Michaelmas 2012，NT III／IV，Solutions to Problem Sheet 3.

1 （i）Define $\phi: \mathbb{Z}[\sqrt{-3}] \rightarrow \mathbb{Z}_{2}$ ，by $\phi: a+b \sqrt{-3} \mapsto(a+b)(\bmod 2)$ ．We will write， for $a \in \mathbb{Z}$ ，the class of a in \mathbb{Z}_{2} by \bar{a}（not to be confused with the＂conjugation＂in $\mathbb{Z}[\sqrt{-3}]$ ，which we don＇t use here）．
Claim：ϕ is a ring homomorphism：
1）$\phi(1)=\phi(1+0 \sqrt{-3})=\overline{1}$ ．【We can usually drop this check．】
2）

$$
\begin{aligned}
\phi\left((a+b \sqrt{-3})+\left(a^{\prime}+b^{\prime} \sqrt{-3}\right)\right. & \left.=\phi\left(\left(a+a^{\prime}\right)+\left(b+b^{\prime}\right) \sqrt{-3}\right)\right) \\
=\overline{a+a^{\prime}+b+b^{\prime}} & =\overline{a+b}+\left[\overline{a^{\prime}+b^{\prime}}\right. \\
& =\phi(a+b \sqrt{-3})+\phi\left(a^{\prime}+b^{\prime} \sqrt{-3}\right) .
\end{aligned}
$$

3）

$$
\begin{aligned}
\phi\left((a+b \sqrt{-3})\left(a^{\prime}+b^{\prime} \sqrt{-3}\right)\right) & =\phi\left(\left(a a^{\prime}-3 b b^{\prime}\right)+\left(a^{\prime} b+a b^{\prime}\right) \sqrt{-3}\right) \\
=\overline{a a^{\prime}-3 b b^{\prime}+a^{\prime} b+a b^{\prime}} & =\overline{a a^{\prime}+b b^{\prime}+a^{\prime} b+a b^{\prime}} \\
=\overline{(a+b)\left(a^{\prime}+b^{\prime}\right)} & =\phi(a+b \sqrt{-3}) \phi\left(a^{\prime}+b^{\prime} \sqrt{-3}\right) .
\end{aligned}
$$

So ϕ is a ring homomorphism．
Claim： $\operatorname{ker} \phi=J$ ．
Now $\phi(2)=0=\phi(1+\sqrt{-3})$ whence 2 and $1+\sqrt{-3}$ and hence any R－－linear combinations thereof lie in ker ϕ ．So $J=(2,1+\sqrt{-3})_{R} \subseteq \operatorname{ker} \phi$ ．
On the other hand，if $\alpha=a+b \sqrt{-3} \in \operatorname{ker} \phi$ then $a+b \equiv 0 \bmod 2$ ，say $a=-b+2 t$ ， with $t \in \mathbb{Z}$ ．
So $\alpha=2(t-b)+b(1+\sqrt{-3}) \in(2,1+\sqrt{-3})_{R}=J$ ．
Hence $\operatorname{ker} \phi \subseteq J$ and so $\operatorname{ker} \phi=J$ ．
Now ϕ is clearly surjective with image \mathbb{Z}_{2} ．So，by the first isomorphism theorem， $R / J \cong \mathbb{Z}_{2}$ ，a field．And hence J is maximal，as required．
（ii）Denote by g_{i} the i－th generator in a given presentation of an ideal．

$$
\begin{aligned}
J^{2} & =(2,1+\sqrt{-3})_{R}^{2}=\left(4,2(1+\sqrt{-3}), 2(1+\sqrt{-3}),(1+\sqrt{-3})^{2}\right) \\
& =(4,2(1+\sqrt{-3}),-2+2 \sqrt{-3}) \quad \text { eliminate } g_{3}\left(=\mathrm{g}_{2}\right), \\
& =2(2,1+\sqrt{-3},-1+\sqrt{-3})_{R}, \\
& =2(2,1+\sqrt{-3},-2)_{R} \quad \text { replace } g_{3} \text { by } \mathrm{g}_{3}-\mathrm{g}_{2}, \\
& =2(2,1+\sqrt{-3})_{R} \quad \text { eliminate } \mathrm{g}_{3}\left(=-\mathrm{g}_{1}\right) \\
& =2 J=(2)_{R} J .
\end{aligned}
$$

