Michaelmas 2012, NT III/IV, Solutions to Problem Sheet 4.

1 (i) $\theta = \sqrt[3]{7}$ has min. poly. $X^3 - 7$ in $\mathbb{Q}[X]$ (irreducible over \mathbb{Q} by Eisenstein's Criterion with prime 7). So $n = |K : \mathbb{Q}| = 3$ with basis $\mathcal{B} = \{1, \theta, \theta^2\}$ over \mathbb{Q} . Put $\alpha = a + b\theta + c\theta^2$. We find

$$\begin{cases} \hat{\alpha}(1) = a + b\theta + c\theta^2 \\ \hat{\alpha}(\theta) = 7c + a\theta + b\theta^2 \\ \hat{\alpha}(\theta^2) = 7b + 7c\theta + a\theta^2 \end{cases} \text{ and so the matrix of } \hat{\alpha} \text{ is } A = \begin{pmatrix} a & 7c & 7b \\ b & a & 7c \\ c & b & a \end{pmatrix}.$$

Hence $\text{Tr}_K(\alpha) = \text{Tr}(A) = 3a$ and $N_K(\alpha) = \det(A) = \cdots = a^3 + 7b^3 + 49c^3 - 21abc$.

(ii) Let $f(X) = X^3 + X^2 + 2$. By the Gauss Lemma any root of f(X) in \mathbb{Q} must be an integer dividing the constant term, i.e. ± 1 or ± 2 . Neither of these work. So f(X) has no roots in \mathbb{Q} . Thus, since f(X) is only cubic, it is irreducible in $\mathbb{Q}[X]$. Hence f(X) is the min. poly. of θ over \mathbb{Q} , $n = |K : \mathbb{Q}| = 3$ and we can take $\mathcal{B} = \{1, \theta, \theta^2\}$ as a basis for K over \mathbb{Q} .

Put $\alpha = a + b\theta + c\theta^2$. We find

$$\begin{cases} \hat{\alpha}(1) = a + b\theta + c\theta^2 \\ \hat{\alpha}(\theta) = a\theta + b\theta^2 + c\theta^3 = -2c + a\theta + (b - c)\theta^2 \\ \hat{\alpha}(\theta^2) = -2c\theta + a\theta^2 + (b - c)\theta^3 = 2(c - b) - 2c\theta + (a + c - b)\theta^2 \end{cases}$$

And so the matrix of $\hat{\alpha}$ is $A = \begin{pmatrix} a & -2c & 2(c - b) \\ b & a & -2c \\ c & b - c & a + c - b \end{pmatrix}$.

Thus $\operatorname{Tr}_K(\alpha) = \operatorname{Tr}(A) = 3a - b + c$ and $N_K(\alpha) = \det(A) = a^3 - 2b^3 + 4c^3 - a^2b + a^2c + 2b^2c - 4ac^2 + 6abc.$

2 (i)Let $f(X) = X^4 + 2X + 2$. Then f(X) irreducible over \mathbb{Q} by Eisenstein's Criterion with prime 2. Thus f(X) is the min. poly. of θ over \mathbb{Q} , $n = |K : \mathbb{Q}| = \deg(f) = 4$ and we can take $\mathcal{B} = \{1, \theta, \theta^2, \theta^3\}$ as a basis for K over \mathbb{Q} . We find

t

$$\begin{cases} \widehat{\theta^3}(1) = & \theta^3 \\ \widehat{\theta^3}(\theta) = \theta^4 = -2 & -2\theta \\ \widehat{\theta^3}(\theta^2) = & -2\theta & -2\theta^2 \\ \widehat{\theta^3}(\theta^3) = & -2\theta^2 & -2\theta^3 \end{cases} \right\}. \text{ So } M = \begin{pmatrix} 0 & 0 & 0 & 1 \\ -2 & -2 & 0 & 0 \\ 0 & -2 & -2 & 0 \\ 0 & 0 & -2 & -2 \end{pmatrix}$$

is the matrix of $\hat{\theta}^3$. Thus $\operatorname{Tr}_K(\theta^3) = \operatorname{Tr}(M) = -6$.

