Michaelmas 2012, NT III/IV, Solutions to Problem Sheet 5.

1 Let R be a UFD, and let K be its quotient field. Suppose z € K satisfies a monic
equation
X"+ a, 1 X" 4 4ag
with coefficients a; in R and some n > 0. Then we have to show that z is already
contained in R.

Recall that any € K can be written as a/f where «, § are comprime in R
(also 8 # 0). Hence we have

(/B)" + ap_1(a/B)" P 4+ +ag,
and after multiplying by 8" we get
Q" = —a,_ Q"B = —aB".

Now 3 divides any term on the right, hence must divide also the left hand side.
But then it also must divide . (Use inductively the fact that if § divides ary and
is coprime to «, then it must divide v.)

Hence # must be a unit, and we conclude that x is indeed already in R.

2 (i) We work in the ring R = Z[i].
We know that R is Euclidean and hence a UFD.
Note that R* = {£1, +i}.
Put « =a+bi and N =23 x 7* x 37° x 41. Then
a?+b? =28 x 7" x37° x41 = N, witha, b€ Z (1)
may be written
ac = N, with a € Z[i]. (1)
If 7 is an irreducible element of R (and hence a prime element of R, since R is a
UFD) which divides « then 7 divides v = N.
So 7 divides one of the prime integer factors p (p =2, 7, 37 and 41) of N.
By results from the lectures, either p is itself irreducible or p = +a,a, = 72+ 52,
where ay, = r +is and @&, are irreducible (and r and s € Z).
By inspection (trying to solve p = 72 + s?), we find:
2 = g0y = —iaZ where ay = 1+ (so 2 ramifies).
7 is prime (hence inert) in R (else 7 = r2? 4 s? which can’t be done.)
37 = ag7as7y where agy = 6 + 4, so 37 splits.
41 = ay1041 where ay; = 5 + 44, so 41 splits.

So m ~ ag, asy, g7, aigq or ay1. And since these primes are non-associate o may
be written uniquely as a product of powers of these primes times a unit:

+1
a=< or pxahxT xak, xay, xal, xa.
+1
where 7, s, t, u, v, w are non-negative integers. To satisfy (1) the norm of the RHS
must be N viz.
27 X T2 x 37T x 4171 = 23 x 7% x 37° x 41.
This holds iff r =3, s =2, t+u =5 (viz. t =5—u=0,1, 2, 3, 4 or 5) and
v+w=1(vizz.v=1—w=0or1).
Thus we have independent choices multiplying up to give
4 (for units) x 6 (for (t,u)) x 2 (for (v,w)) = 48 choices
for a € Z]i] satistying (1’) and hence 48 solutions (a,b) € Z x Z satisfying (1).
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Now every “positive” solution, (a,b) € N x N, gives rise to 4, (+a,+b) € Z X Z.
We easily see that neither a nor b can be 0 in (1). So all solutions arise in this way.
So there are 48/4 = 12 solutions to (1) in N x N.

2 (ii) Working as in (i) but with N = 33 x 41 x 43 we find that 3 cannot be written
r?2 + 52 so, like 7 in (i), 3 is inert in R. Proceeding as in (i) we find that, in this
case, if aa = N then the power to which 3 occurs in the factorization of a has to
be 3/2, which is not possible. So, in this case there are no solutions.

2 (iii) Suppose that

a® +25b% = 4 x 29 x 113* (= M, say) with a, b € Z. (%)

Put @ = a + 5bi € Z[i] = R, say. So, as before, R is a UFD.
We may then rewrite the equation of (k) as aca =M. (%)
13 =

We find 2 = —i(1+4)? ramifies and that 29 = (2+5i)(2—5i) and 1
split. We take ap =1+ 14, aigg = 2+ 5i and a113 = 7 + 8i.

