Michaelmas 2012, NT III/IV, Solutions to Problem Sheet 4.

1 (i) $\theta=\sqrt[3]{7}$ has min. poly. $X^{3}-7$ in $\mathbb{Q}[X]$ (irreducible over \mathbb{Q} by Eisenstein's Criterion with prime 7). So $n=|K: \mathbb{Q}|=3$ with basis $\mathcal{B}=\left\{1, \theta, \theta^{2}\right\}$ over \mathbb{Q}.
Put $\alpha=a+b \theta+c \theta^{2}$. We find

$$
\left\{\begin{array}{l}
\hat{\alpha}(1)=a+b \theta+c \theta^{2} \\
\hat{\alpha}(\theta)=7 c+a \theta+b \theta^{2} \\
\hat{\alpha}\left(\theta^{2}\right)=7 b+7 c \theta+a \theta^{2}
\end{array}\right\} \text { and so the matrix of } \hat{\alpha} \text { is } A=\left(\begin{array}{ccc}
a & 7 c & 7 b \\
b & a & 7 c \\
c & b & a
\end{array}\right) .
$$

Hence $\operatorname{Tr}_{K}(\alpha)=\operatorname{Tr}(A)=3 a$ and $N_{K}(\alpha)=\operatorname{det}(A)=\cdots=a^{3}+7 b^{3}+49 c^{3}-21 a b c$.
(ii) Let $f(X)=X^{3}+X^{2}+2$. By the Gauss Lemma any root of $f(X)$ in \mathbb{Q} must be an integer dividing the constant term, i.e. ± 1 or ± 2. Neither of these work. So $f(X)$ has no roots in \mathbb{Q}. Thus, since $f(X)$ is only cubic, it is irreducible in $\mathbb{Q}[X]$. Hence $f(X)$ is the min. poly. of θ over $\mathbb{Q}, n=|K: \mathbb{Q}|=3$ and we can take $\mathcal{B}=\left\{1, \theta, \theta^{2}\right\}$ as a basis for K over \mathbb{Q}.
Put $\alpha=a+b \theta+c \theta^{2}$. We find

$$
\begin{aligned}
& \left\{\begin{array}{llrr}
\hat{\alpha}(1)= & = & a+b \theta & +c \theta^{2} \\
\hat{\alpha}(\theta)=a \theta+b \theta^{2}+c \theta^{3} & = & -2 c+a \theta+(b-c) \theta^{2} \\
\hat{\alpha}\left(\theta^{2}\right)=-2 c \theta+a \theta^{2}+(b-c) \theta^{3} & =2(c-b)-2 c \theta+(a+c-b) \theta^{2}
\end{array}\right\} \\
& \text { And so the matrix of } \hat{\alpha} \text { is } A=\left(\begin{array}{ccc}
a & -2 c & 2(c-b) \\
b & a & -2 c \\
c & b-c & a+c-b
\end{array}\right) \text {. }
\end{aligned}
$$

Thus $\operatorname{Tr}_{K}(\alpha)=\operatorname{Tr}(A)=3 a-b+c$ and

$$
N_{K}(\alpha)=\operatorname{det}(A)=a^{3}-2 b^{3}+4 c^{3}-a^{2} b+a^{2} c+2 b^{2} c-4 a c^{2}+6 a b c
$$

2 (i)Let $f(X)=X^{4}+2 X+2$. Then $f(X)$ irreducible over \mathbb{Q} by Eisenstein's Criterion with prime 2. Thus $f(X)$ is the min. poly. of θ over $\mathbb{Q}, n=|K: \mathbb{Q}|=\operatorname{deg}(f)=4$ and we can take $\mathcal{B}=\left\{1, \theta, \theta^{2}, \theta^{3}\right\}$ as a basis for K over \mathbb{Q}.
We find

