Michaelmas 2012, NT III/IV, Solutions to Problem Sheet 4.

1 (i) & = V/7 has min. poly. X3 — 7 in Q[X] (irreducible over Q by Eisenstein’s
Criterion with prime 7). So n = |K : Q| = 3 with basis B = {1,6,6%} over Q.
Put o = a + b0 + cf?. We find

a(l) = a+ bh+ch? a Tc Tb
a(0) = Tet ab+b0? p and so the matrixof @is A= | b a Tc
a(0?) = Tb+7ch+ab? c b a
Hence Trx (o) = Tr(A) = 3a and Nk (a) = det(A) = -+ = a3 + 7b® + 49¢3 — 21abe.

(i) Let f(X) = X+ X? + 2. By the Gauss Lemma any root of f(X) in Q must
be an integer dividing the constant term, i.e. +1 or 2. Neither of these work. So
f(X) has no roots in Q. Thus, since f(X) is only cubic, it is irreducible in Q[X].
Hence f(X) is the min. poly. of 6 over Q, n = |K : Q| = 3 and we can take
B =1{1,0,6} as a basis for K over Q.

Put o = a + bf + cf?. We find

a(l) = = a +bo +cb?
a(0) = af + b6? + 63 = —2c +ab +(b—¢)6?
a(0?)==2c0 + ab? + (b — ¢)0>=2(c — b) —2cf +(a +c—b)§?

a —2c¢ 2(c—b)
And so the matrix of &is A= b «a —2c
¢c b—c a+c—b
Thus Trg () = Tr(4) = 3a — b+ ¢ and
Ni(a) = det(A) = a® — 2b3 + 4¢® — a®b + a®c + 2b%c — 4ac? + 6abe.
2 (i)Let f(X) = X*+2X +2. Then f(X) irreducible over Q by Eisenstein’s Criterion

with prime 2. Thus f(X) is the min. poly. of 6 over Q, n = |K : Q| = deg(f) =4
and we can take B = {1,0,0% 63} as a basis for K over Q.

We find
03(1) = 63 o 0o o 1\
0330) =0t = —2 —20 -2 -2 0 0
~ . So M =
03(6%)= —20 —262 0 -2 -2 0
9/3(93): _9202 _9¢3 0 0o -2 =2

is the matrix of 63. Thus Tri (03) = Tr(M) = —6.
Now put o = a + bf. We find

a(l) = a +b8
a(e) = af +b6?
a(e?) = af? +b63
a(0®)= ab® + bo* =—2b —2b0 +af?
a b 0 0\
0 a b 0
SoM=1"9 o 4
-2b =20 0 a
is the matrix of a + b. Thus Ni(a+b0) = det(M) = ... = a* — 2ab>® + 2b*.

7 (i) Let f(X) = X*+1. Then f(X +1) = X*+4X3+6X? +4X + 2 is irreducible
over Q by Eisenstein’s Criterion with prime 2 and so f(X) is irreducible, also. Thus
f(X) is the min. poly. of 8 over Q, n = |K : Q| = deg(f) = 4 and we can take
B={1,0,02,03} as a basis for K over Q.
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We find

03(1) = 6 o o0 o 1\’
030) =0t = —1 -1 0o o0 o
63(6%)= 9 cSoM=14y 1 0 o
9’\3(93): _p2 0 0 -1 0

is the matrix of #3. Thus Trx (63) = Tr(M) = 0.
Now put o = a + bf. We find

a(l) = a +bl
a(f) = af +b6*
a(6?) = ab? +bo3
a(0%)= a3 + bo* =—b +af?

a b 0 0\

0 a b 0

SoM=10 0 a b
b 0 0 a
is the matrix of a + b@. Thus Ng(a+bf) =det(M) = ... =a* + b*.

3 (i) and (ii): Multiply out.
(iii) The roots of Z™ — 1 are " for r =0, 1,...,n — 1.
So 2n —1=[['=}(Z - ).
Thus X" = Y" = Y"((X/Y)" = 1) = Y" [} (X/Y) = (") = [[}Z] (X = ¢"Y).