(7T+8i)(7—8i)

Factoring « in terms of a unit and powers of these primes (and of their conjugates in
the split cases), as in (i), we find that the solutions of (xx) are, without repetition:
o =" x af X aby x agy " x afyy x afyy " (1)
where r =0,1,20or3andt=0o0r 1 and u =0, 1, 2, 3 or 4.
So there are 4 x 2 x 5 = 40 solutions to (*x) in R.

But which of these a give a solution to (x)?
They are those o with imaginary part divisible by 5,
that is, such that « = a mod 5R for some a € Z.

Now, modulo 5R,
@113 —Qi(l =+ i),
@113 2(1 + ’L) and
Qo9 = Qg9 = 2.

So with « as given at ():
a = iT+u(_1)u(1 + i)2+4 w 91+4 — (_1)uir+u+3

(Note: (1+1i)? =2i,2* =1 mod 5).
Thus « is congruent to a rational integer mod 5R iff the power of ¢ here is even,
that is, iff » = u + 3 mod 2.

But for any choice of ¢ and u exactly half the possibilities for r satisfy this condition.
Thus half the « of () give solutions to (), which therefore has 20 solutions in
Z? and 5 in (N)? (cf. previous examples).

(Note that we have proved a bit more, namely that either the real part or the
imaginary part of a (but not both) is divisible by 5. This is equivalent to saying
that in every solution of

a+cE=M, a, cel
(and from (f) there are 40 of these) exactly one of a or ¢ is divisible by 5. Maybe
you can see a quick way of proving this fact (by reducing the equation mod 5). This
would provide an alternative way of finishing the problem.)

2 (iv) We have 2 units, all three primes involved are split in O_7, norm of (a +
byv/=T7)/2 is 2- 23 - 43 (note that we should divide by 4 first and then use that O7 is
a UFD), hence we can find 2 x 2 X 2 x 2 = 16 solutions in Z, as well as 4 ones in N
(they come in packages of 4, as a = 0 or b = 0 is impossible), e.g. (a,b) = (53,27).
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2 (v) Note that there should be a minus sign in the expression on the left hand side,
giving a?—ab+b?. There are 6 units w’ (j = 0,...,5) in R; the three primes involved
are 3 (ramified) as well as 7 and 61 (both split), all to exponent 1. For example,
we find 7= N(2+ v-3) = N(3+ 2w) = N(1 — 2w) and 61 = N(7 +2y/-3) =
N(9+4w) = N(5—4w). Overall, we get 6 x 1 x 2 x 2 = 24 solutions, all of which are
integer solutions. This time, they also come in packets of four, but for a different
reason: with (a,b) also (b,a), (—a, —b) and (—b, —a) are solutions. Moreover, there
is a further symmetry: with (a,b) also (a,a — b) gives a solution. With the help
of those symmetries, we actually can group the solutions into two packets of 12,
arising from (a,b) = (11,40) and (16,41). Each packet of 12 contains precisely 4
solutions in natural numbers.

2 (vii) Suppose that a? — 2b? = 21 for some a, b € Z.
If 3| bthen 3| aand 32 | a® — 26> = 21. #
So 3 J b or a. And hence, a® = b* = 1 mod 3.
But a? = 2b%> mod 3. So 1 =2 mod 3. #
Therefore a? — 2b% = 21 has no solutions a, b € Z.

2 (viii) We work in the ring R = Z[v/—2].
We know that R is Euclidean and hence a UFD.
We have already seen R* = {£1} .

Put @ = a + by/—2 and N = 3 x 4319, Then
a? + 20 =3 x 431 = N, witha, beZ (1)

may be written
aa = N, with a € Z[vV-2]. (1)

If 7 is a prime of R which divides « then 7 divides aax = N.