$$
\left\{\begin{array}{lll}
\widehat{\theta^{3}}(1)= & \theta^{3} \\
\widehat{\theta^{3}}(\theta)=\theta^{4}=-2 & -2 \theta & \\
\widehat{\theta^{3}}\left(\theta^{2}\right)= & -2 \theta & -2 \theta^{2} \\
\widehat{\theta^{3}}\left(\theta^{3}\right)= & -2 \theta^{2} & -2 \theta^{3}
\end{array}\right\} . \quad \text { So } M=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
-2 & -2 & 0 & 0 \\
0 & -2 & -2 & 0 \\
0 & 0 & -2 & -2
\end{array}\right)^{t}
$$

is the matrix of $\widehat{\theta^{3}}$. Thus $\operatorname{Tr}_{K}\left(\theta^{3}\right)=\operatorname{Tr}(M)=-6$.
Now put $\alpha=a+b \theta$. We find

$$
\begin{aligned}
& \left\{\begin{array}{llrrr}
\widehat{\alpha}(1) & & a & +b \theta & \\
\widehat{\alpha}(\theta) & & = & a \theta & +b \theta^{2} \\
& & \\
\widehat{\alpha}\left(\theta^{2}\right) & & a \theta^{2} & +b \theta^{3} \\
\widehat{\alpha}\left(\theta^{3}\right)=a \theta^{3}+b \theta^{4} & =-2 b-2 b \theta & +a \theta^{3}
\end{array}\right\} . \\
& \text { So } M=\left(\begin{array}{cccc}
a & b & 0 & 0 \\
0 & a & b & 0 \\
0 & 0 & a & b \\
-2 b & -2 b & 0 & a
\end{array}\right)
\end{aligned}
$$

is the matrix of $\widehat{a+b \theta}$. Thus $N_{K}(a+b \theta)=\operatorname{det}(M)=\ldots=a^{4}-2 a b^{3}+2 b^{4}$.
7 (ii) Let $f(X)=X^{4}+1$. Then $f(X+1)=X^{4}+4 X^{3}+6 X^{2}+4 X+2$ is irreducible over \mathbb{Q} by Eisenstein's Criterion with prime 2 and so $f(X)$ is irreducible, also. Thus $f(X)$ is the min. poly. of θ over $\mathbb{Q}, n=|K: \mathbb{Q}|=\operatorname{deg}(f)=4$ and we can take $\mathcal{B}=\left\{1, \theta, \theta^{2}, \theta^{3}\right\}$ as a basis for K over \mathbb{Q}.

We find

$$
\left\{\begin{array}{lll}
\widehat{\theta^{3}}(1)= & & \theta^{3} \\
\widehat{\hat{\theta}^{3}}(\theta)=\theta^{4}=-1 & & \\
\widehat{\theta^{3}}\left(\theta^{2}\right)= & -\theta & \\
\widehat{\theta^{3}}\left(\theta^{3}\right)= & & -\theta^{2}
\end{array}\right\} . \quad \text { So } M=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0
\end{array}\right)^{t} .
$$

is the matrix of $\widehat{\theta^{3}}$. Thus $\operatorname{Tr}_{K}\left(\theta^{3}\right)=\operatorname{Tr}(M)=0$.
Now put $\alpha=a+b \theta$. We find

$$
\begin{aligned}
& \left\{\begin{array}{llrl}
\widehat{\alpha}(1) & = & a+b \theta & \\
\widehat{\alpha}(\theta) & = & a \theta & +b \theta^{2} \\
\\
\widehat{\alpha}\left(\theta^{2}\right) & = & a \theta^{2} & +b \theta^{3} \\
\widehat{\alpha}\left(\theta^{3}\right)=a \theta^{3}+b \theta^{4} & =-b & & +a \theta^{3}
\end{array}\right\} . \\
& \text { So } M=\left(\begin{array}{cccc}
a & b & 0 & 0 \\
0 & a & b & 0 \\
0 & 0 & a & b \\
-b & 0 & 0 & a
\end{array}\right)^{t}
\end{aligned}
$$

is the matrix of $\widehat{a+b \theta}$. Thus $N_{K}(a+b \theta)=\operatorname{det}(M)=\ldots=a^{4}+b^{4}$.
3 (i) and (ii): Multiply out.
(iii) The roots of $Z^{n}-1$ are ζ^{r} for $r=0,1, \ldots, n-1$.