4 (1) (1+60,2)r(1—0+60%2)g=(1+6%2(1—0+6%),2(1+0),4)
=(8,2(1—0+6%*,2(1+0),4)
72(1 _29>a2(1+9)a4) [[92 _993]]
72(3)a2(1+9)a4) [[92+293]]
2a2(1+9)a4) [[92 _94]]
ince 2 divides all the other generators).
= =(140)2(1+0)%401+06),8)r
+60)2,2(1+0),4,1 -0+ 6*)g
+0)%,2(1+60),4,-30)r  [94 — g1
0)%,2(1+0),4,-30,21)r ~ [g5 = _9294]]
=(1+6)R [ged(4,21)=1].
(iii) We must show that, for o and 8 € R, ¥(a) € Z=2° (this is clear from the
formula of Q6(i)) and that
(a) ¥(aB) = Y(a)(B) (clear from properties of a norm);
(b) ¥(a) =0 = « = 0 (clear from properties of a norm)) and
(¢) ¥(a) =1 = a € R*".
So we only need bother with (c).
Suppose ¥(a) =1 so Ng(a) = £1. Put a = a + b + ch* with a,b, c € Z.
Putting X =a, Y = b0 and Z = cf? in Q8(ii) we find
+1 = Ng(a) = a®+ 70> +49¢® — 21abc = a(a® + b20% + 7c20 — abd — Tbc — ach?).
Thus +(a? + b%02 + 7c0 — ab — The — ach?) is an inverse for a in R.
So a € R*, as required.

2,2
2,2

(iv) Note that the converse of (iii) above is also true.For if &« € R* then o =1 for
some 8 € R and ¢ (a)y(8) = ¢¥(af) =¢(1) = 1. So ¢(a) = 1.
Now if (14 6,2)g = (a)g then, by (ii), (a®)r = (@)% = (1 + 0)k.

So a® = u(1 — ), for some unit u.

Thus (o) = ¥(a?) = Y(u)p(l —0) =1 x 8.



And hence () = 2.
But then, putting o = a + b8 + cf? with a,b, c € Z,

a® + 7b3 4+ 49¢® — 21abc = Ni (o) = +2 and a® = £2 mod 7. (%)
xz [0 £1]|£2|£3
23 0]+1]+1 |1

So the cubes mod 7 are +£1 and (x) is impossible.

But, mod 7, we have

Thus (14 6,2)g is not principal.

1+ 1+14)v2
5 Put 6 for % Clearly 6 = % € Q[i, V2.
Hence Q[6] C Q[i, v2].
On the other hand i = % € Q[¢] and hence v2 = ﬂif ! ;92 € Q[o).
V2
Whence Q[i,v2] C Q[8].
Thus Q[Y] = Qli, V2] (= L). (i)

Now, since L = Q[v/2][i] and since the min. poly. of i over Q[v/2] must divide X2+1,
IL:Q[v2]| < deg(X%+1)=2.
But |L: Q[v2]| # 1else i € L = Q[v2] C R. Contradiction.

So IL:Q[v2]| =2. (%)
Moreover |Q[v2] : Q] =2 (X? — 2 is irreducible over Q with root v/2).
Therefore IL:Q|=|L:Q[V2]| |Q[v2]:Q|=2x2=4. This proves (i).

(iii): Now #* =4 = —1.  So # is a root of X* + 1 € Q[X].
Moreover, the min. poly. of 6 in Q[X] must have degree
CIGRVEI A
Hence X* + 1 is this minimum polynomial. This proves (iii)a.
Again, 02 —/20+1 =i—(1+4)+1=0. So  is a root of X?—/2X +1 € Q[v2][X].
And the minimum polynomial of § in Q[v/2][X] must have degree

QM) : Q3| = |L: Q[v2)| 2 2.

