
Michaelmas 2012, NT III/IV, Solutions to Problem Sheet 5.

1 Let R be a UFD, and let K be its quotient field. Suppose x ∈ K satisfies a monic
equation

Xn + an−1X
n−1 + · · ·+ a0

with coefficients ai in R and some n > 0. Then we have to show that x is already
contained in R.

Recall that any x ∈ K can be written as α/β where α, β are comprime in R
(also β 6= 0). Hence we have

(α/β)n + an−1(α/β)n−1 + · · ·+ a0 ,

and after multiplying by βn we get

αn = −an−1α
n−1β = · · · − a0β

n .

Now β divides any term on the right, hence must divide also the left hand side.
But then it also must divide α. (Use inductively the fact that if β divides αγ and
is coprime to α, then it must divide γ.)

Hence β must be a unit, and we conclude that x is indeed already in R.
2 (i) We work in the ring R = Z[i].

We know that R is Euclidean and hence a UFD.
Note that R∗ = {±1, ±i}.

Put α = a+ bi and N = 23 × 74 × 375 × 41. Then

a2 + b2 = 23 × 74 × 375 × 41 = N, with a, b ∈ Z (1)

may be written
αα̃ = N, with α ∈ Z[i]. (1′)

If π is an irreducible element of R (and hence a prime element of R, since R is a
UFD) which divides α then π divides αα̃ = N .

So π divides one of the prime integer factors p (p = 2, 7, 37 and 41) of N .
By results from the lectures, either p is itself irreducible or p = ±αpα̃p = r2 +s2,

where αp = r + is and α̃p are irreducible (and r and s ∈ Z).
By inspection (trying to solve p = r2 + s2), we find:
2 = α2α̃2 = −iα2

2 where α2 = 1 + i (so 2 ramifies).
7 is prime (hence inert) in R (else 7 = r2 + s2 which can’t be done.)
37 = α37α̃37 where α37 = 6 + i, so 37 splits.
41 = α41α̃41 where α41 = 5 + 4i, so 41 splits.

So π ∼ α2, α37, α̃37, α41 or α̃41. And since these primes are non-associate α may
be written uniquely as a product of powers of these primes times a unit:

α =

±1
or
±i

× αr
2 × 7s × αt

37 × α̃u
37 × αv

41 × α̃w
41.

where r, s, t, u, v, w are non-negative integers. To satisfy (1′) the norm of the RHS
must be N viz.

2r × 72s × 37t+u × 41v+w = 23 × 74 × 375 × 41.

This holds iff r = 3, s = 2, t + u = 5 (viz. t = 5 − u = 0, 1, 2, 3, 4 or 5) and
v + w = 1 (viz. v = 1− w = 0 or 1).

Thus we have independent choices multiplying up to give
4 (for units)× 6 (for (t, u))× 2 (for (v, w)) = 48 choices

for α ∈ Z[i] satisfying (1′) and hence 48 solutions (a, b) ∈ Z× Z satisfying (1).
1
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Now every “positive” solution, (a, b) ∈ N× N, gives rise to 4, (±a,±b) ∈ Z× Z.
We easily see that neither a nor b can be 0 in (1). So all solutions arise in this way.
So there are 48/4 = 12 solutions to (1) in N× N.

2 (ii) Working as in (i) but with N = 33 × 41× 43 we find that 3 cannot be written
r2 + s2 so, like 7 in (i), 3 is inert in R. Proceeding as in (i) we find that, in this
case, if αα̃ = N then the power to which 3 occurs in the factorization of α has to
be 3/2, which is not possible. So, in this case there are no solutions.

2 (iii) Suppose that

a2 + 25b2 = 4× 29× 1134 (= M, say) with a, b ∈ Z. (∗)

Put α = a+ 5bi ∈ Z[i] = R, say. So, as before, R is a UFD.
We may then rewrite the equation of (∗) as αᾱ = M . (∗∗)

We find 2 = −i(1+i)2 ramifies and that 29 = (2+5i)(2−5i) and 113 = (7+8i)(7−8i)
split. We take α2 = 1 + i, α29 = 2 + 5i and α113 = 7 + 8i.