So $Z^{n}-1=\prod_{r=1}^{n-1}\left(Z-\zeta^{r}\right)$.
Thus $X^{n}-Y^{n}=Y^{n}\left((X / Y)^{n}-1\right)=Y^{n} \prod_{r=1}^{n-1}\left((X / Y)-\zeta^{r}\right)=\prod_{r=1}^{n-1}\left(X-\zeta^{r} Y\right)$.
4 (i) $(1+\theta, 2)_{R}\left(1-\theta+\theta^{2}, 2\right)_{R}=\left(1+\theta^{3}, 2\left(1-\theta+\theta^{2}\right), 2(1+\theta), 4\right)$
$=\left(8,2\left(1-\theta+\theta^{2}\right), 2(1+\theta), 4\right)$
$=(8,2(1-2 \theta), 2(1+\theta), 4) \quad \llbracket g_{2}-\theta g_{3} \rrbracket$
$=(8,2(3), 2(1+\theta), 4) \quad \llbracket g_{2}+2 g_{3} \rrbracket$
$=(8,2,2(1+\theta), 4) \quad \llbracket g_{2}-g_{4} \rrbracket$
$=(2) \quad$ (since 2 divides all the other generators).
(ii) $(1+\theta, 2)_{R}^{3}=\cdots=\left((1+\theta)^{3}, 2(1+\theta)^{2}, 4(1+\theta), 8\right)_{R}$
$=(1+\theta)\left((1+\theta)^{2}, 2(1+\theta), 4,1-\theta+\theta^{2}\right)_{R}$
$=(1+\theta)\left((1+\theta)^{2}, 2(1+\theta), 4,-3 \theta\right)_{R} \quad \llbracket g_{4}-g_{1} \rrbracket$
$=(1+\theta)\left((1+\theta)^{2}, 2(1+\theta), 4,-3 \theta, 21\right)_{R} \quad \llbracket g_{5}=-\theta^{2} g_{4} \rrbracket$
$=(1+\theta) R \quad \llbracket \operatorname{gcd}(4,21)=1 \rrbracket$.
(iii) We must show that, for α and $\beta \in R, \psi(\alpha) \in \mathbb{Z} \geq 0$ (this is clear from the formula of Q6(i)) and that
(a) $\psi(\alpha \beta)=\psi(\alpha) \psi(\beta)$ (clear from properties of a norm);
(b) $\psi(\alpha)=0 \Longrightarrow \alpha=0$ (clear from properties of a norm)) and
(c) $\psi(\alpha)=1 \Longrightarrow \alpha \in R^{*}$.

So we only need bother with (c).
Suppose $\psi(\alpha)=1$ so $N_{K}(\alpha)= \pm 1$. Put $\alpha=a+b \theta+c \theta^{2}$ with $a, b, c \in \mathbb{Z}$.
Putting $X=a, Y=b \theta$ and $Z=c \theta^{2}$ in Q8(ii) we find

$$
\pm 1=N_{K}(\alpha)=a^{3}+7 b^{3}+49 c^{3}-21 a b c=\alpha\left(a^{2}+b^{2} \theta^{2}+7 c^{2} \theta-a b \theta-7 b c-a c \theta^{2}\right)
$$

Thus $\pm\left(a^{2}+b^{2} \theta^{2}+7 c^{2} \theta-a b \theta-7 b c-a c \theta^{2}\right)$ is an inverse for α in R.
So $\alpha \in R^{*}$, as required.
(iv) Note that the converse of (iii) above is also true.For if $\alpha \in R^{*}$ then $\alpha \beta=1$ for some $\beta \in R$ and $\psi(\alpha) \psi(\beta)=\psi(\alpha \beta)=\psi(1)=1$. So $\psi(\alpha)=1$.
Now if $(1+\theta, 2)_{R}=(\alpha)_{R}$ then, by (ii), $\left(\alpha^{3}\right)_{R}=(\alpha)_{R}^{3}=(1+\theta)_{R}$.
So $\alpha^{3}=u(1-\theta)$, for some unit u.
Thus $\psi(\alpha)^{3}=\psi\left(\alpha^{3}\right)=\psi(u) \psi(1-\theta)=1 \times 8$.