Hence X2 — v/2X + 1 is this minimum polynomial. This proves (iii)b.
6 (i) Put @ =2+ /3 and L = Q[v/2+/3]. Certainly L O Q[f]. Now
0—V2=13,
=)

03 — 3V20% + 60 —2v2 =3,
ie.,
0% + 660 — 3 = (302 + 2)V2. (1)
Thus v2 = (6% + 660 — 3)/(30> +2) € Q[f] and V/3 =0 — /2 € Q[f)].
Hence Q[f] O L and so Q[f] = L and we have (i).
(ii) Put K; = Q[v2] and Ko = Q[v/3].
Using the minimum polynomials of v/2 and /3 over Q, we have
|K1: Q| =deg(X?—2)=2and |Ks: Q| = deg(X?3 —3) =3.
Also
|L: K| <deg(X®-3)=3
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since L = K;[V/3] and since X® — 3, even if not actually equal to the minimum
polynomial of ¥/3 over K7, must certainly be divisible by it.
Hence, by the Tower Theorem,
|IL:Q|=|L:K1]-|K;:Q <3x2=6.

Moreover, from the first equality,

2 =|K; : Q| divides |L : Q|
and, similarly,

3 =|Ks: Q| divides |L : Q|.
So, in fact, |L : Q| is divisible by 6. Hence |L : Q| = 6. This proves (ii).
[We now have that |K,[V/3] : K1| = IL:Q
K1 : Q)
of /3 over K has degree 3 (and so it must be X3 — 3 after all).]

= 3. Hence the minimum polynomial

(iii) Continuing from (1) (squaring both sides) we find:
05 + 120" — 66° + 360* — 360 + 9 (96% +126% +4) x 2,
ie. 6°—60"—66°+120>-360+1 = 0.
So 6 is a zero of f(X)= X% —-6X*—-6X3+12X2%2 36X + 1.
Now the degree of the min. poly. p(X) of 6 over Q is |Q[d] : Q| = |L : Q| = 6.
So, since p(X) | f(X), we have p(X) = f(X).
7 Choose n € Z7° so that np,(X) € Z[X]. We claim that na is an algebraic integer.
Let po(X) = X"+ X™ 1+ -+ gn_1X +qn. Thenng, € Zforr=1,...,m.
But na is a root of

n"pa(X/n) =0 ((X/n)" + q (X )" g1 (X1) + gm)
= X"+ X™ L+ 0™ g, 1 X + 0", € Z[X] .

So na is an algebraic integer.

8 Suppose, for a contradiction that .S is a UFD.

Choose A = «/f € K\ S such that @ and § € S and «/3 is a root of the
polynomial

FX)=X" 4+ X" -y X 4 ym € S[X].
Dividing « and ( by their ged, if necessary, we can assume that ged(a, 8) = 1.
Certainly, 0 is not a unit of S else A € S.
So there is a prime element 7 of S which divides § in S.
But a™ 4+ y1a™ B+ 1M 4 8™ = ™ f (o) B) = 0.
Som|B|—(ma™ 1B+ 1B+ 4, M) = o™,
But 7 is prime. So we have (using the obvious generalization of the defining property
of prime elements) that 7 | . This contradicts the fact that ged(a, 8) = 1.

So we have the desired contradiction and S cannot be a UFD.

10 (i) Put K = Q[v5] and R = Z[(1 4+ V/5)/2].
We define for o = a + bv/5 € K (a, b € Q), ¥(a) = [Ng(a)| = |a® — 56?.
From the properties of Nx we know that ¢ is multiplicative (¢(a8) = ¥ () (5))
and (since 5 =1 mod 4) that ¢(R) C Z.
To show that v is a Euclidean norm we must prove that
Vo, B € R, with a # 0 3 € R such that ¥(8 — ay) < ¢¥(a);
Since v is multiplicative ¥(5 — ay) /() = P(A — ) where A = 8/a € K. So it is
sufficient to show that
VA e K 3v € R such that (A —v) < 1.



Let A € K and put 2\ = z + yv/5, where z and y lie in Q.
Take m = |y + 3] and put s = |y — m|. (Here we use the notation |z| for the
largest integer smaller or equal to z.)

We have then 0 < s < %
Take n to be n = |x] or |x] 4+ 1 whichever is congruent to m mod 2.
So we have r := |z —n| < 1.

Finally, put v = (n +m+/5)/2. Then vy € R since n =m mod 2.

