Michaelmas 2012, NT III/IV, Solutions to Problem Sheet 3.

1 (i) Define ¢ : Z[\/—3] — Za, by ¢ : a + by/—3 — (a+b) (mod 2). We will write,
for a € Z, the class of a in Zy by a (not to be confused with the “conjugation” in
Z[+/—3], which we don’t use here).

Claim: ¢ is a ring homomorphism:

1) ¢(1) = ¢(1 +04/=3) = 1. [We can usually drop this check.]

2)
$((a+b0V=3)+(a' +V'V=3) = ¢((a+d)+(b+V)V=3))
=a+d +b+V = a+b+[d+V
= é(a+bv/=3)+ d(a' +b'V=3).
3)

d((a +byv/=3)(a’ +1'v/=3)) o((aa’ — 3bb') + (a'b+ ab’)v/—3)
= aa’ — 3bV + a’b + al/ aa’ 4 bb' + a’b + al/
=(a+b)(@ +V) = ¢a+bvV=3)p(a’ +b'V=3).
So ¢ is a ring homomorphism.
Claim: ker¢ = J.
Now ¢(2) = 0 = ¢(1 + v/—3) whence 2 and 1 + /=3 and hence any R—-linear
combinations thereof lie in ker ¢. So J = (2,1 + v/=3)r C ker ¢.

On the other hand, if « = a+bv/—3 € ker ¢ then a+b =0 mod 2, say a = —b+ 2t,
with t € Z.
Soa=2(t—-b)+b(1++v-3)e(2,1+/-3)r=J.

Hence ker ¢ C J and so ker ¢ = J.

Now ¢ is clearly surjective with image Zs. So, by the first isomorphism theorem,
R/J 2 75, a field. And hence J is maximal, as required.

(ii) Denote by g; the i-th generator in a given presentation of an ideal.
J2 = (2,1+V=-3)% = (4,2(1+V=3),2(1 +V=3), (1 +V-3)?)
= (4,2(1++v-3),—-2+2v-3) eliminate g3 (= g2),
= 2(2,1+v=3,-1+v=3)r,
= 2(2,1++v-3,-2)r replace g3 by g3 — g2,
= 2(2,1+v-3)r eliminate gz (= —g1)
= 2J=(2)rJ.
But J # (2)g, otherwise 2 | (1 ++1/—3) and (1 + +/—3)/2 € R, which is not the
case.
(iii) Suppose @ = a + bv/—3 € R and aJ C (2)g = 2R.
Then, in particular, a(1 ++/—3) = a —3b+ (a + b)v/—3 lies in 2R. So 2 | (a + b)
and ¢(a) = 0.
So a € ker¢ = J.
(iv) Certainly, J = (2,1 4+ +v—3)r 2 (2)g.
But suppose J | (2)g, which should be interpreted as saying that there is an ideal
I in R such that IJ = (2)g. [Note that I need not necessarily be principal. |
But then, for all « € I, we would have aJ € (2)g, and so, by (iii), « € J.

Thus I C J and so 2R = IJ C J? =2J (C 2R).
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Now 2 € 2R = 2J. So 2 = 20 for some g € J. But then 1 = 8 € J and hence
J=R.
But J # R since, by (i), R/J is non-trivial.

So J does not divide (2)g.

(a) It is clear that ¢ : R — Z=°. So it remains to show that, for o, 8 € R,

(i) p(aB) = p(a)e(B);
(ii)) p(a) =0 = a=0;
(ili) pla) =1 = a€R"
Solet @ =r+svdand f=t+uvd (withr s t,uc Z). Then

o(aB) = @(rt + sud + (ru + st)V/d) = |(rt + sud)? — (ru + st)%d|
= [r?t? + su?d?® — r?u®d — s*t%d|, the cross terms cancelling.

And so p(a)p(B) = |(r? —ds?)(t? —du?)| = |r*t? + s2u?d? — r*u?d — s*t3d| = ¢(ap).
And we have (i).

Again, suppose that ¢(a) = 0. Then 7? = ds?.

If s # 0 then d = r?/s? and Vd = +r/s € Q, a contradiction.
So s =0 whence » = 0 and @ = 0. And we have (ii).

Finally, if o(a) = 1 then 1 = (12 — ds?) = +(r — sv/d)a. So o € R*.
(b) For 8 ¢ R*, 3 # 0 we have ¢(3) > 1. Now multiply both sides by ¢(7v).