And hence $\psi(\alpha)=2$.
But then, putting $\alpha=a+b \theta+c \theta^{2}$ with $a, b, c \in \mathbb{Z}$,

$$
\begin{equation*}
a^{3}+7 b^{3}+49 c^{3}-21 a b c=N_{K}(\alpha)= \pm 2 \text { and } a^{3} \equiv \pm 2 \bmod 7 \tag{*}
\end{equation*}
$$

But, mod 7, we have | x | 0 | ± 1 | ± 2 | ± 3 |
| :---: | :---: | :---: | :---: | :---: |
| x^{3} | 0 | ± 1 | ± 1 | ∓ 1 |

So the cubes mod 7 are ± 1 and $(*)$ is impossible.
Thus $(1+\theta, 2)_{R}$ is not principal.
5 Put θ for $\frac{1+i}{\sqrt{2}}$. Clearly $\theta=\frac{(1+i) \sqrt{2}}{2} \in \mathbb{Q}[i, \sqrt{2}]$.
Hence $\mathbb{Q}[\theta] \subseteq \mathbb{Q}[i, \sqrt{2}]$.
On the other hand $i=\theta^{2} \in \mathbb{Q}[\theta]$ and hence $\sqrt{2}=\frac{1+i}{\frac{1+i}{\sqrt{2}}}=\frac{1+\theta^{2}}{\theta} \in \mathbb{Q}[\theta]$.
Whence

$$
\mathbb{Q}[i, \sqrt{2}] \subseteq \mathbb{Q}[\theta] .
$$

Thus

$$
\begin{equation*}
\mathbb{Q}[\theta]=\mathbb{Q}[i, \sqrt{2}](=L) \tag{ii}
\end{equation*}
$$

Now, since $L=\mathbb{Q}[\sqrt{2}][i]$ and since the min. poly. of i over $\mathbb{Q}[\sqrt{2}]$ must divide $X^{2}+1$,

$$
|L: \mathbb{Q}[\sqrt{2}]| \leq \operatorname{deg}\left(X^{2}+1\right)=2
$$

But $|L: \mathbb{Q}[\sqrt{2}]| \neq 1$ else $i \in L=\mathbb{Q}[\sqrt{2}] \subset \mathbb{R}$. Contradiction.
So $\quad|L: \mathbb{Q}[\sqrt{2}]|=2$.
Moreover $|\mathbb{Q}[\sqrt{2}]: \mathbb{Q}|=2\left(X^{2}-2\right.$ is irreducible over \mathbb{Q} with root $\left.\sqrt{2}\right)$.
Therefore $\quad|L: \mathbb{Q}|=|L: \mathbb{Q}[\sqrt{2}]| \cdot|\mathbb{Q}[\sqrt{2}]: \mathbb{Q}|=2 \times 2=4$. This proves (i).
(iii): Now $\theta^{4}=i^{2}=-1$. So θ is a root of $X^{4}+1 \in \mathbb{Q}[X]$.

Moreover, the min. poly. of θ in $\mathbb{Q}[X]$ must have degree

$$
|\mathbb{Q}[\theta]: \mathbb{Q}| \stackrel{(\mathrm{ii})}{=}|L: \mathbb{Q}| \stackrel{(\mathrm{i})}{=} 4
$$

Hence $X^{4}+1$ is this minimum polynomial.
This proves (iii)a.
Again, $\theta^{2}-\sqrt{2} \theta+1=i-(1+i)+1=0$. So θ is a root of $X^{2}-\sqrt{2} X+1 \in \mathbb{Q}[\sqrt{2}][X]$. And the minimum polynomial of θ in $\mathbb{Q}[\sqrt{2}][X]$ must have degree

$$
|\mathbb{Q}[\theta]: \mathbb{Q}[\sqrt{2}]|=|L: \mathbb{Q}[\sqrt{2}]| \stackrel{(*)}{=} 2
$$

