Michaelmas 2012, NT III/IV, Solutions to Problem Sheet 5.

1 Let R be a UFD, and let K be its quotient field. Suppose $x \in K$ satisfies a monic equation

$$
X^{n}+a_{n-1} X^{n-1}+\cdots+a_{0}
$$

with coefficients a_{i} in R and some $n>0$. Then we have to show that x is already contained in R.

Recall that any $x \in K$ can be written as α / β where α, β are comprime in R (also $\beta \neq 0$). Hence we have

$$
(\alpha / \beta)^{n}+a_{n-1}(\alpha / \beta)^{n-1}+\cdots+a_{0},
$$

and after multiplying by β^{n} we get

$$
\alpha^{n}=-a_{n-1} \alpha^{n-1} \beta=\cdots-a_{0} \beta^{n} .
$$

Now β divides any term on the right, hence must divide also the left hand side. But then it also must divide α. (Use inductively the fact that if β divides $\alpha \gamma$ and is coprime to α, then it must divide γ.)

Hence β must be a unit, and we conclude that x is indeed already in R.
2 (i) We work in the ring $R=\mathbb{Z}[i]$.
We know that R is Euclidean and hence a UFD.
Note that $R^{*}=\{ \pm 1, \pm i\}$.
Put $\alpha=a+b i$ and $N=2^{3} \times 7^{4} \times 37^{5} \times 41$. Then

$$
\begin{equation*}
a^{2}+b^{2}=2^{3} \times 7^{4} \times 37^{5} \times 41=N, \text { with } a, b \in \mathbb{Z} \tag{1}
\end{equation*}
$$

may be written

$$
\alpha \widetilde{\alpha}=N, \text { with } \alpha \in \mathbb{Z}[i] .
$$

If π is an irreducible element of R (and hence a prime element of R, since R is a UFD) which divides α then π divides $\alpha \widetilde{\alpha}=N$.

So π divides one of the prime integer factors $p(p=2,7,37$ and 41) of N.
By results from the lectures, either p is itself irreducible or $p= \pm \alpha_{p} \widetilde{\alpha}_{p}=r^{2}+s^{2}$, where $\alpha_{p}=r+i s$ and $\widetilde{\alpha}_{p}$ are irreducible (and r and $s \in \mathbb{Z}$).

By inspection (trying to solve $p=r^{2}+s^{2}$), we find:
$2=\alpha_{2} \widetilde{\alpha}_{2}=-i \alpha_{2}^{2}$ where $\alpha_{2}=1+i$ (so 2 ramifies).
7 is prime (hence inert) in R (else $7=r^{2}+s^{2}$ which can't be done.)
$37=\alpha_{37} \widetilde{\alpha}_{37}$ where $\alpha_{37}=6+i$, so 37 splits.
$41=\alpha_{41} \widetilde{\alpha}_{41}$ where $\alpha_{41}=5+4 i$, so 41 splits.
So $\pi \sim \alpha_{2}, \alpha_{37}, \widetilde{\alpha}_{37}, \alpha_{41}$ or $\widetilde{\alpha}_{41}$. And since these primes are non-associate α may be written uniquely as a product of powers of these primes times a unit:

$$
\alpha=\left\{\begin{array}{c}
\pm 1 \\
o r \\
\pm i
\end{array}\right\} \times \alpha_{2}^{r} \times 7^{s} \times \alpha_{37}^{t} \times \tilde{\alpha}_{37}^{u} \times \alpha_{41}^{v} \times \tilde{\alpha}_{41}^{w}
$$

where r, s, t, u, v, w are non-negative integers. To satisfy $\left(1^{\prime}\right)$ the norm of the RHS must be N viz.

$$
2^{r} \times 7^{2 s} \times 37^{t+u} \times 41^{v+w}=2^{3} \times 7^{4} \times 37^{5} \times 41
$$

This holds iff $r=3, s=2, t+u=5$ (viz. $t=5-u=0,1,2,3,4$ or 5) and $v+w=1$ (viz. $v=1-w=0$ or 1).