(¢) We can ignore the “stupid” case a = 0.

Moreover, any o € R* (i.e. a unit) is indeed an empty (hence certainly finite)
product of irreducibles, multiplied by a unit.

For any other a ¢ R*, we have p(a) > 1, and so we can use induction on ¢(«),
reducing it to smaller factors. (We had a similar argument in the lectures.)

(i) R = Q[X]:
(a) Define ¢ : R — Z=° by ¢(0) = 0 and ¢(v) = deg(y) + 1, if v # 0.
Given a, 8 € R with a # 0 we must show that there is a 7 € R such that
p(B —av) < p(a).
If o € Q then we need only take v = Ba~! (since a # 0).
If o ¢ Q then, by long division of polynomials, we can find v € R such that
deg(f8 — ay) < deg(a)
and then ¢(8 — ay) < ¢(a), as required.
So ¢ is Euclidean and R is a Euclidean ring.
(b) (Take v = X).
(ii) R = Z[1]:
(a) Define ¢ : R — Z=° by ¢(y) =7 = [y/*.
Take «, 6 € R with « # 0. We must show that there is a v € R such that
o8 —av) < p(a).
B _ pa

Now = = — = z + yi for some z and y in Q (since aa € N).
a  ad

Choose v =m +in € R where m = [+ 1] and n = |y + 3|. (Here |z], for some
x € R, denotes the largest integer smaller or equal to x.)
Then, with 7 =2 —m and s =y — n, we have |r| and |s| < 3.



So
p(B—ay) = e(B/a—-7)a)=pB/a—"7)p(a)
= o(r+si)p(a) = (r* + 5%)p(a)
11
(1 1) p(a)
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as required.

Hence ¢ is Euclidean and R is a Euclidean ring.

(b) With « = 4+ 5¢ and 8 = 15 + 8,
B8 _ (15 +8i)(4 —5i) 100 — 43i
a 42 4 52 41
Choosing v as above we find v =2 — .

Checking: (8 —ay) =154+8i— (4 +5i)(2 —4) =2+ 2i.
And so (8 — ay) =4+ 4 =8 < 41 = p(a), as required.

(iii) R = Z[V/3]:
(a) Define ¢ : Q[v3] — Q by p(a + bv/3) = |a? — 3b?| (for a,b € Q).
If « =a+ b3 € R then a and b € Z, and so
o(a) = |a® — 3b?| € Z2°,
Moreover, p(af) = ¢(a)p(B).
Take o, 8 € R with o # 0. We must show that there is a v € R such that
p(8—ay) < ¢(a).
Now ag S Zgnd a#0 (since-: R— R, a+ V3 — a— b3 is injective).

So—zﬂ—g:x—l—y\/gforsomexandyin(@.
o  aa

Choose ¥ = m +nv3 € R where m = [z + ] and n = [y
Then, with r = 2 — m and s = y — n, we have |r| and |s|

So

+%1].
S5

p(B—ay) = e((B/a—-7)a)=pB/a—"7)p(a)
o(r+ sV3)p(a) = [r* — 3s%|p(er) < max(r?, 3s%)p(cv)

%s@(a)

p(a),

IAN

A

as required.

Hence ¢ is Euclidean and R is a Euclidean ring.

(b) With o = 14 3v/3 and 3 = 5 — 9V/3,
B (5-9V3)(1-3v3) 86—24v3 —43+12V3

a 1-27 =26 13
Choosing v as above we find v = —3 + /3.
Checking: (8 —a7y) =5—-9v3— (1+3v3)(=3+V3) = -1 - 3.
And so (8 — ay) = |1 — 3| =2 < 26 = p(«), as required.
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4 (i) It is clear that P is an additive subgroup of R. Moreover, multiplying two
monomials a-2" and b-2% in P, i.e., with a, b € Z and r, t € Q~° produces another
such monomial ab - 2"T¢. Hence, multiplying sums of such monomials gives us also
sums of the same type, which shows that P? C P.

On the other hand, each element m = Z;Zl a;2" in P can be written as a
product of other elements in P: take r € Q such that 0 < r <r;forallr =1,...,s.
Then 2" and Z;:l a2 7" are both in P and their product is simply 7. Hence
P C P2
(ii) Use that any element in R can be written—after combining terms in the form
ijl a;2" with a; odd for all j, where the r; are mutually different. In fact, we can
order the terms with respect to their exponents, i.e., such that ry < re < - < rg,
where r1 can attain the value 0.