Hence $X^{2}-\sqrt{2} X+1$ is this minimum polynomial. This proves (iii)b.
6 (i) Put $\theta=\sqrt{2}+\sqrt[3]{3}$ and $L=\mathbb{Q}[\sqrt{2} \sqrt[3]{3}]$. Certainly $L \supseteq \mathbb{Q}[\theta]$. Now

$$
\theta-\sqrt{2}=\sqrt[3]{3}
$$

so

$$
\theta^{3}-3 \sqrt{2} \theta^{2}+6 \theta-2 \sqrt{2}=3
$$

i.e.,

$$
\begin{equation*}
\theta^{3}+6 \theta-3=\left(3 \theta^{2}+2\right) \sqrt{2} \tag{1}
\end{equation*}
$$

Thus $\sqrt{2}=\left(\theta^{3}+6 \theta-3\right) /\left(3 \theta^{2}+2\right) \in \mathbb{Q}[\theta]$ and $\sqrt[3]{3}=\theta-\sqrt{2} \in \mathbb{Q}[\theta]$.
Hence $\mathbb{Q}[\theta] \supseteq L$ and so $\mathbb{Q}[\theta]=L$ and we have (i).
(ii) Put $K_{1}=\mathbb{Q}[\sqrt{2}]$ and $K_{2}=\mathbb{Q}[\sqrt[3]{3}]$.

Using the minimum polynomials of $\sqrt{2}$ and $\sqrt[3]{3}$ over \mathbb{Q}, we have

$$
\left|K_{1}: \mathbb{Q}\right|=\operatorname{deg}\left(X^{2}-2\right)=2 \text { and }\left|K_{2}: \mathbb{Q}\right|=\operatorname{deg}\left(X^{3}-3\right)=3
$$

Also

$$
\left|L: K_{1}\right| \leq \operatorname{deg}\left(X^{3}-3\right)=3
$$

since $L=K_{1}[\sqrt[3]{3}]$ and since $X^{3}-3$, even if not actually equal to the minimum polynomial of $\sqrt[3]{3}$ over K_{1}, must certainly be divisible by it.
Hence, by the Tower Theorem,

$$
|L: \mathbb{Q}|=\left|L: K_{1}\right| \cdot\left|K_{1}: \mathbb{Q}\right| \leq 3 \times 2=6
$$

Moreover, from the first equality,

$$
2=\left|K_{1}: \mathbb{Q}\right| \text { divides }|L: \mathbb{Q}|
$$

and, similarly,

$$
3=\left|K_{2}: \mathbb{Q}\right| \text { divides }|L: \mathbb{Q}| .
$$

So, in fact, $|L: \mathbb{Q}|$ is divisible by 6 . Hence $|L: \mathbb{Q}|=6$. This proves (ii).
[We now have that $\left|K_{1}[\sqrt[3]{3}]: K_{1}\right|=\frac{|L: \mathbb{Q}|}{\left|K_{1}: \mathbb{Q}\right|}=3$. Hence the minimum polynomial of $\sqrt[3]{3}$ over K_{1} has degree 3 (and so it must be $X^{3}-3$ after all).]
(iii) Continuing from (1) (squaring both sides) we find:

$$
\begin{aligned}
\theta^{6}+12 \theta^{4}-6 \theta^{3}+36 \theta^{2}-36 \theta+9 & =\left(9 \theta^{4}+12 \theta^{2}+4\right) \times 2 \\
\text { i.e. } \quad \theta^{6}-6 \theta^{4}-6 \theta^{3}+12 \theta^{2}-36 \theta+1 & =0
\end{aligned}
$$

