′)

√
−3)

= aa′ − 3bb′ + a′b + ab′ = aa′ + bb′ + a′b + ab′

= (a + b)(a′ + b′) = φ(a + b
√
−3)φ(a′ + b′

√
−3).

So φ is a ring homomorphism.

Claim: kerφ = J .

Now φ(2) = 0 = φ(1 +
√
−3) whence 2 and 1 +

√
−3 and hence any R−-linear

combinations thereof lie in kerφ. So J = (2, 1 +
√
−3)R ⊆ kerφ.

On the other hand, if α = a+b
√
−3 ∈ kerφ then a+b ≡ 0 mod 2, say a = −b+2t,

with t ∈ Z.
So α = 2(t − b) + b(1 +

√
−3) ∈ (2, 1 +

√
−3)R = J .

Hence kerφ ⊆ J and so kerφ = J .

Now φ is clearly surjective with image Z2. So, by the first isomorphism theorem,
R/J ∼= Z2, a field. And hence J is maximal, as required.

(ii) Denote by gi the i-th generator in a given presentation of an ideal.

J2 = (2, 1 +
√
−3)2R = (4, 2(1 +

√
−3), 2(1 +

√
−3), (1 +

√
−3)2)

= (4, 2(1 +
√
−3),−2 + 2

√
−3) eliminate g3 (= g2),

= 2(2, 1 +
√
−3,−1 +

√
−3)R,

= 2(2, 1 +
√
−3,−2)R replace g3 by g3 − g2,

= 2(2, 1 +
√
−3)R eliminate g3 (= −g1)

= 2J = (2)RJ.

But J 6= (2)R, otherwise 2 | (1 +
√
−3) and (1 +

√
−3)/2 ∈ R, which is not the

case.

(iii) Suppose α = a + b
√
−3 ∈ R and αJ ⊆ (2)R = 2R.

Then, in particular, α(1 +
√
−3) = a − 3b + (a + b)

√
−3 lies in 2R. So 2 | (a + b)

and φ(α) = 0.

So α ∈ kerφ = J .

(iv) Certainly, J = (2, 1 +
√
−3)R ⊇ (2)R.

But suppose J | (2)R, which should be interpreted as saying that there is an ideal
I in R such that IJ = (2)R. [[ Note that I need not necessarily be principal. ]]
But then, for all α ∈ I, we would have αJ ∈ (2)R, and so, by (iii), α ∈ J .
Thus I ⊆ J and so 2R = IJ ⊆ J2 = 2J (⊆ 2R).
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Now 2 ∈ 2R = 2J . So 2 = 2β for some β ∈ J . But then 1 = β ∈ J and hence
J = R.
But J 6= R since, by (i), R/J is non-trivial.

So J does not divide (2)R.

2 (a) It is clear that ϕ : R → Z≥0. So it remains to show that, for α, β ∈ R,

(i) ϕ(αβ) = ϕ(α)ϕ(β);
(ii) ϕ(α) = 0 =⇒ α = 0;
(iii) ϕ(α) = 1 =⇒ α ∈ R∗.

So let α = r + s
√

d and β = t + u
√

d (with r, s, t, u ∈ Z). Then

ϕ(αβ) = ϕ(rt + sud + (ru + st)
√

d) = |(rt + sud)2 − (ru + st)2d|
= |r2t2 + s2u2d2 − r2u2d − s2t2d|, the cross terms cancelling.

And so ϕ(α)ϕ(β) = |(r2−ds2)(t2−du2)| = |r2t2+s2u2d2−r2u2d−s2t2d| = ϕ(αβ).

And we have (i).

Again, suppose that ϕ(α) = 0. Then r2 = ds2.

If s 6= 0 then d = r2/s2 and
√

d = ±r/s ∈ Q, a contradiction.
So s = 0 whence r = 0 and α = 0. And we have (ii).

Finally, if ϕ(α) = 1 then 1 = ±(r2 − ds2) = ±(r − s
√

d)α. So α ∈ R∗.

(b) For β /∈ R×, β 6= 0 we have ϕ(β) > 1. Now multiply both sides by ϕ(γ).

(c) We can ignore the “stupid” case α = 0.
Moreover, any α ∈ R× (i.e. a unit) is indeed an empty (hence certainly finite)

product of irreducibles, multiplied by a unit.
For any other α /∈ R×, we have ϕ(α) > 1, and so we can use induction on ϕ(α),

reducing it to smaller factors. (We had a similar argument in the lectures.)

3 (i) R = Q[X ]:

(a) Define ϕ : R → Z≥0 by ϕ(0) = 0 and ϕ(γ) = deg(γ) + 1, if γ 6= 0.

Given α, β ∈ R with α 6= 0 we must show that there is a γ ∈ R such that

ϕ(β − αγ) < ϕ(α).