Thus we have independent choices multiplying up to give
4 (for units) $\times 6$ (for $(t, u)) \times 2($ for $(v, w))=48$ choices
for $\alpha \in \mathbb{Z}[i]$ satisfying (1^{\prime}) and hence 48 solutions $(a, b) \in \mathbb{Z} \times \mathbb{Z}$ satisfying (1).

Now every "positive" solution, $(a, b) \in \mathbb{N} \times \mathbb{N}$, gives rise to $4,(\pm a, \pm b) \in \mathbb{Z} \times \mathbb{Z}$. We easily see that neither a nor b can be 0 in (1). So all solutions arise in this way. So there are $48 / 4=12$ solutions to (1) in $\mathbb{N} \times \mathbb{N}$.
2 (ii) Working as in (i) but with $N=3^{3} \times 41 \times 43$ we find that 3 cannot be written $r^{2}+s^{2}$ so, like 7 in (i), 3 is inert in R. Proceeding as in (i) we find that, in this case, if $\alpha \widetilde{\alpha}=N$ then the power to which 3 occurs in the factorization of α has to be $3 / 2$, which is not possible. So, in this case there are no solutions.
2 (iii) Suppose that

$$
\begin{equation*}
a^{2}+25 b^{2}=4 \times 29 \times 113^{4}(=M, \text { say }) \text { with } a, b \in \mathbb{Z} \tag{*}
\end{equation*}
$$

Put $\alpha=a+5 b i \in \mathbb{Z}[i]=R$, say. So, as before, R is a UFD.
We may then rewrite the equation of $(*)$ as $\quad \alpha \bar{\alpha}=M$.
We find $2=-i(1+i)^{2}$ ramifies and that $29=(2+5 i)(2-5 i)$ and $113=(7+8 i)(7-8 i)$ split. We take $\alpha_{2}=1+i, \alpha_{29}=2+5 i$ and $\alpha_{113}=7+8 i$.
Factoring α in terms of a unit and powers of these primes (and of their conjugates in the split cases), as in (i), we find that the solutions of $(* *)$ are, without repetition:

$$
\alpha=i^{r} \times \alpha_{2}^{2} \times \alpha_{29}^{t} \times \bar{\alpha}_{29}^{(1-t)} \times \alpha_{113}^{u} \times \bar{\alpha}_{113}^{(4-u)}
$$

where $r=0,1,2$ or 3 and $t=0$ or 1 and $u=0,1,2,3$ or 4 .
So there are $4 \times 2 \times 5=40$ solutions to $(* *)$ in R.
But which of these α give a solution to $(*)$?
They are those α with imaginary part divisible by 5 , that is, such that $\alpha \equiv a \bmod 5 R$ for some $a \in \mathbb{Z}$.
Now, modulo $5 R$,

$$
\begin{aligned}
& \alpha_{113} \equiv-2 i(1+i), \\
& \bar{\alpha}_{113} \equiv 2(1+i) \text { and } \\
& \alpha_{29} \equiv \bar{\alpha}_{29} \equiv 2 .
\end{aligned}
$$

So with α as given at (\dagger):

$$
\alpha \equiv i^{r+u}(-1)^{u}(1+i)^{2+4} \times 2^{1+4} \equiv(-1)^{u} i^{r+u+3}
$$

(Note: $\left.(1+i)^{2}=2 i, 2^{4} \equiv 1 \bmod 5\right)$.
Thus α is congruent to a rational integer $\bmod 5 R$ iff the power of i here is even, that is, iff $r \equiv u+3 \bmod 2$.

But for any choice of t and u exactly half the possibilities for r satisfy this condition.
Thus half the α of (\dagger) give solutions to $(*)$, which therefore has 20 solutions in \mathbb{Z}^{2} and 5 in $(\mathbb{N})^{2}$ (cf. previous examples).
(Note that we have proved a bit more, namely that either the real part or the imaginary part of α (but not both) is divisible by 5 . This is equivalent to saying that in every solution of