But $J \neq(2)_{R}$ ，otherwise $2 \mid(1+\sqrt{-3})$ and $(1+\sqrt{-3}) / 2 \in R$ ，which is not the case．
（iii）Suppose $\alpha=a+b \sqrt{-3} \in R$ and $\alpha J \subseteq(2)_{R}=2 R$ ．
Then，in particular，$\alpha(1+\sqrt{-3})=a-3 b+(a+b) \sqrt{-3}$ lies in $2 R$ ．So $2 \mid(a+b)$ and $\phi(\alpha)=0$ ．

So $\alpha \in \operatorname{ker} \phi=J$ ．
（iv）Certainly，$J=(2,1+\sqrt{-3})_{R} \supseteq(2)_{R}$ ．
But suppose $J \mid(2)_{R}$ ，which should be interpreted as saying that there is an ideal I in R such that $I J=(2)_{R}$ ．【Note that I need not necessarily be principal．』
But then，for all $\alpha \in I$ ，we would have $\alpha J \in(2)_{R}$ ，and so，by（iii），$\alpha \in J$ ．
Thus $I \subseteq J$ and so $2 R=I J \subseteq J^{2}=2 J(\subseteq 2 R)$ ．

Now $2 \in 2 R=2 J$. So $2=2 \beta$ for some $\beta \in J$. But then $1=\beta \in J$ and hence $J=R$.
But $J \neq R$ since, by (i), R / J is non-trivial.
So J does not divide $(2)_{R}$.
2 (a) It is clear that $\varphi: R \rightarrow \mathbb{Z}^{\geq 0}$. So it remains to show that, for $\alpha, \beta \in R$,
(i) $\varphi(\alpha \beta)=\varphi(\alpha) \varphi(\beta)$;
(ii) $\varphi(\alpha)=0 \quad \Longrightarrow \alpha=0$;
(iii) $\varphi(\alpha)=1 \quad \Longrightarrow \alpha \in R^{*}$.

So let $\alpha=r+s \sqrt{d}$ and $\beta=t+u \sqrt{d} \quad$ (with $r, s, t, u \in \mathbb{Z}$). Then

$$
\begin{aligned}
& \varphi(\alpha \beta)=\varphi(r t+s u d+(r u+s t) \sqrt{d})=\left|(r t+s u d)^{2}-(r u+s t)^{2} d\right| \\
& \quad=\left|r^{2} t^{2}+s^{2} u^{2} d^{2}-r^{2} u^{2} d-s^{2} t^{2} d\right|, \text { the cross terms cancelling. }
\end{aligned}
$$

And so $\varphi(\alpha) \varphi(\beta)=\left|\left(r^{2}-d s^{2}\right)\left(t^{2}-d u^{2}\right)\right|=\left|r^{2} t^{2}+s^{2} u^{2} d^{2}-r^{2} u^{2} d-s^{2} t^{2} d\right|=\varphi(\alpha \beta)$.
And we have (i).
Again, suppose that $\varphi(\alpha)=0$. Then $r^{2}=d s^{2}$.
If $s \neq 0$ then $d=r^{2} / s^{2}$ and $\sqrt{d}= \pm r / s \in \mathbb{Q}$, a contradiction.
So $s=0$ whence $r=0$ and $\alpha=0$. And we have (ii).
Finally, if $\varphi(\alpha)=1$ then $1= \pm\left(r^{2}-d s^{2}\right)= \pm(r-s \sqrt{d}) \alpha$. So $\alpha \in R^{*}$.
(b) For $\beta \notin R^{\times}, \beta \neq 0$ we have $\varphi(\beta)>1$. Now multiply both sides by $\varphi(\gamma)$.
(c) We can ignore the "stupid" case $\alpha=0$.