If α ∈ Q then we need only take γ = βα−1 (since α 6= 0).

If α /∈ Q then, by long division of polynomials, we can find γ ∈ R such that

deg(β − αγ) < deg(α)

and then ϕ(β − αγ) < ϕ(α), as required.

So ϕ is Euclidean and R is a Euclidean ring.

(b) (Take γ = X).

(ii) R = Z[i]:

(a) Define ϕ : R → Z≥0 by ϕ(γ) = γγ̄ = |γ|2.
Take α, β ∈ R with α 6= 0. We must show that there is a γ ∈ R such that

ϕ(β − αγ) < ϕ(α).

Now
β

α
=

βα̃

αα̃
= x + yi for some x and y in Q (since αα̃ ∈ N).

Choose γ = m + in ∈ R where m = ⌊x + 1

2
⌋ and n = ⌊y + 1

2
⌋. (Here ⌊x⌋, for some

x ∈ R, denotes the largest integer smaller or equal to x.)
Then, with r = x − m and s = y − n, we have |r| and |s| ≤ 1

2
.
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So

ϕ(β − αγ) = ϕ((β/α − γ)α) = ϕ(β/α − γ)ϕ(α)

= ϕ(r + si)ϕ(α) = (r2 + s2)ϕ(α)

≤
(1

4
+

1

4

)
ϕ(α)

< ϕ(α),

as required.

Hence ϕ is Euclidean and R is a Euclidean ring.

(b) With α = 4 + 5i and β = 15 + 8i,

β

α
=

(15 + 8i)(4 − 5i)

42 + 52
=

100 − 43i

41
.

Choosing γ as above we find γ = 2 − i.

Checking: (β − αγ) = 15 + 8i − (4 + 5i)(2 − i) = 2 + 2i.
And so ϕ(β − αγ) = 4 + 4 = 8 < 41 = ϕ(α), as required.

(iii) R = Z[
√

3]:

(a) Define ϕ : Q[
√

3] → Q by ϕ(a + b
√

3) = |a2 − 3b2| (for a, b ∈ Q).

If α = a + b
√

3 ∈ R then a and b ∈ Z, and so

ϕ(α) = |a2 − 3b2| ∈ Z≥0.

Moreover, ϕ(αβ) = ϕ(α)ϕ(β).

Take α, β ∈ R with α 6= 0. We must show that there is a γ ∈ R such that

ϕ(β − αγ) < ϕ(α).

Now αã ∈ Z and ã 6= 0 (since : R → R, a + b
√

3 7→ a − b
√

3 is injective).

So
β

α
=

βã

αã
= x + y

√
3 for some x and y in Q.

Choose γ = m + n
√

3 ∈ R where m = [x + 1

2
] and n = [y + 1

2
].

Then, with r = x − m and s = y − n, we have |r| and |s| ≤ 1

2
.

So

ϕ(β − αγ) = ϕ((β/α − γ)α) = ϕ(β/α − γ)ϕ(α)

= ϕ(r + s
√

3)ϕ(α) = |r2 − 3s2|ϕ(α) ≤ max(r2, 3s2)ϕ(α)

≤ 3

4
ϕ(α)

< ϕ(α),

as required.

Hence ϕ is Euclidean and R is a Euclidean ring.

(b) With α = 1 + 3
√

3 and β = 5 − 9
√

3,

β

α
=

(5 − 9
√

3)(1 − 3
√

3)

1 − 27
=

86 − 24
√

3

−26
=

−43 + 12
√

3

13

Choosing γ as above we find γ = −3 +
√

3.

Checking: (β − αγ) = 5 − 9
√

3 − (1 + 3
√

3)(−3 +
√

3) = −1 −
√

3.
And so ϕ(β − αγ) = |1 − 3| = 2 < 26 = ϕ(α), as required.
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4 (i) It is clear that P is an additive subgroup of R. Moreover, multiplying two
monomials a · 2r and b · 2t in P , i.e., with a, b ∈ Z and r, t ∈ Q>0 produces another
such monomial ab · 2r+t. Hence, multiplying sums of such monomials gives us also
sums of the same type, which shows that P 2 ⊆ P .

On the other hand, each element π =
∑s

j=1
aj2

rj in P can be written as a
product of other elements in P : take r ∈ Q such that 0 < r < rj for all r = 1, . . . , s.
Then 2r and

∑s
j=1

aj2
rj−r are both in P and their product is simply π. Hence

P ⊆ P 2.

(ii) Use that any element in R can be written—after combining terms in the form∑s
j=1

aj2
rj with aj odd for all j, where the rj are mutually different. In fact, we can

order the terms with respect to their exponents, i.e., such that r1 < r2 < · · · < rs,
where r1 can attain the value 0.

