## Michaelmas 2012, NT III/IV, Problem Sheet 4.

- 1. With  $K = \mathbb{Q}(\theta)$  and a, b and  $c \in \mathbb{Q}$ , calculate  $Tr_K(a + b\theta + c\theta^2)$  and  $N_K(a + b\theta + c\theta^2)$  where (i)  $\theta = \sqrt[3]{7}$  and (ii)  $\theta^3 + \theta^2 + 2 = 0$ .
- 2. With  $K = \mathbb{Q}(\theta)$  and a and  $b \in \mathbb{Q}$ , calculate  $Tr_K(\theta^3)$  and  $N_K(a+b\theta)$  where (i)  $\theta^4 + 2\theta + 2 = 0$  and (ii)  $\theta^4 = -1$ .
- 3. (Some easy identities.) Show that (i)  $X^3 + Y^3 = (X + Y)(X^2 XY + Y^2)$ ; (ii)  $X^3 + Y^3 + Z^3 - 3XYZ = (X + Y + Z)(X^2 + Y^2 + Z^2 - XY - YZ - ZX)$ =  $(X + Y + Z)(X + \omega Y + \overline{\omega}Z)(X + \overline{\omega}Y + \omega Z)$ , where  $\omega = \exp(2\pi i/3)$ ; [Note also that  $(X^2 + Y^2 + Z^2 - XY - YZ - ZX) = ((X - Y)^2 + (Y - Z)^2 + (Z - X)^2)/2$ .]

(What do you get in (ii) if you take  $X = a, Y = b\sqrt[3]{N}$  and  $Z = c(\sqrt[3]{N})^2$ ?) (iii)  $(X^n - Y^n) = \prod_{r=0}^{n-1} (X - \zeta^r Y)$ , where  $\zeta = \exp(2\pi i/n)$ .

- 4. Let  $\theta = \sqrt[3]{7}$ . Put  $R = \mathbb{Z}[\theta]$  and  $K = \mathbb{Q}(\theta)$ . Show that (i)  $(1 + \theta, 2)_R (1 - \theta + \theta^2, 2)_R = (2)_R$  and
  - (ii)  $(1+\theta,2)_R^3 = (1+\theta)_R$ .
  - (iii) Define, for  $\alpha \in R$ ,  $\psi(\alpha) = |N_K(\alpha)|$ . Show that  $\psi$  is multiplicative and satisfies

$$\psi(\alpha) = 1 \implies \alpha \in R^* \,.$$

[Q3(ii) may be useful.]

- (iv) Show that  $(1 + \theta, 2)_R$  is not a principal ideal.
- 5. Let  $L = \mathbb{Q}(i, \sqrt{2})$ . Show that
  - (i)  $[L:\mathbb{Q}] = 4$  and
  - (ii)  $L = \mathbb{Q}(\theta)$  where  $\theta = \frac{1+i}{\sqrt{2}}$ .
  - (iii) What is the minimum polynomial of  $\theta$  over (a)  $\mathbb{Q}$  and (b)  $\mathbb{Q}(\sqrt{2})$ ?
- 6. Show that
  - (i)  $\mathbb{Q}(\sqrt{2}, \sqrt[3]{3}) = \mathbb{Q}(\sqrt{2} + \sqrt[3]{3})$  and
  - (ii)  $[\mathbb{Q}(\sqrt{2}, \sqrt[3]{3}) : \mathbb{Q}] = 6.$
  - (iii) Find the minimum polynomial of  $\sqrt{2} + \sqrt[3]{3}$  over  $\mathbb{Q}$ .
- 7. Let  $\alpha$  be an algebraic number. Show that  $n\alpha$  is an algebraic *integer* for some  $n \in \mathbb{Z}^{>0}$ .
- 8. Let S be a subring of a field K and suppose that there are  $\alpha$  and  $\beta \in S \setminus \{0\}$  such that
  - (i)  $\alpha/\beta \notin S$ , yet
  - (ii)  $\alpha/\beta$  is a root of a monic polynomial in S[X].

Show that S is not a UFD.

- 9. Factorize 24 and  $5+3\sqrt{-7}$  as products of irreducible elements
  - (i) in  $\mathbb{Z}\left[\frac{1+\sqrt{-7}}{2}\right]$  and (ii) in  $\mathbb{Z}[\sqrt{-7}]$ .
- 10. Show that (i)  $\mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right]$ , (ii)  $\mathbb{Z}\left[\frac{1+\sqrt{-11}}{2}\right]$  and (iii)  $\mathbb{Z}[\sqrt{7}]$  are Euclidean domains.
- 11. Show that  $\mathbb{Z}\left[\frac{1+\sqrt{D}}{2}\right]$  is not a UFD for  $D \in \mathbb{Z}$  with D < -7 and  $D \equiv 1 \mod 8$ .
- 12. Show that an algebraic integer  $\alpha$  is a unit if and only if its norm  $N_{\mathbb{Q}(\alpha)/\mathbb{Q}}(\alpha)$  is equal to  $\pm 1$ .