Moreover, any $\alpha \in \mathbb{R}^{\times}$(i.e. a unit) is indeed an empty (hence certainly finite) product of irreducibles, multiplied by a unit.

For any other $\alpha \notin R^{\times}$, we have $\varphi(\alpha)>1$, and so we can use induction on $\varphi(\alpha)$, reducing it to smaller factors. (We had a similar argument in the lectures.)

3 (i) $R=\mathbb{Q}[X]$:
(a) Define $\varphi: R \rightarrow \mathbb{Z}^{\geq 0}$ by $\varphi(0)=0$ and $\varphi(\gamma)=\operatorname{deg}(\gamma)+1$, if $\gamma \neq 0$.

Given $\alpha, \beta \in R$ with $\alpha \neq 0$ we must show that there is a $\gamma \in R$ such that

$$
\varphi(\beta-\alpha \gamma)<\varphi(\alpha)
$$

If $\alpha \in \mathbb{Q}$ then we need only take $\gamma=\beta \alpha^{-1}$ (since $\alpha \neq 0$).
If $\alpha \notin \mathbb{Q}$ then, by long division of polynomials, we can find $\gamma \in R$ such that

$$
\operatorname{deg}(\beta-\alpha \gamma)<\operatorname{deg}(\alpha)
$$

and then $\varphi(\beta-\alpha \gamma)<\varphi(\alpha)$, as required.
So φ is Euclidean and R is a Euclidean ring.
(b) (Take $\gamma=X$).
(ii) $R=\mathbb{Z}[i]$:
(a) Define $\varphi: R \rightarrow \mathbb{Z} \geq 0$ by $\varphi(\gamma)=\gamma \bar{\gamma}=|\gamma|^{2}$.

Take $\alpha, \beta \in R$ with $\alpha \neq 0$. We must show that there is a $\gamma \in R$ such that

$$
\varphi(\beta-\alpha \gamma)<\varphi(\alpha)
$$

Now $\frac{\beta}{\alpha}=\frac{\beta \widetilde{\alpha}}{\alpha \widetilde{\alpha}}=x+y i$ for some x and y in $\mathbb{Q}($ since $\alpha \widetilde{\alpha} \in \mathbb{N})$.
Choose $\gamma=m+i n \in R$ where $m=\left\lfloor x+\frac{1}{2}\right\rfloor$ and $n=\left\lfloor y+\frac{1}{2}\right\rfloor$. (Here $\lfloor x\rfloor$, for some $x \in \mathbb{R}$, denotes the largest integer smaller or equal to x.)
Then, with $r=x-m$ and $s=y-n$, we have $|r|$ and $|s| \leq \frac{1}{2}$.

So

$$
\begin{aligned}
\varphi(\beta-\alpha \gamma) & =\varphi((\beta / \alpha-\gamma) \alpha)=\varphi(\beta / \alpha-\gamma) \varphi(\alpha) \\
& =\varphi(r+s i) \varphi(\alpha)=\left(r^{2}+s^{2}\right) \varphi(\alpha) \\
& \leq\left(\frac{1}{4}+\frac{1}{4}\right) \varphi(\alpha) \\
& <\varphi(\alpha)
\end{aligned}
$$

as required.
Hence φ is Euclidean and R is a Euclidean ring.
(b) With $\alpha=4+5 i$ and $\beta=15+8 i$,

$$
\frac{\beta}{\alpha}=\frac{(15+8 i)(4-5 i)}{4^{2}+5^{2}}=\frac{100-43 i}{41} .
$$

Choosing γ as above we find $\gamma=2-i$.
Checking: $(\beta-\alpha \gamma)=15+8 i-(4+5 i)(2-i)=2+2 i$.
And so $\varphi(\beta-\alpha \gamma)=4+4=8<41=\varphi(\alpha)$, as required.
(iii) $R=\mathbb{Z}[\sqrt{3}]$:
(a) Define $\varphi: \mathbb{Q}[\sqrt{3}] \rightarrow \mathbb{Q}$ by $\varphi(a+b \sqrt{3})=\left|a^{2}-3 b^{2}\right|($ for $a, b \in \mathbb{Q})$.