Now put $\alpha = a + b\theta$. We find

$$\begin{cases} \widehat{\alpha}(1) &= a + b\theta \\ \widehat{\alpha}(\theta) &= a\theta + b\theta^2 \\ \widehat{\alpha}(\theta^2) &= a\theta^2 + b\theta^3 \\ \widehat{\alpha}(\theta^3) = a\theta^3 + b\theta^4 = -2b - 2b\theta + a\theta^3 \\ \widehat{\alpha}(\theta^3) = a\theta^3 + b\theta^4 = -2b - 2b\theta + a\theta^3 \end{cases} \right\}.$$

So $M = \begin{pmatrix} a & b & 0 & 0 \\ 0 & a & b & 0 \\ 0 & 0 & a & b \\ -2b & -2b & 0 & a \end{pmatrix}^t$

is the matrix of $\widehat{a+b\theta}$. Thus $N_K(a+b\theta) = \det(M) = \ldots = a^4 - 2ab^3 + 2b^4$.

7 (ii) Let $f(X) = X^4 + 1$. Then $f(X+1) = X^4 + 4X^3 + 6X^2 + 4X + 2$ is irreducible over \mathbb{Q} by Eisenstein's Criterion with prime 2 and so f(X) is irreducible, also. Thus f(X) is the min. poly. of θ over \mathbb{Q} , $n = |K : \mathbb{Q}| = \deg(f) = 4$ and we can take $\mathcal{B} = \{1, \theta, \theta^2, \theta^3\}$ as a basis for K over \mathbb{Q} . We find

$$\begin{cases} \widehat{\theta^3}(1) = & \theta^3 \\ \widehat{\theta^3}(\theta) = \theta^4 = & -1 \\ \widehat{\theta^3}(\theta^2) = & -\theta \\ \widehat{\theta^3}(\theta^3) = & -\theta^2 \end{cases} \end{cases}. \text{ So } M = \begin{pmatrix} 0 & 0 & 0 & 1 \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \end{pmatrix}^t.$$

is the matrix of $\hat{\theta}^3$. Thus $\operatorname{Tr}_K(\theta^3) = \operatorname{Tr}(M) = 0$.

Now put $\alpha = a + b\theta$. We find

$$\begin{cases} \hat{\alpha}(1) &= a + b\theta \\ \hat{\alpha}(\theta) &= a\theta + b\theta^2 \\ \hat{\alpha}(\theta^2) &= a\theta^2 + b\theta^3 \\ \hat{\alpha}(\theta^3) = a\theta^3 + b\theta^4 = -b + a\theta^3 \end{cases} \right\}.$$

So $M = \begin{pmatrix} a & b & 0 & 0 \\ 0 & a & b & 0 \\ 0 & 0 & a & b \\ -b & 0 & 0 & a \end{pmatrix}^t$

is the matrix of $a + b\theta$. Thus $N_K(a + b\theta) = \det(M) = \ldots = a^4 + b^4$.

3 (i) and (ii): Multiply out.

(iii) The roots of $Z^n - 1$ are ζ^r for r = 0, 1, ..., n - 1. So $Z^n - 1 = \prod_{r=1}^{n-1} (Z - \zeta^r)$. Thus $X^n - Y^n = Y^n((X/Y)^n - 1) = Y^n \prod_{r=1}^{n-1} ((X/Y) - \zeta^r) = \prod_{r=1}^{n-1} (X - \zeta^r Y)$. (i) $(1 + \theta - 2)_P (1 - \theta + \theta^2 - 2)_P = (1 + \theta^3 - 2(1 - \theta + \theta^2) - 2(1 + \theta) - 4)$

$$\begin{aligned}
\mathbf{4} & (1) \ (1+\theta,2)_R (1-\theta+\theta^2,2)_R = (1+\theta^3,2(1-\theta+\theta^2),2(1+\theta),4) \\
&= (8,2(1-\theta+\theta^2),2(1+\theta),4) \\
&= (8,2(1-2\theta),2(1+\theta),4) \quad [\![g_2-\theta g_3]\!] \\
&= (8,2(3),2(1+\theta),4) \quad [\![g_2+2g_3]\!] \\
&= (8,2,2(1+\theta),4) \quad [\![g_2-g_4]\!] \\
&= (2) \quad (\text{since } 2 \text{ divides all the other generators}).
\end{aligned}$$