So θ is a zero of $f(X)=X^{6}-6 X^{4}-6 X^{3}+12 X^{2}-36 X+1$.
Now the degree of the min. poly. $p(X)$ of θ over \mathbb{Q} is $|\mathbb{Q}[\theta]: \mathbb{Q}|=|L: \mathbb{Q}|=6$.
So, since $p(X) \mid f(X)$, we have $p(X)=f(X)$.
7 Choose $n \in \mathbb{Z}^{>0}$ so that $n p_{\alpha}(X) \in \mathbb{Z}[X]$. We claim that $n \alpha$ is an algebraic integer.
Let $p_{\alpha}(X)=X^{m}+q_{1} X^{m-1}+\cdots+q_{m-1} X+q_{m}$. Then $n q_{r} \in \mathbb{Z}$ for $r=1, \ldots, m$.
But $n \alpha$ is a root of

$$
\begin{aligned}
n^{m} p_{\alpha}(X / n) & =n^{m}\left((X / n)^{m}+q_{1}(X / n)^{m-1}+\cdots+q_{n-1}(X / n)+q_{m}\right) \\
& =X^{m}+n q_{1} X^{m-1}+\cdots+n^{m-1} q_{n-1} X+n^{m} q_{m} \in \mathbb{Z}[X]
\end{aligned}
$$

So $n \alpha$ is an algebraic integer.
8 Suppose, for a contradiction that S is a UFD.
Choose $\lambda=\alpha / \beta \in K \backslash S$ such that α and $\beta \in S$ and α / β is a root of the polynomial

$$
f(X)=X^{m}+\gamma_{1} X^{m-1}+\cdots+\gamma_{n-1} X+\gamma_{m} \in S[X]
$$

Dividing α and β by their gcd, if necessary, we can assume that $\operatorname{gcd}(\alpha, \beta)=1$.
Certainly, β is not a unit of S else $\lambda \in S$.
So there is a prime element π of S which divides β in S .
But $\alpha^{m}+\gamma_{1} \alpha^{m-1} \beta+\cdots+\gamma_{m-1} \alpha \beta^{m-1}+\gamma_{m} \beta^{m}=\beta^{m} f(\alpha / \beta)=0$.
So $\pi|\beta|-\left(\gamma_{1} \alpha^{m-1} \beta+\cdots+\gamma_{m-1} \alpha \beta^{m-1}+\gamma_{m} \beta^{m}\right)=\alpha^{m}$.
But π is prime. So we have (using the obvious generalization of the defining property of prime elements) that $\pi \mid \alpha$. This contradicts the fact that $\operatorname{gcd}(\alpha, \beta)=1$.

So we have the desired contradiction and S cannot be a UFD.
10 (i) Put $K=\mathbb{Q}[\sqrt{5}]$ and $R=\mathbb{Z}[(1+\sqrt{5}) / 2]$.
We define for $\alpha=a+b \sqrt{5} \in K(a, b \in \mathbb{Q}), \psi(\alpha)=\left|N_{K}(\alpha)\right|=\left|a^{2}-5 b^{2}\right|$.
From the properties of N_{K} we know that ψ is multiplicative $(\psi(\alpha \beta)=\psi(\alpha) \psi(\beta))$ and $($ since $5 \equiv 1 \bmod 4)$ that $\psi(R) \subset \mathbb{Z}$.
To show that ψ is a Euclidean norm we must prove that
$\forall \alpha, \beta \in R$, with $\alpha \neq 0 \exists \gamma \in R$ such that $\psi(\beta-\alpha \gamma)<\psi(\alpha) ;$
Since ψ is multiplicative $\psi(\beta-\alpha \gamma) / \psi(\alpha)=\psi(\lambda-\gamma)$ where $\lambda=\beta / \alpha \in K$. So it is sufficient to show that
$\forall \lambda \in K \exists \gamma \in R$ such that $\psi(\lambda-\gamma)<1$.

Let $\lambda \in K$ and put $2 \lambda=x+y \sqrt{5}$, where x and y lie in \mathbb{Q}.
Take $m=\left\lfloor y+\frac{1}{2}\right\rfloor$ and put $s=|y-m|$. (Here we use the notation $\lfloor x\rfloor$ for the largest integer smaller or equal to x.)