Factoring α in terms of a unit and powers of these primes (and of their conjugates in
the split cases), as in (i), we find that the solutions of (∗∗) are, without repetition:

α = ir × α2
2 × αt

29 × ᾱ
(1−t)
29 × αu

113 × ᾱ
(4−u)
113 (†)

where r = 0, 1, 2 or 3 and t = 0 or 1 and u = 0, 1, 2, 3 or 4.
So there are 4× 2× 5 = 40 solutions to (∗∗) in R.

But which of these α give a solution to (∗)?
They are those α with imaginary part divisible by 5,
that is, such that α ≡ a mod 5R for some a ∈ Z.

Now, modulo 5R,
α113 ≡ −2i(1 + i),
ᾱ113 ≡ 2(1 + i) and
α29 ≡ ᾱ29 ≡ 2.

So with α as given at (†):
α ≡ ir+u(−1)u(1 + i)2+4 × 21+4 ≡ (−1)uir+u+3

(Note: (1 + i)2 = 2i, 24 ≡ 1 mod 5).
Thus α is congruent to a rational integer mod 5R iff the power of i here is even,
that is, iff r ≡ u+ 3 mod 2.

But for any choice of t and u exactly half the possibilities for r satisfy this condition.
Thus half the α of (†) give solutions to (∗), which therefore has 20 solutions in

Z2 and 5 in (N)2 (cf. previous examples).

(Note that we have proved a bit more, namely that either the real part or the
imaginary part of α (but not both) is divisible by 5. This is equivalent to saying
that in every solution of

a2 + c2 = M, a, c ∈ Z
(and from (†) there are 40 of these) exactly one of a or c is divisible by 5. Maybe
you can see a quick way of proving this fact (by reducing the equation mod 5). This
would provide an alternative way of finishing the problem.)

2 (iv) We have 2 units, all three primes involved are split in O−7, norm of (a +
b
√
−7)/2 is 2 · 23 · 43 (note that we should divide by 4 first and then use that O7 is

a UFD), hence we can find 2× 2× 2× 2 = 16 solutions in Z, as well as 4 ones in N
(they come in packages of 4, as a = 0 or b = 0 is impossible), e.g. (a, b) = (53, 27).
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2 (v) Note that there should be a minus sign in the expression on the left hand side,
giving a2−ab+b2. There are 6 units ωj (j = 0, . . . , 5) in R; the three primes involved
are 3 (ramified) as well as 7 and 61 (both split), all to exponent 1. For example,
we find 7 = N(2 +

√
−3) = N(3 + 2ω) = N(1 − 2ω) and 61 = N(7 + 2

√
−3) =

N(9+4ω) = N(5−4ω). Overall, we get 6×1×2×2 = 24 solutions, all of which are
integer solutions. This time, they also come in packets of four, but for a different
reason: with (a, b) also (b, a), (−a,−b) and (−b,−a) are solutions. Moreover, there
is a further symmetry: with (a, b) also (a, a − b) gives a solution. With the help
of those symmetries, we actually can group the solutions into two packets of 12,
arising from (a, b) = (11, 40) and (16, 41). Each packet of 12 contains precisely 4
solutions in natural numbers.

2 (vii) Suppose that a2 − 2b2 = 21 for some a, b ∈ Z.
If 3 | b then 3 | a and 32 | a2 − 2b2 = 21. #
So 3 |/ b or a. And hence, a2 ≡ b2 ≡ 1 mod 3.
But a2 ≡ 2b2 mod 3. So 1 ≡ 2 mod 3. #
Therefore a2 − 2b2 = 21 has no solutions a, b ∈ Z.

2 (viii) We work in the ring R = Z[
√
−2].

We know that R is Euclidean and hence a UFD.

We have already seen R∗ = {±1} .

Put α = a+ b
√
−2 and N = 314 × 4310. Then

a2 + 2b2 = 314 × 4310 = N, with a, b ∈ Z (1)

may be written
αα̃ = N, with α ∈ Z[

√
−2]. (1′)

If π is a prime of R which divides α then π divides αα̃ = N .
So π divides one of the prime integer factors (3 and 43) of N
We proceed to factorise these in R. We see by inspection (i.e. we try to solve

p = ±αpα̃p = r2 + 2s2, where αp = r + s
√
−2) that

3 = α3α̃3 where α3 = 1 +
√
−2, so 3 splits in R

43 = α43α̃43 where α4 = 5 + 3
√
−2, so 43 splits R.