Similarly any element in P can be written in that form, with the extra condition
that r; > 0, since all the exponents have to be strictly greater than 0.

Now multiplying m € P and p € R gives mp with all exponents > 0, i.e. lying in
P, whence P is an ideal in R.

Hence an element p € R can be written as p = odd integer - 2% 4+ something in P,
so R\ P consists of the odd integers. But the ideal generated by P and any odd
integer generates 1 € R (since the even integers are in P), and hence generates R
itself.

Therefore P is maximal.

(iii) Follows from the considerations in (ii), since all even integers are in P and
14+ P D 1+ 2Z, which contains (in fact equals) R\ P.

5 (Straightforward from Algebra II, intended as a reminder only.)

6 Suppose > 7, l;yy; =0, for some Iy, ..., I, € K.

Then 377, Ly =" 220, Ly = 0, since v € F*.

So l; = 0 for every j (since {y1,...,7n} is linearly independent over K).
Thus {y71,...,YYn} is linearly independent over K.

So, since {yy1,...,YV} C F and |F : K| =n,
{¥71,---,7n} is a basis for F over K.

7 Putl = (aa+b)/(ca+d). Clearly we have Q[l] = Q[(aa + b)/(ca + d)] C Qla].
(Here we’ve used that Q[a] is a field, since « is an algebraic number.)

We must show that Qo] C Q[I].
Now Il(ca + d) = (ac + b); so afcl — a) = (—dl + b).
But ¢l —a = claa +b)/(ca+d) —a = (cb — ad)/(ca + d) # 0.
Thus a = (—dl +b)/(cl — a) € Q[l].
Thus Qla] C Q[
8 Now K 2 Qo] 2 Q.
We have |Q[a] : Q| divides |K : Q[a]| - |Q[o] : Q| = |K : Q| = p by the Tower
Theorem,.
So |Q[e] : Q| =1 or p. But |Q[a] : Q] # 1 (else « € Q).
So |Q[«¢] : Q| = p.
9 (i) Put ¢(X) = X2 — 7. Then ¢(X) is irreducible in Q[X] by Eisenstein’s Criterion
with prime 7.
Since ¢(v/7) = 0, ¢(X) is the min. poly. of /7 in Q[X].
Thus, [Q[v7] : Q| = degg¢(X) = 2.
(ii) Note that V/5 € Q[v/5 + 2] and that /5 + 2 € Q[V/5].



So Q[V/5] € Q[V/5 +2], Q[V/5 + 2] € Q[V/5] and Q[V/5 + 2] = Q[V/].
Now ¢(X) = X3 — 5 is irreducible in Q[X] by Eisenstein’s Criterion with prime 5.
Since ¢(v/5) = 0, ¢(X) is the min. poly. of ¥/5 in Q[X].
Thus |Q[V/5 + 2] : Q| = |Q[V/5] : Q| = degg(X) = 3.
(iii) Let a = €2™/5. Note that (cf. (ii)) Qo] = Qo — 1].
Put 3=a—1(#0). Then1=a® = (8+1)° = 8> +58*+1083+108% + 58+ 1.
So p* + 563 +1068% + 108+ 5 = (B° +58* + 103 + 1082 +53) /3 = 0.
Thus ¢(X) = X*+5X3+10X2 + 10X + 5 is the min. poly. of 3 over Q since it
is irreducible in Q[X] by Eisenstein’s Criterion with prime 5.

Thus [Q[a] : Q| = Q[4] : Q| = degq(X) = 4.

10 We illustrate the idea for p = 7, ¢ = 2, leaving the general case as a minor transfer
exercise (the case ab = 0 then needs a slightly different argument).
Put K = Q[v2]. We claim that /7 ¢ K.
For suppose that V7 € K then V7 = a + bv/2 for some a,b € Q.
Then 7 = a? + 2b + 2abv/2.
If ab # 0 then v/2 = (7 — a® — 2b?)/2ab € Q. Contradiction.
But if ab = 0 then 7 = a? + 2b and this has no integer solution. Contradiction.
Thus /7 ¢ K and so X2 — 7 has no roots in K.

Hence X2 — 7 is irreducible in K[X] and is therefore the min. poly. of v/7 over K