(ii) $(1 + \theta, 2)_R^3 = \dots = ((1 + \theta)^3, 2(1 + \theta)^2, 4(1 + \theta), 8)_R$ $= (1 + \theta)((1 + \theta)^2, 2(1 + \theta), 4, 1 - \theta + \theta^2)_R$ $= (1 + \theta)((1 + \theta)^2, 2(1 + \theta), 4, -3\theta)_R \quad [\![g_4 - g_1]\!]$ $= (1 + \theta)((1 + \theta)^2, 2(1 + \theta), 4, -3\theta, 21)_R \quad [\![g_5 = -\theta^2 g_4]\!]$ $= (1 + \theta)R \quad [\![gcd(4, 21) = 1]\!].$

(iii) We must show that, for α and $\beta \in R$, $\psi(\alpha) \in \mathbb{Z}^{\geq 0}$ (this is clear from the formula of Q6(i)) and that

- (a) $\psi(\alpha\beta) = \psi(\alpha)\psi(\beta)$ (clear from properties of a norm);
- (b) $\psi(\alpha) = 0 \implies \alpha = 0$ (clear from properties of a norm)) and
- (c) $\psi(\alpha) = 1 \implies \alpha \in R^*$.

So we only need bother with (c).

Suppose $\psi(\alpha) = 1$ so $N_K(\alpha) = \pm 1$. Put $\alpha = a + b\theta + c\theta^2$ with $a, b, c \in \mathbb{Z}$. Putting $X = a, Y = b\theta$ and $Z = c\theta^2$ in Q8(ii) we find

 $\pm 1 = N_K(\alpha) = a^3 + 7b^3 + 49c^3 - 21abc = \alpha(a^2 + b^2\theta^2 + 7c^2\theta - ab\theta - 7bc - ac\theta^2).$ Thus $\pm (a^2 + b^2\theta^2 + 7c^2\theta - ab\theta - 7bc - ac\theta^2)$ is an inverse for α in R.

So $\alpha \in R^*$, as required.

(iv) Note that the converse of (iii) above is also true. For if $\alpha \in R^*$ then $\alpha\beta = 1$ for some $\beta \in R$ and $\psi(\alpha)\psi(\beta) = \psi(\alpha\beta) = \psi(1) = 1$. So $\psi(\alpha) = 1$.

Now if $(1 + \theta, 2)_R = (\alpha)_R$ then, by (ii), $(\alpha^3)_R = (\alpha)_R^3 = (1 + \theta)_R$.

So $\alpha^3 = u(1 - \theta)$, for some unit u.