So π ∼ α3, α̃3, α43 or α̃43. And since these primes are non-associate α may be
written uniquely as a product of powers of these primes times a unit:

α = ±1× αt
3 × α̃u

3 × αv
43 × α̃w

43.

where t, u, v, w are non-negative integers. To satisfy (1′) the norm of the RHS
must be N vis.

3t+u × 43v+w = 314 × 4310.

This holds iff t + u = 14 (viz. t = 14 − u = 0, 1, 2,. . . or 14) and v + w = 10
(viz. v = 10− w = 0, 1, 2,. . . or 10).

Thus we have the following independent choices:

2 (for units)× 15 (for (t, u))× 11 (for (v, w)).

This gives 330 choices for the element α ∈ Z[
√
−2] satisfying (1′) and hence 330

solutions (a, b) ∈ Z× Z satisfying (1).
Now every “positive” solution, (a, b) ∈ N×N, gives rise to 4, (±a,±b) ∈ Z∗×Z∗.

This does not exhaust all the solutions in Z × Z since there are also the solutions
(±37435, 0). So there are 330−2 = 328 solutions in Z∗×Z∗ and therefore 328/4 = 82
solutions to (1) in N× N.
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3 We work in the ring R = Z[
√
−2]. We know (from the lectures) that R is Euclidean

and hence a UFD. Moreover, we have already seen that the units of R are given by
R∗ = {±1}.

One can re-interpret the equation

a2 + 2b2 = p11q13 = N, with a, b ∈ Z (1)

using norms, putting α = a+ b
√
−2 and N = p11q13. Then

αα̃ = N, with α ∈ Z[
√
−2]. (1′)

Now we analyse the possible shape of primes dividing α.
Any prime π of R which divides α also divides αα̃ = N = p11q13, hence divides
either one of the prime integer factors (p and q) of N .

Since we work in a quadratic field, we can conclude that, up to sign, π has norm
p, p2, q or q2. In fact, since we work in an imaginary quadratic field, only positive
norms occur, so

N(π) ∈ {p, p2, q, q2} .
We will now restrict further by showing that p2 and q2 cannot occur. More precisely,
we have the

Claim: Both p and q split in Z[
√
−2].

It suffices to show the claim for p, as q can be treated completely analogously.
The power of p dividing N is odd, hence there must be a prime αp of norm p

dividing α (here we use that there is at least one solution to (1′)); so p cannot be
inert. But p cannot be ramified either: p = αpα̃p with αp ∼ α̃p would necessarily
entail αp = −α̃p (since R∗ = {±1}, and αp = α̃p would imply αp ∈ Q), so if
we write αp = c + d

√
−2, then we must have c = 0 and so αp = d

√
−2 with

p = N(αp) = 2d2. This contradicts our assumption that p is odd.
Conclusion: Any prime π of R dividing α is associate to either one of αp, α̃p, αq

or α̃q.
Since these primes are non-associate, α may be written uniquely as a product of

powers of these primes times a unit:

α = ±1× αt
p × α̃u

p × αv
q × α̃w

q .

where t, u, v, w are non-negative integers. To satisfy (1′) the norm of the RHS
must be equal to N , which gives

pt+u × qv+w = p11 × q13.

This holds iff t + u = 11 (viz. t = 11 − u = 0, 1, 2,. . . or 11) and v + w = 13
(viz. v = 13− w = 0, 1, 2,. . . or 13).

Thus we have the following independent choices:
2 (for units)× 12 (for (t, u))× 14 (for (v, w)).

This gives 336 choices for the element α ∈ Z[
√
−2] satisfying (1′) and hence 336

solutions (a, b) ∈ Z× Z satisfying (1).

4 We work in the ring R = Z[(1 +
√
−11)/2]. From the lectures we know that R is

a UFD, and we find again that R∗ = {±1}.

Put α = X + Y
√
−11 and N = 4p23. Then

X2 + 11Y 2 = 4p23 = N, with X, Y ∈ Z (1)

may be written
αα̃ = N, with α ∈ Z[

√
−11]. (1′)
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First consider the primes dividing 2: note that since there is no integer solution
to c2 + 11d2 = 8, there is no element of norm 2 in R. So 2 is inert and prime in R.