If $\alpha=a+b \sqrt{3} \in R$ then a and $b \in \mathbb{Z}$, and so

$$
\varphi(\alpha)=\left|a^{2}-3 b^{2}\right| \in \mathbb{Z}^{\geq 0}
$$

Moreover, $\varphi(\alpha \beta)=\varphi(\alpha) \varphi(\beta)$.
Take $\alpha, \beta \in R$ with $\alpha \neq 0$. We must show that there is a $\gamma \in R$ such that

$$
\varphi(\beta-\alpha \gamma)<\varphi(\alpha)
$$

Now $\alpha \widetilde{a} \in \mathbb{Z}$ and $\widetilde{a} \neq 0$ (since - : $R \rightarrow R, a+b \sqrt{3} \mapsto a-b \sqrt{3}$ is injective).
So $\frac{\beta}{\alpha}=\frac{\beta \widetilde{a}}{\alpha \widetilde{a}}=x+y \sqrt{3}$ for some x and y in \mathbb{Q}.
Choose $\gamma=m+n \sqrt{3} \in R$ where $m=\left[x+\frac{1}{2}\right]$ and $n=\left[y+\frac{1}{2}\right]$.
Then, with $r=x-m$ and $s=y-n$, we have $|r|$ and $|s| \leq \frac{1}{2}$.
So

$$
\begin{aligned}
\varphi(\beta-\alpha \gamma) & =\varphi((\beta / \alpha-\gamma) \alpha)=\varphi(\beta / \alpha-\gamma) \varphi(\alpha) \\
& =\varphi(r+s \sqrt{3}) \varphi(\alpha)=\left|r^{2}-3 s^{2}\right| \varphi(\alpha) \leq \max \left(r^{2}, 3 s^{2}\right) \varphi(\alpha) \\
& \leq \frac{3}{4} \varphi(\alpha) \\
& <\varphi(\alpha)
\end{aligned}
$$

as required.
Hence φ is Euclidean and R is a Euclidean ring.
(b) With $\alpha=1+3 \sqrt{3}$ and $\beta=5-9 \sqrt{3}$,

$$
\frac{\beta}{\alpha}=\frac{(5-9 \sqrt{3})(1-3 \sqrt{3})}{1-27}=\frac{86-24 \sqrt{3}}{-26}=\frac{-43+12 \sqrt{3}}{13}
$$

Choosing γ as above we find $\gamma=-3+\sqrt{3}$.
Checking: $(\beta-\alpha \gamma)=5-9 \sqrt{3}-(1+3 \sqrt{3})(-3+\sqrt{3})=-1-\sqrt{3}$.
And so $\varphi(\beta-\alpha \gamma)=|1-3|=2<26=\varphi(\alpha)$, as required.

4 (i) It is clear that P is an additive subgroup of R. Moreover, multiplying two monomials $a \cdot 2^{r}$ and $b \cdot 2^{t}$ in P, i.e., with $a, b \in \mathbb{Z}$ and $r, t \in \mathbb{Q}^{>0}$ produces another such monomial $a b \cdot 2^{r+t}$. Hence, multiplying sums of such monomials gives us also sums of the same type, which shows that $P^{2} \subseteq P$.