Thus $\psi(\alpha)^3 = \psi(\alpha^3) = \psi(u)\psi(1-\theta) = 1 \times 8.$

 $\mathbf{2}$

And hence $\psi(\alpha) = 2$. But then, putting $\alpha = a + b\theta + c\theta^2$ with $a, b, c \in \mathbb{Z}$, $a^{3} + 7b^{3} + 49c^{3} - 21abc = N_{K}(\alpha) = \pm 2 \text{ and } a^{3} \equiv \pm 2 \mod 7.$ (*)But, mod 7, we have So the cubes mod 7 are ± 1 and (*) is impossible. Thus $(1 + \theta, 2)_R$ is not principal. **5** Put θ for $\frac{1+i}{\sqrt{2}}$. Clearly $\theta = \frac{(1+i)\sqrt{2}}{2} \in \mathbb{Q}[i,\sqrt{2}]$. Hence $\mathbb{Q}[\theta] \subseteq \mathbb{Q}[i, \sqrt{2}].$ On the other hand $i = \theta^2 \in \mathbb{Q}[\theta]$ and hence $\sqrt{2} = \frac{1+i}{\frac{1+i}{\sqrt{2}}} = \frac{1+\theta^2}{\theta} \in \mathbb{Q}[\theta].$ $\mathbb{Q}[i,\sqrt{2}] \subseteq \mathbb{Q}[\theta].$ Whence $\mathbb{Q}[\theta] = \mathbb{Q}[i, \sqrt{2}] (= L).$ Thus (ii) Now, since $L = \mathbb{Q}[\sqrt{2}][i]$ and since the min. poly. of *i* over $\mathbb{Q}[\sqrt{2}]$ must divide $X^2 + 1$, $|L: \mathbb{Q}[\sqrt{2}]| \le \deg(X^2 + 1) = 2.$ But $|L: \mathbb{Q}[\sqrt{2}]| \neq 1$ else $i \in L = \mathbb{Q}[\sqrt{2}] \subset \mathbb{R}$. Contradiction. $|L:\mathbb{Q}[\sqrt{2}]|=2.$ So (*)Moreover $|\mathbb{Q}[\sqrt{2}] : \mathbb{Q}| = 2$ $(X^2 - 2$ is irreducible over \mathbb{Q} with root $\sqrt{2}$). $|L:\mathbb{Q}| = |L:\mathbb{Q}[\sqrt{2}]| \cdot |\mathbb{Q}[\sqrt{2}]:\mathbb{Q}| = 2 \times 2 = 4.$ Therefore This proves (i). (iii): Now $\theta^4 = i^2 = -1$. So θ is a root of $X^4 + 1 \in \mathbb{Q}[X]$. Moreover, the min. poly. of θ in $\mathbb{Q}[X]$ must have degree $|\mathbb{Q}[\theta]:\mathbb{Q}| \stackrel{\text{(ii)}}{=} |L:\mathbb{Q}| \stackrel{\text{(i)}}{=} 4.$ Hence $X^4 + 1$ is this minimum polynomial. This proves (iii)a. Again, $\theta^2 - \sqrt{2}\theta + 1 = i - (1+i) + 1 = 0$. So θ is a root of $X^2 - \sqrt{2}X + 1 \in \mathbb{Q}[\sqrt{2}][X]$. And the minimum polynomial of θ in $\mathbb{Q}[\sqrt{2}][X]$ must have degree $\left|\mathbb{Q}[\theta]:\mathbb{Q}[\sqrt{2}]\right| = \left|L:\mathbb{Q}[\sqrt{2}]\right| \stackrel{(*)}{=} 2.$

Hence $X^2 - \sqrt{2}X + 1$ is this minimum polynomial. This proves (iii)b. **6** (i) Put $\theta = \sqrt{2} + \sqrt[3]{3}$ and $L = \mathbb{Q}[\sqrt{2}\sqrt[3]{3}]$. Certainly $L \supseteq \mathbb{Q}[\theta]$. Now

 $\theta - \sqrt{2} = \sqrt[3]{3}$

so

$$\theta^3 - 3\sqrt{2}\theta^2 + 6\theta - 2\sqrt{2} = 3,$$

i.e.,

$$\theta^3 + 6\theta - 3 = (3\theta^2 + 2)\sqrt{2}. \tag{1}$$

Thus $\sqrt{2} = (\theta^3 + 6\theta - 3)/(3\theta^2 + 2) \in \mathbb{Q}[\theta]$ and $\sqrt[3]{3} = \theta - \sqrt{2} \in \mathbb{Q}[\theta]$.

Hence $\mathbb{Q}[\theta] \supseteq L$ and so $\mathbb{Q}[\theta] = L$ and we have (i).

(ii) Put $K_1 = \mathbb{Q}[\sqrt{2}]$ and $K_2 = \mathbb{Q}[\sqrt[3]{3}]$.

Using the minimum polynomials of $\sqrt{2}$ and $\sqrt[3]{3}$ over \mathbb{Q} , we have

$$|K_1:\mathbb{Q}| = \deg(X^2 - 2) = 2$$
 and $|K_2:\mathbb{Q}| = \deg(X^3 - 3) = 3.$

Also

$$|L:K_1| \le \deg(X^3 - 3) = 3$$

)

since $L = K_1[\sqrt[3]{3}]$ and since $X^3 - 3$, even if not actually equal to the minimum polynomial of $\sqrt[3]{3}$ over K_1 , must certainly be divisible by it. Hence, by the Tower Theorem,