Then analyse the decomposition of p: since p is not prime in R, we deduce
p = αpα̃p for some αp = (c+ d

√
−11)/2 ∈ R.

We show that p does not ramify: if αp ∼ α̃p then αp = −α̃p (since R∗ = {±1}).
This would imply c = 0, i.e., α = d

√
−11/2, whence p = 11b2/4 and p must be 11.

#
Conclusion: The prime integer p splits as p = αpα̃p.

Now if π is a prime of R which divides α then π also divides αα̃ = 22(αpα̃p)23.
Hence the possibilities for such π are π ∼ 2, αp or α̃p.

Since these primes are non-associate, α may be written uniquely as a product of
powers of these primes times a unit:

α = ±1× 2s × αt
p × α̃u

p ,

where s, t and u are non-negative integers. To satisfy (1′) the norm of the RHS
must be N , i.e.

22s × pt+u = 4p23.

This holds iff s = 1 and t+ u = 23.
Note that, in (1), p | X ⇐⇒ p | Y .
We are looking for solutions with p |/ X and p |/ Y ⇐⇒ p (= αpα̃p) |/ α ⇐⇒

either u = 0 or v = 0.
Clearly, with this condition, we get just 4 elements α of norm N .
Moreover, since for each of these we need s = 1, we find α ∈ 2R ⊂ Z[

√
−11].

So each α yields a solution to our problem and there are therefore 4 such solutions.

5 The equation in question
X2 + 11 = Y 3 (1)

can be rewritten as
αα̃ = y3

with α = X +
√
−11, and X ∈ Z.

We want to work in the ring R = Z
[
1+
√
−11

2

]
instead of Z[

√
−11] since the former

is a UFD (as we know from set work), and so we can apply our usual arguments.
For this, we first need to distinguish the primes dividing both α and α̃ from the

primes dividing precisely one of them.
The former are the primes π dividing a gcd of α and α̃ (in a UFD, we can form

a gcd of two numbers!), hence dividing also their sum α + α̃ = 2X, of norm 4X2,
and their difference α− α̃ = 2

√
−11, of norm 4 · 11.

Now X cannot be divisible by 11 [[ otherwise 11 divides the LHS of (1) and hence
also its RHS, but every exponent on the RHS is divisible by 3, while the LHS is
not divisible by 112 ]] .

Hence the only possibility for a π dividing gcd(α, α̃) is π|2.
We note that 2 is inert in R

(
as N

(
a+b
√
−11

2

)
= 2 is impossible for a, b ∈ Z where

a ≡ b (mod 2)
)
, and so π ∼ 2 or π ∼ 1. This implies that α has the form

α = u× 2s0πs1
1 · · ·πsr

r

for some unit u and (mutually non-associate) irreducibles πi (i = 1, . . . , r) which
are also non-associate to 2, and for α̃ we get the same powers but instead for the
irreducibles π̃i. Therefore

αα̃ = uũ× 22s0πs1
1 π̃

s1
1 · · ·πsr

r π̃
s1
r
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and we know that units in R must have the form u = ±1, so uũ = 1. Furthermore,
we can deduce that all exponents si (i = 0, . . . , r) are divisible by 3. This allows us
to take a cube root β of α in R by setting

β := 2s0/3π
s1/3
1 · · ·πsr/3

r .

But β must also have the form m+n
√
−11

2 for some m,n ∈ Z with m ≡ n (mod 2).
This yields the further constraint (we multiply both sides by 8 to get rid of denom-
inators)

8(X +
√
−11) = 8α = (2β)3 = (m+ n

√
−11)3

= m3 − 33mn2 +
√
−11(3m2n− 11n3) .

Comparing the coefficient of
√
−11 gives the condition

n(3m2 − 11n2) = 8 ,

hence in particular n|8, which already cuts it down to only 8 possible cases,

n ∈ {±1,±2,±4,±8},
and this will produce only two solutions for the remaining factor: for n = −1, this
leads to m = ±1, while n = 2 allows a further solution m = ±4. All the other
possibilities for n easily lead to a quadratic equation for m which has no integer
solutions.

Conclusion: the only possible solutions are given for

β ∈
{1−

√
−11

2
, 2 +

√
−11

}
which leads, via α = β3, to the following solutions of (1):

(X,Y ) = (±4, 3) or (X,Y ) = (±58, 15) .