$$
a^{2}+c^{2}=M, \quad a, c \in \mathbb{Z}
$$

(and from (\dagger) there are 40 of these) exactly one of a or c is divisible by 5 . Maybe you can see a quick way of proving this fact (by reducing the equation mod 5). This would provide an alternative way of finishing the problem.)
2 (iv) We have 2 units, all three primes involved are split in $\mathcal{O}_{-} 7$, norm of ($a+$ $b \sqrt{-7}$) $/ 2$ is $2 \cdot 23 \cdot 43$ (note that we should divide by 4 first and then use that \mathcal{O}_{7} is a UFD), hence we can find $2 \times 2 \times 2 \times 2=16$ solutions in \mathbb{Z}, as well as 4 ones in \mathbb{N} (they come in packages of 4 , as $a=0$ or $b=0$ is impossible), e.g. $(a, b)=(53,27)$.

2 (v) Note that there should be a minus sign in the expression on the left hand side, giving $a^{2}-a b+b^{2}$. There are 6 units $\omega^{j}(j=0, \ldots, 5)$ in R; the three primes involved are 3 (ramified) as well as 7 and 61 (both split), all to exponent 1. For example, we find $7=N(2+\sqrt{-3})=N(3+2 \omega)=N(1-2 \omega)$ and $61=N(7+2 \sqrt{-3})=$ $N(9+4 \omega)=N(5-4 \omega)$. Overall, we get $6 \times 1 \times 2 \times 2=24$ solutions, all of which are integer solutions. This time, they also come in packets of four, but for a different reason: with (a, b) also $(b, a),(-a,-b)$ and $(-b,-a)$ are solutions. Moreover, there is a further symmetry: with (a, b) also $(a, a-b)$ gives a solution. With the help of those symmetries, we actually can group the solutions into two packets of 12 , arising from $(a, b)=(11,40)$ and $(16,41)$. Each packet of 12 contains precisely 4 solutions in natural numbers.

2 (vii) Suppose that $a^{2}-2 b^{2}=21$ for some $a, b \in \mathbb{Z}$.
If $3 \mid b$ then $3 \mid a$ and $3^{2} \mid a^{2}-2 b^{2}=21$. \#
So $3 \nmid b$ or a. And hence, $a^{2} \equiv b^{2} \equiv 1 \bmod 3$.
But $a^{2} \equiv 2 b^{2} \bmod 3$. So $1 \equiv 2 \bmod 3$. \#
Therefore $a^{2}-2 b^{2}=21$ has no solutions $a, b \in \mathbb{Z}$.
2 (viii) We work in the ring $R=\mathbb{Z}[\sqrt{-2}]$.
We know that R is Euclidean and hence a UFD.
We have already seen $R^{*}=\{ \pm 1\}$.
Put $\alpha=a+b \sqrt{-2}$ and $N=3^{14} \times 43^{10}$. Then

$$
\begin{equation*}
a^{2}+2 b^{2}=3^{14} \times 43^{10}=N, \text { with } a, b \in \mathbb{Z} \tag{1}
\end{equation*}
$$

may be written

$$
\alpha \widetilde{\alpha}=N, \text { with } \alpha \in \mathbb{Z}[\sqrt{-2}] .
$$

If π is a prime of R which divides α then π divides $\alpha \widetilde{\alpha}=N$.
So π divides one of the prime integer factors (3 and 43) of N
We proceed to factorise these in R. We see by inspection (i.e. we try to solve $p= \pm \alpha_{p} \widetilde{\alpha}_{p}=r^{2}+2 s^{2}$, where $\alpha_{p}=r+s \sqrt{-2}$) that
$3=\alpha_{3} \widetilde{\alpha}_{3}$ where $\alpha_{3}=1+\sqrt{-2}$, so 3 splits in R
$43=\alpha_{43} \widetilde{\alpha}_{43}$ where $\alpha_{4}=5+3 \sqrt{-2}$, so 43 splits R.
So $\pi \sim \alpha_{3}, \widetilde{\alpha}_{3}, \alpha_{43}$ or $\widetilde{\alpha}_{43}$. And since these primes are non-associate α may be written uniquely as a product of powers of these primes times a unit:

$$
\alpha= \pm 1 \times \alpha_{3}^{t} \times \tilde{\alpha}_{3}^{u} \times \alpha_{43}^{v} \times \tilde{\alpha}_{43}^{w} .
$$

where t, u, v, w are non-negative integers. To satisfy (1^{\prime}) the norm of the RHS must be N vis.

$$
3^{t+u} \times 43^{v+w}=3^{14} \times 43^{10}
$$

This holds iff $t+u=14$ (viz. $t=14-u=0,1,2, \ldots$ or 14) and $v+w=10$ (viz. $v=10-w=0,1,2, \ldots$ or 10).