 $|L:\mathbb{Q}| = |L:K_1| \cdot |K_1:\mathbb{Q}| \le 3 \times 2 = 6.$

Moreover, from the first equality,

 $2 = |K_1 : \mathbb{Q}|$ divides $|L : \mathbb{Q}|$

and, similarly,

$$3 = |K_2 : \mathbb{Q}|$$
 divides $|L : \mathbb{Q}|$

So, in fact, $|L:\mathbb{Q}|$ is divisible by 6. Hence $|L:\mathbb{Q}| = 6$. This proves (ii). [We now have that $|K_1[\sqrt[3]{3}]: K_1| = \frac{|L:\mathbb{Q}|}{|K_1:\mathbb{Q}|} = 3$. Hence the minimum polynomial of $\sqrt[3]{3}$ over K_1 has degree 3 (and so it must be $X^3 - 3$ after all).]

(iii) Continuing from (1) (squaring both sides) we find:

$$\begin{array}{rcl} \theta^6 + 12\theta^4 - 6\theta^3 + 36\theta^2 - 36\theta + 9 &=& (9\theta^4 + 12\theta^2 + 4) \times 2 \,, \\ \text{i.e.} & \theta^6 - 6\theta^4 - 6\theta^3 + 12\theta^2 - 36\theta + 1 &=& 0. \end{array}$$

So θ is a zero of $f(X) = X^6 - 6X^4 - 6X^3 + 12X^2 - 36X + 1$. Now the degree of the min. poly. p(X) of θ over \mathbb{Q} is $|\mathbb{Q}[\theta] : \mathbb{Q}| = |L : \mathbb{Q}| = 6$.

So, since $p(X) \mid f(X)$, we have p(X) = f(X).

7 Choose $n \in \mathbb{Z}^{>0}$ so that $np_{\alpha}(X) \in \mathbb{Z}[X]$. We claim that $n\alpha$ is an algebraic integer. Let $p_{\alpha}(X) = X^m + q_1 X^{m-1} + \dots + q_{m-1} X + q_m$. Then $nq_r \in \mathbb{Z}$ for $r = 1, \dots, m$. But $n\alpha$ is a root of

$$n^{m} p_{\alpha}(X/n) = n^{m} ((X/n)^{m} + q_{1}(X/n)^{m-1} + \dots + q_{n-1}(X/n) + q_{m})$$

= $X^{m} + nq_{1}X^{m-1} + \dots + n^{m-1}q_{n-1}X + n^{m}q_{m} \in \mathbb{Z}[X].$

So $n\alpha$ is an algebraic integer.

8 Suppose, for a contradiction that S is a UFD.

Choose $\lambda = \alpha/\beta \in K \setminus S$ such that α and $\beta \in S$ and α/β is a root of the polynomial

 $f(X) = X^m + \gamma_1 X^{m-1} + \dots + \gamma_{n-1} X + \gamma_m \in S[X].$

Dividing α and β by their gcd, if necessary, we can assume that $gcd(\alpha, \beta) = 1$. Certainly, β is not a unit of S else $\lambda \in S$.

So there is a prime element π of S which divides β in S.

But $\alpha^m + \gamma_1 \alpha^{m-1} \beta + \dots + \gamma_{m-1} \alpha \beta^{m-1} + \gamma_m \beta^m = \beta^m f(\alpha/\beta) = 0.$ So $\pi \mid \beta \mid -(\gamma_1 \alpha^{m-1} \beta + \dots + \gamma_{m-1} \alpha \beta^{m-1} + \gamma_m \beta^m) = \alpha^m.$

But π is prime. So we have (using the obvious generalization of the defining property of prime elements) that $\pi \mid \alpha$. This contradicts the fact that $gcd(\alpha, \beta) = 1$.

So we have the desired contradiction and S cannot be a UFD.

10 (i) Put $K = \mathbb{Q}[\sqrt{5}]$ and $R = \mathbb{Z}[(1 + \sqrt{5})/2]$.

We define for $\alpha = a + b\sqrt{5} \in K$ $(a, b \in \mathbb{Q}), \psi(\alpha) = |N_K(\alpha)| = |a^2 - 5b^2|.$

From the properties of N_K we know that ψ is multiplicative $(\psi(\alpha\beta) = \psi(\alpha)\psi(\beta))$ and (since $5 \equiv 1 \mod 4$) that $\psi(R) \subset \mathbb{Z}$.