We have then $0 \leqslant s \leqslant \frac{1}{2}$.
Take n to be $n=\lfloor x\rfloor$ or $\lfloor x\rfloor+1$ whichever is congruent to $m \bmod 2$.
So we have $r:=|x-n| \leq 1$.
Finally, put $\gamma=(n+m \sqrt{5}) / 2$. Then $\gamma \in R$ since $n \equiv m \bmod 2$.
Now

$$
N(\lambda-\gamma)=N\left(\frac{(x-n)+(y-m) \sqrt{5}}{2}\right)=\frac{(x-n)^{2}-5(y-m)^{2}}{4}=\frac{r^{2}-5 s^{2}}{4} .
$$

So, since $0 \leqslant s \leqslant \frac{1}{2}$ and $0 \leqslant r \leqslant 1$,

$$
-\frac{5}{16} \leqslant-\frac{5 s^{2}}{4} \leqslant N(\lambda-\gamma) \leqslant \frac{r^{2}}{4} \leqslant \frac{1}{4}
$$

Thus $\psi(\lambda-\gamma)=|N(\lambda-\gamma)|<1$ as required.
So ψ is a Euclidean Norm on R and R is a Euclidean Ring.
(ii) Put $K=\mathbb{Q}[\sqrt{-11}]$ and $R=\mathbb{Z}[(1+\sqrt{-11}) / 2]$.

We define for $\alpha=a+b \sqrt{-11} \in K(a, b \in \mathbb{Q}), \psi(\alpha)=N_{K}(\alpha)=a^{2}+11 b^{2}$.
From the properties of N_{K} we know that ψ is multiplicative $(\psi(\alpha \beta)=\psi(\alpha) \psi(\beta))$ and that $($ since $-11 \equiv 1 \bmod 4)$ that $\psi(R) \subset \mathbb{Z}$.
To show that ψ is a Euclidean norm we must prove that
$\forall \alpha, \beta \in R$, with $\alpha \neq 0 \exists \gamma \in R$ such that $\psi(\beta-\alpha \gamma)<\psi(\alpha)$;
Since ψ is multiplicative $\psi(\beta-\alpha \gamma) / \psi(\alpha)=\psi(\lambda-\gamma)$ where $\lambda=\beta / \alpha \in K$. So it is sufficient to show that
$\forall \lambda \in K \exists \gamma \in R$ such that $\psi(\lambda-\gamma)<1$.
Let $\lambda \in K$ and put $2 \lambda=x+y \sqrt{-11}$, where x and y lie in \mathbb{Q}.
Take $m=\left\lfloor y+\frac{1}{2}\right\rfloor$ and put $s=|y-m|$.
We have then $0 \leqslant s \leqslant \frac{1}{2}$.
Take n to be $n=\lfloor x\rfloor$ or $\lfloor x\rfloor+1$ whichever is congruent to $m \bmod 2$.
So we have $r:=|x-n| \leq 1$.
Finally, put $\gamma=(n+m \sqrt{-11}) / 2$. Then $\gamma \in R$ since $n \equiv m \bmod 2$.
Now

$$
\psi(\lambda-\gamma)=\psi\left(\frac{(x-n)+(y-m) \sqrt{-11}}{2}\right)=\frac{(x-n)^{2}+11(y-m)^{2}}{4}=\frac{r^{2}+11 s^{2}}{4}
$$

So, since $0 \leqslant s \leqslant \frac{1}{2}$ and $0 \leqslant r \leqslant 1$,
$\psi(\lambda-\gamma) \leqslant \frac{1+11(1 / 4)}{4}=\frac{15}{16}<1$, as required.
(For a more geometrical solution, find a point in the plane that has the same distance to its three closest lattice points which form an isosceles triangle, e.g. 0,1 and $(1+\sqrt{-11}) / 2$. Then compute that distance, it turns out to be <1.)

So ψ is a Euclidean Norm on R and R is a Euclidean Ring.
(iii) Put $K=\mathbb{Q}[\sqrt{7}]$ and $R=\mathbb{Z}[\sqrt{7}]$.