Similarly any element in P can be written in that form, with the extra condition
that r1 > 0, since all the exponents have to be strictly greater than 0.

Now multiplying π ∈ P and ρ ∈ R gives πρ with all exponents > 0, i.e. lying in
P , whence P is an ideal in R.

Hence an element ρ ∈ R can be written as ρ = odd integer ·20 +something in P ,
so R \ P consists of the odd integers. But the ideal generated by P and any odd
integer generates 1 ∈ R (since the even integers are in P ), and hence generates R
itself.

Therefore P is maximal.

(iii) Follows from the considerations in (ii), since all even integers are in P and
1 + P ⊇ 1 + 2Z, which contains (in fact equals) R \ P .

5 (Straightforward from Algebra II, intended as a reminder only.)

6 Suppose
∑n

j=1
ljγγj = 0, for some l1, . . . , ln ∈ K.

Then
∑n

j=1
ljγj = γ−1

∑n
j=1

ljγγj = 0, since γ ∈ F ∗.

So lj = 0 for every j (since {γ1, . . . , γn} is linearly independent over K).

Thus {γγ1, . . . , γγn} is linearly independent over K.

So, since {γγ1, . . . , γγn} ⊂ F and |F : K| = n,

{γγ1, . . . , γγn} is a basis for F over K.

7 Put l = (aα + b)/(cα + d). Clearly we have Q[l] = Q[(aα + b)/(cα + d)] ⊆ Q[α].
(Here we’ve used that Q[α] is a field, since α is an algebraic number.)

We must show that Q[α] ⊆ Q[l].

Now l(cα + d) = (aα + b); so α(cl − a) = (−dl + b).
But cl − a = c(aα + b)/(cα + d) − a = (cb − ad)/(cα + d) 6= 0.
Thus α = (−dl + b)/(cl − a) ∈ Q[l].

Thus Q[α] ⊆ Q[l].

8 Now K ⊇ Q[α] ⊇ Q.
We have |Q[α] : Q| divides |K : Q[α]| · |Q[α] : Q| = |K : Q| = p by the Tower
Theorem,.
So |Q[α] : Q| = 1 or p. But |Q[α] : Q| 6= 1 (else α ∈ Q).

So |Q[α] : Q| = p.

9 (i) Put q(X) = X2 − 7. Then q(X) is irreducible in Q[X ] by Eisenstein’s Criterion

with prime 7.
Since q(

√
7) = 0, q(X) is the min. poly. of

√
7 in Q[X ].

Thus, |Q[
√

7] : Q| = deg q(X) = 2.

(ii) Note that 3
√

5 ∈ Q[ 3
√

5 + 2] and that 3
√

5 + 2 ∈ Q[ 3
√

5].
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So Q[ 3
√

5] ⊆ Q[ 3
√

5 + 2], Q[ 3
√

5 + 2] ⊆ Q[ 3
√

5] and Q[ 3
√

5 + 2] = Q[ 3
√

5].

Now q(X) = X3 − 5 is irreducible in Q[X ] by Eisenstein’s Criterion with prime 5.

Since q( 3
√

5) = 0, q(X) is the min. poly. of 3
√

5 in Q[X ].

Thus |Q[ 3
√

5 + 2] : Q| = |Q[ 3
√

5] : Q| = deg q(X) = 3.

(iii) Let α = e2πi/5. Note that (cf. (ii)) Q[α] = Q[α − 1].
Put β = α−1 (6= 0). Then 1 = α5 = (β +1)5 = β5 +5β4 +10β3 +10β2 +5β +1.
So β4 + 5β3 + 10β2 + 10β + 5 = (β5 + 5β4 + 10β3 + 10β2 + 5β)/β = 0.
Thus q(X) = X4 + 5X3 + 10X2 + 10X + 5 is the min. poly. of β over Q since it

is irreducible in Q[X ] by Eisenstein’s Criterion with prime 5.
Thus |Q[α] : Q| = |Q[β] : Q| = deg q(X) = 4.

10 We illustrate the idea for p = 7, q = 2, leaving the general case as a minor transfer
exercise (the case ab = 0 then needs a slightly different argument).

Put K = Q[
√

2]. We claim that
√

7 /∈ K.

For suppose that
√

7 ∈ K then
√

7 = a + b
√

2 for some a, b ∈ Q.
Then 7 = a2 + 2b2 + 2ab

√
2.

If ab 6= 0 then
√

2 = (7 − a2 − 2b2)/2ab ∈ Q. Contradiction.
But if ab = 0 then 7 = a2 + 2b2 and this has no integer solution. Contradiction.
Thus

√
7 /∈ K and so X2 − 7 has no roots in K.

Hence X2 − 7 is irreducible in K[X ] and is therefore the min. poly. of
√

7 over K