To show that ψ is a Euclidean norm we must prove that

 $\forall \alpha, \beta \in R$, with $\alpha \neq 0 \exists \gamma \in R$ such that $\psi(\beta - \alpha \gamma) < \psi(\alpha)$;

Since ψ is multiplicative $\psi(\beta - \alpha \gamma)/\psi(\alpha) = \psi(\lambda - \gamma)$ where $\lambda = \beta/\alpha \in K$. So it is sufficient to show that

 $\forall \lambda \in K \exists \gamma \in R \text{ such that } \psi(\lambda - \gamma) < 1.$

4

Let $\lambda \in K$ and put $2\lambda = x + y\sqrt{5}$, where x and y lie in \mathbb{Q} .

Take $m = \lfloor y + \frac{1}{2} \rfloor$ and put s = |y - m|. (Here we use the notation $\lfloor x \rfloor$ for the largest integer smaller or equal to x.)

We have then $0 \leq s \leq \frac{1}{2}$.

Take n to be $n = \lfloor x \rfloor$ or $\lfloor x \rfloor + 1$ whichever is congruent to m mod 2. So we have $r := |x - n| \le 1$.

Finally, put $\gamma = (n + m\sqrt{5})/2$. Then $\gamma \in R$ since $n \equiv m \mod 2$. Now

$$N(\lambda - \gamma) = N\left(\frac{(x - n) + (y - m)\sqrt{5}}{2}\right) = \frac{(x - n)^2 - 5(y - m)^2}{4} = \frac{r^2 - 5s^2}{4}$$

So, since $0 \leq s \leq \frac{1}{2}$ and $0 \leq r \leq 1$,

$$-\frac{5}{16} \leqslant -\frac{5s^2}{4} \leqslant N(\lambda - \gamma) \leqslant \frac{r^2}{4} \leqslant \frac{1}{4}.$$

Thus $\psi(\lambda - \gamma) = |N(\lambda - \gamma)| < 1$ as required.

So ψ is a Euclidean Norm on R and R is a Euclidean Ring.

(ii) Put $K = \mathbb{Q}[\sqrt{-11}]$ and $R = \mathbb{Z}[(1 + \sqrt{-11})/2]$.

We define for $\alpha = a + b\sqrt{-11} \in K$ $(a, b \in \mathbb{Q}), \psi(\alpha) = N_K(\alpha) = a^2 + 11b^2$.

From the properties of N_K we know that ψ is multiplicative $(\psi(\alpha\beta) = \psi(\alpha)\psi(\beta))$ and that (since $-11 \equiv 1 \mod 4$) that $\psi(R) \subset \mathbb{Z}$.

To show that ψ is a Euclidean norm we must prove that

 $\forall \alpha, \beta \in R$, with $\alpha \neq 0 \exists \gamma \in R$ such that $\psi(\beta - \alpha \gamma) < \psi(\alpha)$;

Since ψ is multiplicative $\psi(\beta - \alpha \gamma)/\psi(\alpha) = \psi(\lambda - \gamma)$ where $\lambda = \beta/\alpha \in K$. So it is sufficient to show that

 $\forall \lambda \in K \ \exists \gamma \in R \text{ such that } \psi(\lambda - \gamma) < 1.$

Let $\lambda \in K$ and put $2\lambda = x + y\sqrt{-11}$, where x and y lie in \mathbb{Q} .

Take $m = \lfloor y + \frac{1}{2} \rfloor$ and put s = |y - m|.

We have then $0 \leq s \leq \frac{1}{2}$.

Take n to be $n = \lfloor x \rfloor$ or $\lfloor x \rfloor + 1$ whichever is congruent to m mod 2.

So we have $r := |x - n| \le 1$.

Finally, put $\gamma = (n + m\sqrt{-11})/2$. Then $\gamma \in R$ since $n \equiv m \mod 2$. Now

$$\psi(\lambda - \gamma) = \psi\left(\frac{(x-n) + (y-m)\sqrt{-11}}{2}\right) = \frac{(x-n)^2 + 11(y-m)^2}{4} = \frac{r^2 + 11s^2}{4}.$$

So, since $0 \leq s \leq \frac{1}{2}$ and $0 \leq r \leq 1$,

 $\psi(\lambda - \gamma) \leq \frac{1 + 11(1/4)}{4} = \frac{15}{16} < 1$, as required.