Thus we have the following independent choices:
2 (for units) $\times 15$ (for $(t, u)) \times 11$ (for $(v, w))$.
This gives 330 choices for the element $\alpha \in \mathbb{Z}[\sqrt{-2}]$ satisfying (1^{\prime}) and hence 330 solutions $(a, b) \in \mathbb{Z} \times \mathbb{Z}$ satisfying (1).

Now every "positive" solution, $(a, b) \in \mathbb{N} \times \mathbb{N}$, gives rise to $4,(\pm a, \pm b) \in \mathbb{Z}^{*} \times \mathbb{Z}^{*}$. This does not exhaust all the solutions in $\mathbb{Z} \times \mathbb{Z}$ since there are also the solutions $\left(\pm 3^{7} 43^{5}, 0\right)$. So there are $330-2=328$ solutions in $\mathbb{Z}^{*} \times \mathbb{Z}^{*}$ and therefore $328 / 4=82$ solutions to (1) in $\mathbb{N} \times \mathbb{N}$.

3 We work in the ring $R=\mathbb{Z}[\sqrt{-2}]$. We know (from the lectures) that R is Euclidean and hence a UFD. Moreover, we have already seen that the units of R are given by $R^{*}=\{ \pm 1\}$.
One can re-interpret the equation

$$
\begin{equation*}
a^{2}+2 b^{2}=p^{11} q^{13}=N, \text { with } a, b \in \mathbb{Z} \tag{1}
\end{equation*}
$$

using norms, putting $\alpha=a+b \sqrt{-2}$ and $N=p^{11} q^{13}$. Then

$$
\alpha \tilde{\alpha}=N, \text { with } \alpha \in \mathbb{Z}[\sqrt{-2}] .
$$

Now we analyse the possible shape of primes dividing α.
Any prime π of R which divides α also divides $\alpha \tilde{\alpha}=N=p^{11} q^{13}$, hence divides either one of the prime integer factors (p and q) of N.

Since we work in a quadratic field, we can conclude that, up to sign, π has norm p, p^{2}, q or q^{2}. In fact, since we work in an imaginary quadratic field, only positive norms occur, so

$$
N(\pi) \in\left\{p, p^{2}, q, q^{2}\right\}
$$

We will now restrict further by showing that p^{2} and q^{2} cannot occur. More precisely, we have the

Claim: Both p and q split in $\mathbb{Z}[\sqrt{-2}]$.
It suffices to show the claim for p, as q can be treated completely analogously.
The power of p dividing N is odd, hence there must be a prime α_{p} of norm p dividing α (here we use that there is at least one solution to (1^{\prime})) ; so p cannot be inert. But p cannot be ramified either: $p=\alpha_{p} \tilde{\alpha}_{p}$ with $\alpha_{p} \sim \tilde{\alpha}_{p}$ would necessarily entail $\alpha_{p}=-\tilde{\alpha}_{p}\left(\right.$ since $R^{*}=\{ \pm 1\}$, and $\alpha_{p}=\tilde{\alpha}_{p}$ would imply $\alpha_{p} \in \mathbb{Q}$), so if we write $\alpha_{p}=c+d \sqrt{-2}$, then we must have $c=0$ and so $\alpha_{p}=d \sqrt{-2}$ with $p=N\left(\alpha_{p}\right)=2 d^{2}$. This contradicts our assumption that p is odd.

Conclusion: Any prime π of R dividing α is associate to either one of $\alpha_{p}, \tilde{\alpha}_{p}, \alpha_{q}$ or $\tilde{\alpha}_{q}$.