On the other hand, each element $\pi=\sum_{j=1}^{s} a_{j} 2^{r_{j}}$ in P can be written as a product of other elements in $P:$ take $r \in \mathbb{Q}$ such that $0<r<r_{j}$ for all $r=1, \ldots, s$. Then 2^{r} and $\sum_{j=1}^{s} a_{j} 2^{r_{j}-r}$ are both in P and their product is simply π. Hence $P \subseteq P^{2}$.
(ii) Use that any element in R can be written-after combining terms in the form $\sum_{j=1}^{s} a_{j} 2^{r_{j}}$ with a_{j} odd for all j, where the r_{j} are mutually different. In fact, we can order the terms with respect to their exponents, i.e., such that $r_{1}<r_{2}<\cdots<r_{s}$, where r_{1} can attain the value 0 .

Similarly any element in P can be written in that form, with the extra condition that $r_{1}>0$, since all the exponents have to be strictly greater than 0 .

Now multiplying $\pi \in P$ and $\rho \in R$ gives $\pi \rho$ with all exponents >0, i.e. lying in P, whence P is an ideal in R.

Hence an element $\rho \in R$ can be written as $\rho=$ odd integer $\cdot 2^{0}+$ something in P, so $R \backslash P$ consists of the odd integers. But the ideal generated by P and any odd integer generates $1 \in R$ (since the even integers are in P), and hence generates R itself.

Therefore P is maximal.
(iii) Follows from the considerations in (ii), since all even integers are in P and $1+P \supseteq 1+2 \mathbb{Z}$, which contains (in fact equals) $R \backslash P$.

5 (Straightforward from Algebra II, intended as a reminder only.)
6 Suppose $\sum_{j=1}^{n} l_{j} \gamma \gamma_{j}=0$, for some $l_{1}, \ldots, l_{n} \in K$.
Then $\sum_{j=1}^{n} l_{j} \gamma_{j}=\gamma^{-1} \sum_{j=1}^{n} l_{j} \gamma \gamma_{j}=0$, since $\gamma \in F^{*}$.
So $l_{j}=0$ for every j (since $\left\{\gamma_{1}, \ldots, \gamma_{n}\right\}$ is linearly independent over K).
Thus $\left\{\gamma \gamma_{1}, \ldots, \gamma \gamma_{n}\right\}$ is linearly independent over K.
So, since $\left\{\gamma \gamma_{1}, \ldots, \gamma \gamma_{n}\right\} \subset F$ and $|F: K|=n$,
$\left\{\gamma \gamma_{1}, \ldots, \gamma \gamma_{n}\right\}$ is a basis for F over K.
7 Put $l=(a \alpha+b) /(c \alpha+d)$. Clearly we have $\mathbb{Q}[l]=\mathbb{Q}[(a \alpha+b) /(c \alpha+d)] \subseteq \mathbb{Q}[\alpha]$.
(Here we've used that $\mathbb{Q}[\alpha]$ is a field, since α is an algebraic number.)
We must show that $\mathbb{Q}[\alpha] \subseteq \mathbb{Q}[l]$.
Now $l(c \alpha+d)=(a \alpha+b)$; so $\alpha(c l-a)=(-d l+b)$.
But $c l-a=c(a \alpha+b) /(c \alpha+d)-a=(c b-a d) /(c \alpha+d) \neq 0$.
Thus $\alpha=(-d l+b) /(c l-a) \in \mathbb{Q}[l]$.
Thus $\mathbb{Q}[\alpha] \subseteq \mathbb{Q}[l]$.
8 Now $K \supseteq \mathbb{Q}[\alpha] \supseteq \mathbb{Q}$.
We have $|\mathbb{Q}[\alpha]: \mathbb{Q}|$ divides $|K: \mathbb{Q}[\alpha]| \cdot|\mathbb{Q}[\alpha]: \mathbb{Q}|=|K: \mathbb{Q}|=p$ by the Tower Theorem,.
So $|\mathbb{Q}[\alpha]: \mathbb{Q}|=1$ or p. But $|\mathbb{Q}[\alpha]: \mathbb{Q}| \neq 1$ (else $\alpha \in \mathbb{Q}$).
So $|\mathbb{Q}[\alpha]: \mathbb{Q}|=p$.
9 (i) Put $q(X)=X^{2}-7$. Then $q(X)$ is irreducible in $\mathbb{Q}[X]$ by Eisenstein's Criterion with prime 7 .
Since $q(\sqrt{7})=0, q(X)$ is the min. poly. of $\sqrt{7}$ in $\mathbb{Q}[X]$.
Thus, $|\mathbb{Q}[\sqrt{7}]: \mathbb{Q}|=\operatorname{deg} q(X)=2$.
(ii) Note that $\sqrt[3]{5} \in \mathbb{Q}[\sqrt[3]{5}+2]$ and that $\sqrt[3]{5}+2 \in \mathbb{Q}[\sqrt[3]{5}]$.