(For a more geometrical solution, find a point in the plane that has the same distance to its three closest lattice points which form an isosceles triangle, e.g. 0, 1 and $(1 + \sqrt{-11})/2$. Then compute that distance, it turns out to be < 1.)

So ψ is a Euclidean Norm on R and R is a Euclidean Ring.

(iii) Put $K = \mathbb{Q}[\sqrt{7}]$ and $R = \mathbb{Z}[\sqrt{7}]$.

We define for $\alpha = a + b\sqrt{7} \in K$ $(a, b \in \mathbb{Q}), \psi(\alpha) = |N_K(\alpha)| = |a^2 - 7b^2|$. Reasoning as in part (i) we find that it is sufficient to prove that

 $\forall \lambda \in K \exists \gamma \in R \text{ such that } \psi(\lambda - \gamma) < 1.$

Let, then, $\lambda \in K$ and put $\lambda = x + y\sqrt{7}$, where x and y lie in \mathbb{Q} . Take $m = \lfloor y + \frac{1}{2} \rfloor$ and put s = |y - m|. We have then $0 \leq s \leq \frac{1}{2}$. Note that s is rational.

Choose $n_1 = \lfloor x + \frac{1}{2} \rfloor = \lfloor x \rfloor$ or $\lfloor x \rfloor + 1$ (the latter unless $\lfloor x \rfloor$ is nearer to x). Put $r = |x - n_1|$. Then $r \leq \frac{1}{2}$.

If $n_1 = \lfloor x \rfloor$ take $n_2 = n_1 - 1$ and if $n_1 = \lfloor x \rfloor + 1$ take $n_2 = n_1 + 1$ In either case $|x - n_2| = r + 1$.

Now we may take, for $i = 1, 2, \gamma_i = n_i + m\sqrt{7} \in R$. Put $\delta_i = N(\lambda - \gamma_i) = (x - n_i)^2 - 7(y - m)^2$. So $\delta_1 = r^2 - 7s^2$ and $\delta_2 = (1 + r)^2 - 7s^2 = \delta_1 + 1 + 2r$. (1)

It is sufficient to prove that one of $|\delta_1|$ and $|\delta_2|$ is less than 1 because then we could take γ to be γ_1 or γ_2 as appropriate.

Suppose then that $|\delta_1| \leq 1$. We will show that $|\delta_2| < 1$.

Now $0 \leq s \leq \frac{1}{2}$ and $0 \leq r \leq \frac{1}{2}$. So

$$-\frac{7}{4} \leqslant -7s^2 \leqslant \delta_1 \leqslant r^2 \leqslant \frac{1}{4}.$$
 (2)

If $|\delta_1| = 1$ then, by (2), $\delta_1 = -1$. Therefore, by (1), $\delta_2 = 2r$. But in this case $r \neq \frac{1}{2}$ because we then would have $-1 = \delta_1 = \frac{1}{2}^2 - 7s^2$ which gives $7s^2 = 5/4$ and this is impossible since s is rational.

Hence, in this case, $|\delta_2| = 2r < 1$.

If $|\delta_1| > 1$ then, by (2), So, by (1), $-\frac{3}{4} \le -\frac{7}{4} + 1 + 2r \le \delta_2 < 2r \le 1.$

So $|\delta_2| < 1$ as required.

Thus ψ is a Euclidean Norm on R and R is a Euclidean Ring.

- 11 From the lectures we know that, in a UFD, for $D \equiv 1 \pmod{8}$, the prime 2 in \mathbb{Z} splits in \mathcal{O}_D into two primes which have a norm dividing the norm of 2 (which is 4), and hence would have to have the norm 2 each. But for D < -7 no such element exists (for D = -7 such a splitting of 2 is possible (how?), and the ring \mathcal{O}_{-7} is indeed a UFD...).
- 12 Use that an algebraic integer α divides its norm, and that the norm of α is an integer.

6