Since these primes are non-associate, α may be written uniquely as a product of powers of these primes times a unit:

$$
\alpha= \pm 1 \times \alpha_{p}^{t} \times \tilde{\alpha}_{p}^{u} \times \alpha_{q}^{v} \times \tilde{\alpha}_{q}^{w} .
$$

where t, u, v, w are non-negative integers. To satisfy (1^{\prime}) the norm of the RHS must be equal to N, which gives

$$
p^{t+u} \times q^{v+w}=p^{11} \times q^{13} .
$$

This holds iff $t+u=11$ (viz. $t=11-u=0,1,2, \ldots$ or 11) and $v+w=13$ (viz. $v=13-w=0,1,2, \ldots$ or 13).
Thus we have the following independent choices:

$$
2(\text { for units }) \times 12(\text { for }(t, u)) \times 14(\text { for }(v, w)) .
$$

This gives 336 choices for the element $\alpha \in \mathbb{Z}[\sqrt{-2}]$ satisfying (1^{\prime}) and hence 336 solutions (a, b) $\in \mathbb{Z} \times \mathbb{Z}$ satisfying (1).
4 We work in the ring $R=\mathbb{Z}[(1+\sqrt{-11}) / 2]$. From the lectures we know that R is a UFD, and we find again that $R^{*}=\{ \pm 1\}$.

Put $\alpha=X+Y \sqrt{-11}$ and $N=4 p^{23}$. Then

$$
\begin{equation*}
X^{2}+11 Y^{2}=4 p^{23}=N, \text { with } X, Y \in \mathbb{Z} \tag{1}
\end{equation*}
$$

may be written

$$
\alpha \tilde{\alpha}=N, \text { with } \alpha \in \mathbb{Z}[\sqrt{-11}] .
$$

First consider the primes dividing 2: note that since there is no integer solution to $c^{2}+11 d^{2}=8$, there is no element of norm 2 in R. So 2 is inert and prime in R.

Then analyse the decomposition of p : since p is not prime in R, we deduce $p=\alpha_{p} \tilde{\alpha}_{p}$ for some $\alpha_{p}=(c+d \sqrt{-11}) / 2 \in R$.

We show that p does not ramify: if $\alpha_{p} \sim \tilde{\alpha}_{p}$ then $\alpha_{p}=-\tilde{\alpha}_{p}$ (since $R^{*}=\{ \pm 1\}$). This would imply $c=0$, i.e., $\alpha=d \sqrt{-11} / 2$, whence $p=11 b^{2} / 4$ and p must be 11 . \#

Conclusion: The prime integer p splits as $p=\alpha_{p} \tilde{\alpha}_{p}$.
Now if π is a prime of R which divides α then π also divides $\alpha \tilde{\alpha}=2^{2}\left(\alpha_{p} \tilde{\alpha}_{p}\right)^{23}$. Hence the possibilities for such π are $\pi \sim 2, \alpha_{p}$ or $\tilde{\alpha}_{p}$.

Since these primes are non-associate, α may be written uniquely as a product of powers of these primes times a unit:

$$
\alpha= \pm 1 \times 2^{s} \times \alpha_{p}^{t} \times \tilde{\alpha}_{p}^{u}
$$

where s, t and u are non-negative integers. To satisfy (1^{\prime}) the norm of the RHS must be N, i.e.

$$
2^{2 s} \times p^{t+u}=4 p^{23}
$$

This holds iff $s=1$ and $t+u=23$.
Note that, in (1), $p|X \Longleftrightarrow p| Y$.
We are looking for solutions with $p \nmid X$ and $p \nmid Y \Longleftrightarrow p\left(=\alpha_{p} \tilde{\alpha}_{p}\right) \nmid \alpha \Longleftrightarrow$ either $u=0$ or $v=0$.
Clearly, with this condition, we get just 4 elements α of norm N.
Moreover, since for each of these we need $s=1$, we find $\alpha \in 2 R \subset \mathbb{Z}[\sqrt{-11}]$.
So each α yields a solution to our problem and there are therefore 4 such solutions.
5 The equation in question

$$
\begin{equation*}
X^{2}+11=Y^{3} \tag{1}
\end{equation*}
$$

can be rewritten as

$$
\alpha \tilde{\alpha}=y^{3}
$$

with $\alpha=X+\sqrt{-11}$, and $X \in \mathbb{Z}$.
We want to work in the ring $R=\mathbb{Z}\left[\frac{1+\sqrt{-11}}{2}\right]$ instead of $\mathbb{Z}[\sqrt{-11}]$ since the former is a UFD (as we know from set work), and so we can apply our usual arguments.