So $\mathbb{Q}[\sqrt[3]{5}] \subseteq \mathbb{Q}[\sqrt[3]{5}+2], \mathbb{Q}[\sqrt[3]{5}+2] \subseteq \mathbb{Q}[\sqrt[3]{5}]$ and $\mathbb{Q}[\sqrt[3]{5}+2]=\mathbb{Q}[\sqrt[3]{5}]$.
Now $q(X)=X^{3}-5$ is irreducible in $\mathbb{Q}[X]$ by Eisenstein's Criterion with prime 5 .
Since $q(\sqrt[3]{5})=0, q(X)$ is the min. poly. of $\sqrt[3]{5}$ in $\mathbb{Q}[X]$.
Thus $|\mathbb{Q}[\sqrt[3]{5}+2]: \mathbb{Q}|=|\mathbb{Q}[\sqrt[3]{5}]: \mathbb{Q}|=\operatorname{deg} q(X)=3$.
(iii) Let $\alpha=e^{2 \pi i / 5}$. Note that (cf. (ii)) $\mathbb{Q}[\alpha]=\mathbb{Q}[\alpha-1]$.

Put $\beta=\alpha-1(\neq 0)$. Then $1=\alpha^{5}=(\beta+1)^{5}=\beta^{5}+5 \beta^{4}+10 \beta^{3}+10 \beta^{2}+5 \beta+1$.
So $\beta^{4}+5 \beta^{3}+10 \beta^{2}+10 \beta+5=\left(\beta^{5}+5 \beta^{4}+10 \beta^{3}+10 \beta^{2}+5 \beta\right) / \beta=0$.
Thus $q(X)=X^{4}+5 X^{3}+10 X^{2}+10 X+5$ is the min. poly. of β over \mathbb{Q} since it is irreducible in $\mathbb{Q}[X]$ by Eisenstein's Criterion with prime 5 .

Thus $|\mathbb{Q}[\alpha]: \mathbb{Q}|=|\mathbb{Q}[\beta]: \mathbb{Q}|=\operatorname{deg} q(X)=4$.
10 We illustrate the idea for $p=7, q=2$, leaving the general case as a minor transfer exercise (the case $a b=0$ then needs a slightly different argument).

Put $K=\mathbb{Q}[\sqrt{2}]$. We claim that $\sqrt{7} \notin K$.
For suppose that $\sqrt{7} \in K$ then $\sqrt{7}=a+b \sqrt{2}$ for some $a, b \in \mathbb{Q}$.
Then $7=a^{2}+2 b^{2}+2 a b \sqrt{2}$.
If $a b \neq 0$ then $\sqrt{2}=\left(7-a^{2}-2 b^{2}\right) / 2 a b \in \mathbb{Q}$. Contradiction.
But if $a b=0$ then $7=a^{2}+2 b^{2}$ and this has no integer solution. Contradiction. Thus $\sqrt{7} \notin K$ and so $X^{2}-7$ has no roots in K.
Hence $X^{2}-7$ is irreducible in $K[X]$ and is therefore the min. poly. of $\sqrt{7}$ over K