So 7 divides one of the prime integer factors (3 and 43) of N

We proceed to factorise these in R. We see by inspection (i.e. we try to solve
p = a,a, = r* + 2s?, where oy, =7 + sv/—2) that

3 = azas where ag = 1+ +/—2, so 3 splits in R

43 = ayzay3 where ay = 5+ 3v/—2, so 43 splits R.
So ™ ~ as, a3, ag3 or ay3. And since these primes are non-associate o may be
written uniquely as a product of powers of these primes times a unit:

a==%1xal xa§ x als x ays.
where ¢, u, v, w are non-negative integers. To satisfy (1’) the norm of the RHS
must be N vis.
3t x 437w = 31 x 4310,

This holds iff t + w = 14 (viz. t = 14 —uw =0, 1, 2,... or 14) and v + w = 10
(viz.v=10—w =0, 1, 2,... or 10).

Thus we have the following independent choices:
2 (for units) x 15 (for (¢,u)) x 11 (for (v, w)).

This gives 330 choices for the element a € Z[\/—2] satisfying (1) and hence 330
solutions (a,b) € Z x Z satistying (1).

Now every “positive” solution, (a,b) € N x N, gives rise to 4, (+a,+b) € Z* x Z*.
This does not exhaust all the solutions in Z x Z since there are also the solutions
(£3743%,0). So there are 330—2 = 328 solutions in Z* x Z* and therefore 328 /4 = 82
solutions to (1) in N x N.
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3 We work in the ring R = Z[v/—2]. We know (from the lectures) that R is Euclidean
and hence a UFD. Moreover, we have already seen that the units of R are given by
R* = {£1}.

One can re-interpret the equation

a?+ 20 = ptt¢!® =N, witha, beZ (1)
using norms, putting o = a + bv/—2 and N = p''¢'3. Then
ad = N, with a € Z[v-2]. (1"

Now we analyse the possible shape of primes dividing «.
Any prime 7 of R which divides « also divides ad@ = N = p''¢'3, hence divides
either one of the prime integer factors (p and ¢) of N.

Since we work in a quadratic field, we can conclude that, up to sign, 7 has norm
p, p?, q or ¢%. In fact, since we work in an imaginary quadratic field, only positive
norms occur, so

N(m) € {p,p*,9,4%}.

We will now restrict further by showing that p? and ¢ cannot occur. More precisely,
we have the

Claim: Both p and ¢ split in Z[v/—2].
It suffices to show the claim for p, as ¢ can be treated completely analogously.

The power of p dividing N is odd, hence there must be a prime a,, of norm p
dividing « (here we use that there is at least one solution to (1’)); so p cannot be
inert. But p cannot be ramified either: p = ay,a,, with o, ~ &, would necessarily
entail o, = —@, (since R* = {£1}, and o, = &, would imply o, € Q), so if
we write ap, = ¢ + dv/—2, then we must have ¢ = 0 and so ap, = dv/—2 with
p = N(a,) = 2d*. This contradicts our assumption that p is odd.

Conclusion: Any prime 7 of R dividing « is associate to either one of oy, &p, oy
or Oyg.

Since these primes are non-associate, & may be written uniquely as a product of
powers of these primes times a unit:

a==£1xal xayxa) xay.
where ¢, u, v, w are non-negative integers. To satisfy (1’) the norm of the RHS

must be equal to N, which gives

pt+u X q

This holds iff ¢ +u = 11 (viz. t = 11 —u =0, 1, 2,... or 11) and v + w = 13
(viz.v=13-—w=0, 1, 2,... or 13).

vtw __ 11 13
=p 7 Xq".

Thus we have the following independent choices:

2 (for units) x 12 (for (¢,u)) x 14 (for (v, w)).
This gives 336 choices for the element « € Z[/—2] satisfying (1’) and hence 336
solutions (a,b) € Z x Z satistying (1).

4 We work in the ring R = Z[(1 + +/—11)/2]. From the lectures we know that R is
a UFD, and we find again that R* = {£1}.

Put o = X +Y+/—11 and N = 4p?3. Then
X2 411Y?2 =4p* =N, with X, Y € Z (1)

may be written
ad = N, with a € Z[vV—11]. (1)



First consider the primes dividing 2: note that since there is no integer solution
to c? 4+ 11d? = 8, there is no element of norm 2 in R. So 2 is inert and prime in R.