Now
Ny =N (E=NFE=mVE) _ (@—n)?—5y—m}? _r*-5s
2 4 1
So,simceogsgéand0<r<17
5 552 T2 1
ST SNA-N<s <
16 4 (A=) 1 1

Thus (A —v) = [N(A —~)| <1 as required.
So ¢ is a Euclidean Norm on R and R is a Euclidean Ring.

(ii) Put K = Q[v/—11] and R = Z[(1 + v/—11)/2].
We define for « = a + by/—11 € K (a, b € Q), ¥(a) = Ng(a) = a® + 11b%.

From the properties of Nx we know that ¢ is multiplicative (¢(a8) = ¥ () (5))
and that (since —11 =1 mod 4) that ¥(R) C Z.
To show that v is a Euclidean norm we must prove that

Va, B € R, with a # 0 3 € R such that ¥ (8 — ay) < ¢¥(a);
Since ¢ is multiplicative ¥(8 — ay)/¥(a) = Y(A — ) where A = §/a € K. So it is
sufficient to show that

VA€ K 3v € R such that (A —v) < 1.

Let A € K and put 2\ = z + yv/—11, where z and y lie in Q.
Take m = |y + 1] and put s = |y — m|.
We have then 0 < s < %

Take n to be n = |z] or |z] + 1 whichever is congruent to m mod 2.
So we have r := |z —n| < 1.

Finally, put v = (n 4+ m+/—11)/2. Then v € R since n =m mod 2.

Now
z—n)+(y—m)v—11 z—n)2+11(y—m)?2 r24+11s2
2 4 4
So,sinceogsgéandogrgl,
14+ 11(1/4 15

YA —7) < %/) =16 < 1, as required.

(For a more geometrical solution, find a point in the plane that has the same
distance to its three closest lattice points which form an isosceles triangle, e.g. 0, 1
and (14 +/—11)/2. Then compute that distance, it turns out to be < 1.)

So ¢ is a Euclidean Norm on R and R is a Euclidean Ring.

(iii) Put K = Q[v/7] and R = Z[V7].
We define for a = a + b7 € K (a, b € Q), ¥(a) = |[Ni(a)| = |a® — 7b?| .
Reasoning as in part (i) we find that it is sufficient to prove that

VA€ K 3v € R such that (A —v) < 1.

Let, then, A € K and put A = 2 + y/7, where z and y lie in Q.
Take m = [y + 3] and put s = |y — m|.
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We have then 0 < s < Note that s is rational.

1
5.
Choose ny = |z + 3] = |z] or [z] + 1 (the latter unless |z] is nearer to z).

Put r = |z — ny|. Then r < 3.
If ny = |z| take no =ny — 1 and if ny = [z| + 1 take no = ny + 1

In either case |z — ng| =7 + 1.
Now we may take, for i = 1,2, v; = n; + m\/7 € R.
Put 6; = N(A— ) = (x —n;)?> — 7(y — m)?. So §; =12 — 7s? and

So=(1+7r)?—7s* =8 +1+2r (1)

It is sufficient to prove that one of |§1| and |d2| is less than 1 because then we could
take v to be 1 or 79 as appropriate.

Suppose then that [01] £ 1. We will show that |d2| < 1.
NowasgéandOgrg%. So
7 1
—Z<—752<51<r2<1. (2)
If |§1] = 1 then, by (2), 61 = —1. Therefore, by (1), d2 = 2r.

But in this case r # % because we then would have —1 = 6; = %2 — 7s% which gives
7s? = 5/4 and this is impossible since s is rational.
Hence, in this case, |02| = 2r < 1.
If |61 > 1 then, by (2), —I<o <1
So, by (1), —3<-T+14+2r <o <2r1

So |d2] < 1 as required.
Thus 7 is a Euclidean Norm on R and R is a Euclidean Ring.

From the lectures we know that, in a UFD, for D = 1 (mod 8), the prime 2 in
Z splits in Op into two primes which have a norm dividing the norm of 2 (which
is 4), and hence would have to have the norm 2 each. But for D < —7 no such
element exists (for D = —7 such a splitting of 2 is possible (how?), and the ring
O_r is indeed a UFD...).

Use that an algebraic integer « divides its norm, and that the norm of « is an
integer.