We define for $\alpha=a+b \sqrt{7} \in K(a, b \in \mathbb{Q}), \psi(\alpha)=\left|N_{K}(\alpha)\right|=\left|a^{2}-7 b^{2}\right|$.
Reasoning as in part (i) we find that it is sufficient to prove that
$\forall \lambda \in K \exists \gamma \in R$ such that $\psi(\lambda-\gamma)<1$.
Let, then, $\lambda \in K$ and put $\lambda=x+y \sqrt{7}$, where x and y lie in \mathbb{Q}.
Take $m=\left\lfloor y+\frac{1}{2}\right\rfloor$ and put $s=|y-m|$.

We have then $0 \leqslant s \leqslant \frac{1}{2}$. Note that s is rational.
Choose $n_{1}=\left\lfloor x+\frac{1}{2}\right\rfloor=\lfloor x\rfloor$ or $\lfloor x\rfloor+1$ (the latter unless $\lfloor x\rfloor$ is nearer to x).
Put $r=\left|x-n_{1}\right|$. Then $r \leq \frac{1}{2}$.
If $n_{1}=\lfloor x\rfloor$ take $n_{2}=n_{1}-1$ and if $n_{1}=\lfloor x\rfloor+1$ take $n_{2}=n_{1}+1$
In either case $\left|x-n_{2}\right|=r+1$.
Now we may take, for $i=1,2, \gamma_{i}=n_{i}+m \sqrt{7} \in R$.
Put $\delta_{i}=N\left(\lambda-\gamma_{i}\right)=\left(x-n_{i}\right)^{2}-7(y-m)^{2}$. So $\delta_{1}=r^{2}-7 s^{2}$ and

$$
\begin{equation*}
\delta_{2}=(1+r)^{2}-7 s^{2}=\delta_{1}+1+2 r \tag{1}
\end{equation*}
$$

It is sufficient to prove that one of $\left|\delta_{1}\right|$ and $\left|\delta_{2}\right|$ is less than 1 because then we could take γ to be γ_{1} or γ_{2} as appropriate.
Suppose then that $\left|\delta_{1}\right| \nless 1$. We will show that $\left|\delta_{2}\right|<1$.
Now $0 \leqslant s \leqslant \frac{1}{2}$ and $0 \leqslant r \leqslant \frac{1}{2}$. So

$$
\begin{equation*}
-\frac{7}{4} \leqslant-7 s^{2} \leqslant \delta_{1} \leqslant r^{2} \leqslant \frac{1}{4} \tag{2}
\end{equation*}
$$

If $\left|\delta_{1}\right|=1$ then, by $(2), \delta_{1}=-1$. Therefore, by (1), $\delta_{2}=2 r$.
But in this case $r \neq \frac{1}{2}$ because we then would have $-1=\delta_{1}=\frac{1}{2}^{2}-7 s^{2}$ which gives $7 s^{2}=5 / 4$ and this is impossible since s is rational.

Hence, in this case, $\left|\delta_{2}\right|=2 r<1$.
If $\left|\delta_{1}\right|>1$ then, by $(2), \quad-\frac{7}{4} \leqslant \delta_{1}<-1$.
So, by (1), $\quad-\frac{3}{4} \leqslant-\frac{7}{4}+1+2 r \leqslant \delta_{2}<2 r \leqslant 1$.
So $\left|\delta_{2}\right|<1$ as required.
Thus ψ is a Euclidean Norm on R and R is a Euclidean Ring.
11 From the lectures we know that, in a UFD, for $D \equiv 1(\bmod 8)$, the prime 2 in \mathbb{Z} splits in \mathcal{O}_{D} into two primes which have a norm dividing the norm of 2 (which is 4), and hence would have to have the norm 2 each. But for $D<-7$ no such element exists (for $D=-7$ such a splitting of 2 is possible (how?), and the ring \mathcal{O}_{-7} is indeed a UFD...).

12 Use that an algebraic integer α divides its norm, and that the norm of α is an integer.

