Michaelmas 2012, NT III/IV, Problem Sheet 4.

1. With $K=\mathbb{Q}(\theta)$ and a, b and $c \in \mathbb{Q}$, calculate $\operatorname{Tr}_{K}\left(a+b \theta+c \theta^{2}\right)$ and $N_{K}\left(a+b \theta+c \theta^{2}\right)$ where (i) $\theta=\sqrt[3]{7}$ and (ii) $\theta^{3}+\theta^{2}+2=0$.
2. With $K=\mathbb{Q}(\theta)$ and a and $b \in \mathbb{Q}$, calculate $\operatorname{Tr}_{K}\left(\theta^{3}\right)$ and $N_{K}(a+b \theta)$ where (i) $\theta^{4}+2 \theta+2=0$ and (ii) $\theta^{4}=-1$.
3. (Some easy identities.) Show that (i) $X^{3}+Y^{3}=(X+Y)\left(X^{2}-X Y+Y^{2}\right)$; (ii) $X^{3}+Y^{3}+Z^{3}-3 X Y Z=(X+Y+Z)\left(X^{2}+Y^{2}+Z^{2}-X Y-Y Z-Z X\right)$ $=(X+Y+Z)(X+\omega Y+\bar{\omega} Z)(X+\bar{\omega} Y+\omega Z)$, where $\omega=\exp (2 \pi i / 3)$; [Note also that $\left(X^{2}+Y^{2}+Z^{2}-X Y-Y Z-Z X\right)=\left((X-Y)^{2}+(Y-\right.$ $\left.Z)^{2}+(Z-X)^{2}\right) / 2$.]
(What do you get in (ii) if you take $X=a, Y=b \sqrt[3]{N}$ and $Z=c(\sqrt[3]{N})^{2}$?)
(iii) $\quad\left(X^{n}-Y^{n}\right)=\prod_{r=0}^{n-1}\left(X-\zeta^{r} Y\right)$, where $\zeta=\exp (2 \pi i / n)$.
4. Let $\theta=\sqrt[3]{7}$. Put $R=\mathbb{Z}[\theta]$ and $K=\mathbb{Q}(\theta)$. Show that
(i) $(1+\theta, 2)_{R}\left(1-\theta+\theta^{2}, 2\right)_{R}=(2)_{R}$ and
(ii) $(1+\theta, 2)_{R}^{3}=(1+\theta)_{R}$.
(iii) Define, for $\alpha \in R, \psi(\alpha)=\left|N_{K}(\alpha)\right|$. Show that ψ is multiplicative and satisfies

$$
\psi(\alpha)=1 \Rightarrow \alpha \in R^{*}
$$

[Q3(ii) may be useful.]
(iv) Show that $(1+\theta, 2)_{R}$ is not a principal ideal.
5. Let $L=\mathbb{Q}(i, \sqrt{2})$. Show that
(i) $[L: \mathbb{Q}]=4$ and
(ii) $L=\mathbb{Q}(\theta)$ where $\theta=\frac{1+i}{\sqrt{2}}$.
(iii) What is the minimum polynomial of θ over (a) \mathbb{Q} and (b) $\mathbb{Q}(\sqrt{2})$?
6. Show that
(i) $\mathbb{Q}(\sqrt{2}, \sqrt[3]{3})=\mathbb{Q}(\sqrt{2}+\sqrt[3]{3})$ and
(ii) $[\mathbb{Q}(\sqrt{2}, \sqrt[3]{3}): \mathbb{Q}]=6$.
(iii) Find the minimum polynomial of $\sqrt{2}+\sqrt[3]{3}$ over \mathbb{Q}.
7. Let α be an algebraic number. Show that $n \alpha$ is an algebraic integer for some $n \in \mathbb{Z}^{>0}$.
8. Let S be a subring of a field K and suppose that there are α and $\beta \in S \backslash\{0\}$ such that
(i) $\alpha / \beta \notin S$, yet
(ii) α / β is a root of a monic polynomial in $S[X]$.

Show that S is not a UFD.
9. Factorize 24 and $5+3 \sqrt{-7}$ as products of irreducible elements
(i) in $\mathbb{Z}\left[\frac{1+\sqrt{-7}}{2}\right]$ and
(ii) in $\mathbb{Z}[\sqrt{-7}]$.
10. Show that (i) $\mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right]$, (ii) $\mathbb{Z}\left[\frac{1+\sqrt{-11}}{2}\right]$ and (iii) $\mathbb{Z}[\sqrt{7}]$ are Euclidean domains.
11. Show that $\mathbb{Z}\left[\frac{1+\sqrt{D}}{2}\right]$ is not a UFD for $D \in \mathbb{Z}$ with $D<-7$ and $D \equiv 1$ $\bmod 8$.
12. Show that an algebraic integer α is a unit if and only if its norm $\mathrm{N}_{\mathbb{Q}(\alpha) / \mathbb{Q}}(\alpha)$ is equal to ± 1.