Then analyse the decomposition of p: since p is not prime in R, we deduce
P = apy, for some o, = (¢ +dv/—11)/2 € R.

We show that p does not ramify: if a;, ~ @&, then a;,, = —a, (since R* = {£1}).
This would imply ¢ = 0, i.e., o = dy/—11/2, whence p = 115?/4 and p must be 11.
#

Conclusion: The prime integer p splits as p = apdp.

Now if 7 is a prime of R which divides o then 7 also divides ad = 2%(avpd,)?3.
Hence the possibilities for such m are 7 ~ 2, a,, or &,.

Since these primes are non-associate, & may be written uniquely as a product of
powers of these primes times a unit:

_ s t ~u
a==+1x2 X ayy X Qyy,

where s, t and u are non-negative integers. To satisfy (1’) the norm of the RHS
must be N, i.e.

228 % pt+u _ 4p23'
This holds iff s =1 and t + v = 23.

Note that, in (1),p| X < p|Y.
We are looking for solutions with p | X and p | Y <= p(=pdyp) [ o <=
either u =0 or v = 0.
Clearly, with this condition, we get just 4 elements a of norm N.
Moreover, since for each of these we need s =1, we find a € 2R C Z[/—11].
So each « yields a solution to our problem and there are therefore 4 such solutions.

5 The equation in question
X2 411=Y?3 (1)
can be rewritten as
ad =1y
with « = X +v/—11, and X € Z.

We want to work in the ring R = Z| H“éjl] instead of Z[/—11] since the former
is a UFD (as we know from set work), and so we can apply our usual arguments.

For this, we first need to distinguish the primes dividing both a and & from the
primes dividing precisely one of them.

The former are the primes 7 dividing a ged of o and & (in a UFD, we can form
a ged of two numbers!), hence dividing also their sum a + & = 2X, of norm 4X?2,
and their difference a — & = 24/—11, of norm 4 - 11.

Now X cannot be divisible by 11 [otherwise 11 divides the LHS of (1) and hence
also its RHS, but every exponent on the RHS is divisible by 3, while the LHS is
not divisible by 112].

Hence the only possibility for a 7 dividing ged(o, &) is 7|2.

We note that 2 is inert in R (as N(%‘/Tl) = 2 is impossible for a,b € Z where
a=b (mod 2)), and so 7 ~ 2 or m ~ 1. This implies that o has the form

Sr

— S0 51,
o =1u X 2°°m] M,

for some unit v and (mutually non-associate) irreducibles 7; (i = 1,...,r) which
are also non-associate to 2, and for & we get the same powers but instead for the
irreducibles 7;. Therefore

Q@ = uil x 2250 ESt . pir s
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and we know that units in R must have the form v = +1, so ut = 1. Furthermore,
we can deduce that all exponents s; (i = 0,...,r) are divisible by 3. This allows us
to take a cube root 3 of « in R by setting

g = 25"/371';1/3 /3
But 3 must also have the form ™= for some m,n € Z with m =n (mod 2).

This yields the further constraint (we multiply both sides by 8 to get rid of denom-
inators)

8(X ++/—11) = 8a (268)% = (m + nv/—11)*
m?® — 33mn? + v/ —11(3m?n — 11n3).
Comparing the coefficient of /—11 gives the condition
n(3m? — 11n?) = 8,
hence in particular n|8, which already cuts it down to only 8 possible cases,
n € {£1,+2,+4, £8},
and this will produce only two solutions for the remaining factor: for n = —1, this
leads to m = +1, while n = 2 allows a further solution m = £4. All the other
possibilities for n easily lead to a quadratic equation for m which has no integer
solutions.

Conclusion: the only possible solutions are given for

e[

which leads, via a = 33, to the following solutions of (1):
(X,Y)=(44,3) or (X,Y)=(£58,15).