For this, we first need to distinguish the primes dividing both α and $\tilde{\alpha}$ from the primes dividing precisely one of them.

The former are the primes π dividing a gcd of α and $\tilde{\alpha}$ (in a UFD, we can form a gcd of two numbers!), hence dividing also their sum $\alpha+\tilde{\alpha}=2 X$, of norm $4 X^{2}$, and their difference $\alpha-\tilde{\alpha}=2 \sqrt{-11}$, of norm $4 \cdot 11$.

Now X cannot be divisible by 11 【otherwise 11 divides the LHS of (1) and hence also its RHS, but every exponent on the RHS is divisible by 3 , while the LHS is not divisible by $11^{2} \rrbracket$.

Hence the only possibility for a π dividing $\operatorname{gcd}(\alpha, \tilde{\alpha})$ is $\pi \mid 2$.
We note that 2 is inert in $R\left(\right.$ as $N\left(\frac{a+b \sqrt{-11}}{2}\right)=2$ is impossible for $a, b \in \mathbb{Z}$ where $a \equiv b(\bmod 2))$, and so $\pi \sim 2$ or $\pi \sim 1$. This implies that α has the form

$$
\alpha=u \times 2^{s_{0}} \pi_{1}^{s_{1}} \cdots \pi_{r}^{s_{r}}
$$

for some unit u and (mutually non-associate) irreducibles $\pi_{i}(i=1, \ldots, r)$ which are also non-associate to 2 , and for $\tilde{\alpha}$ we get the same powers but instead for the irreducibles $\tilde{\pi}_{i}$. Therefore

$$
\alpha \tilde{\alpha}=u \tilde{u} \times 2^{2 s_{0}} \pi_{1}^{s_{1}} \tilde{\pi}_{1}^{s_{1}} \cdots \pi_{r}^{s_{r}} \tilde{\pi}_{r}^{s_{1}}
$$

and we know that units in R must have the form $u= \pm 1$, so $u \tilde{u}=1$. Furthermore, we can deduce that all exponents $s_{i}(i=0, \ldots, r)$ are divisible by 3 . This allows us to take a cube root β of α in R by setting

$$
\beta:=2^{s_{0} / 3} \pi_{1}^{s_{1} / 3} \cdots \pi_{r}^{s_{r} / 3}
$$

But β must also have the form $\frac{m+n \sqrt{-11}}{2}$ for some $m, n \in Z$ with $m \equiv n(\bmod 2)$. This yields the further constraint (we multiply both sides by 8 to get rid of denominators)

$$
\begin{aligned}
8(X+\sqrt{-11})=8 \alpha & =(2 \beta)^{3}=(m+n \sqrt{-11})^{3} \\
& =m^{3}-33 m n^{2}+\sqrt{-11}\left(3 m^{2} n-11 n^{3}\right) .
\end{aligned}
$$

Comparing the coefficient of $\sqrt{-11}$ gives the condition

$$
n\left(3 m^{2}-11 n^{2}\right)=8
$$

hence in particular $n \mid 8$, which already cuts it down to only 8 possible cases,

$$
n \in\{ \pm 1, \pm 2, \pm 4, \pm 8\}
$$

and this will produce only two solutions for the remaining factor: for $n=-1$, this leads to $m= \pm 1$, while $n=2$ allows a further solution $m= \pm 4$. All the other possibilities for n easily lead to a quadratic equation for m which has no integer solutions.

Conclusion: the only possible solutions are given for

$$
\beta \in\left\{\frac{1-\sqrt{-11}}{2}, 2+\sqrt{-11}\right\}
$$

which leads, via $\alpha=\beta^{3}$, to the following solutions of (1):

$$
(X, Y)=(\pm 4,3) \quad \text { or } \quad(X, Y)=(\pm 58,15)
$$

