Michaelmas 2012, NT III/IV, Solutions to Problem Sheet 5.

1 Let R be a UFD, and let K be its quotient field. Suppose $x \in K$ satisfies a monic equation

$$X^{n} + a_{n-1}X^{n-1} + \dots + a_{0}$$

with coefficients a_i in R and some n > 0. Then we have to show that x is already contained in R.

Recall that any $x \in K$ can be written as α/β where α , β are comprime in R (also $\beta \neq 0$). Hence we have

$$(\alpha/\beta)^n + a_{n-1}(\alpha/\beta)^{n-1} + \dots + a_0,$$

and after multiplying by β^n we get

$$\alpha^n = -a_{n-1}\alpha^{n-1}\beta = \cdots - a_0\beta^n$$

Now β divides any term on the right, hence must divide also the left hand side. But then it also must divide α . (Use inductively the fact that if β divides $\alpha\gamma$ and is coprime to α , then it must divide γ .)

Hence β must be a unit, and we conclude that x is indeed already in R.

2 (i) We work in the ring $R = \mathbb{Z}[i]$.

We know that R is Euclidean and hence a UFD.

Note that $R^* = \{\pm 1, \pm i\}.$

Put $\alpha = a + bi$ and $N = 2^3 \times 7^4 \times 37^5 \times 41$. Then

$$a^{2} + b^{2} = 2^{3} \times 7^{4} \times 37^{5} \times 41 = N$$
, with $a, b \in \mathbb{Z}$ (1)

may be written

$$\alpha \widetilde{\alpha} = N, \text{ with } \alpha \in \mathbb{Z}[i].$$
 (1')

If π is an irreducible element of R (and hence a prime element of R, since R is a UFD) which divides α then π divides $\alpha \widetilde{\alpha} = N$.

So π divides one of the prime integer factors p (p = 2, 7, 37 and 41) of N.

By results from the lectures, either p is itself irreducible or $p = \pm \alpha_p \tilde{\alpha}_p = r^2 + s^2$, where $\alpha_p = r + is$ and $\tilde{\alpha}_p$ are irreducible (and r and $s \in \mathbb{Z}$).

By inspection (trying to solve $p = r^2 + s^2$), we find:

 $2 = \alpha_2 \widetilde{\alpha}_2 = -i\alpha_2^2$ where $\alpha_2 = 1 + i$ (so 2 ramifies).

7 is prime (hence inert) in R (else $7 = r^2 + s^2$ which can't be done.)

 $37 = \alpha_{37} \widetilde{\alpha}_{37}$ where $\alpha_{37} = 6 + i$, so 37 splits.

 $41 = \alpha_{41} \widetilde{\alpha}_{41}$ where $\alpha_{41} = 5 + 4i$, so 41 splits.

So $\pi \sim \alpha_2$, α_{37} , $\tilde{\alpha}_{37}$, α_{41} or $\tilde{\alpha}_{41}$. And since these primes are non-associate α may be written uniquely as a product of powers of these primes times a unit:

$$\alpha = \begin{cases} \pm 1\\ or\\ \pm i \end{cases} \times \alpha_2^r \times 7^s \times \alpha_{37}^t \times \tilde{\alpha}_{37}^u \times \alpha_{41}^v \times \tilde{\alpha}_{41}^w.$$

where r, s, t, u, v, w are non-negative integers. To satisfy (1') the norm of the RHS must be N viz.

$$2^{r} \times 7^{2s} \times 37^{t+u} \times 41^{v+w} = 2^{3} \times 7^{4} \times 37^{5} \times 41.$$

This holds iff r = 3, s = 2, t + u = 5 (viz. t = 5 - u = 0, 1, 2, 3, 4 or 5) and v + w = 1 (viz. v = 1 - w = 0 or 1).

Thus we have independent choices multiplying up to give

4 (for units) \times 6 (for (t, u)) \times 2 (for (v, w)) = 48 choices

for $\alpha \in \mathbb{Z}[i]$ satisfying (1') and hence 48 solutions $(a, b) \in \mathbb{Z} \times \mathbb{Z}$ satisfying (1).

Now every "positive" solution, $(a, b) \in \mathbb{N} \times \mathbb{N}$, gives rise to 4, $(\pm a, \pm b) \in \mathbb{Z} \times \mathbb{Z}$. We easily see that neither a nor b can be 0 in (1). So all solutions arise in this way. So there are 48/4 = 12 solutions to (1) in $\mathbb{N} \times \mathbb{N}$.

- **2** (ii) Working as in (i) but with $N = 3^3 \times 41 \times 43$ we find that 3 cannot be written $r^2 + s^2$ so, like 7 in (i), 3 is inert in R. Proceeding as in (i) we find that, in this case, if $\alpha \tilde{\alpha} = N$ then the power to which 3 occurs in the factorization of α has to be 3/2, which is not possible. So, in this case there are no solutions.
- 2 (iii) Suppose that

$$a^{2} + 25b^{2} = 4 \times 29 \times 113^{4} \ (= M, \text{ say}) \text{ with } a, b \in \mathbb{Z}.$$
 (*)

Put $\alpha = a + 5bi \in \mathbb{Z}[i] = R$, say. So, as before, R is a UFD.

We may then rewrite the equation of (*) as
$$\alpha \bar{\alpha} = M$$
. (**)

We find $2 = -i(1+i)^2$ ramifies and that 29 = (2+5i)(2-5i) and 113 = (7+8i)(7-8i) split. We take $\alpha_2 = 1 + i$, $\alpha_{29} = 2 + 5i$ and $\alpha_{113} = 7 + 8i$.

Factoring α in terms of a unit and powers of these primes (and of their conjugates in the split cases), as in (i), we find that the solutions of (**) are, without repetition:

$$\alpha = i^r \times \alpha_2^2 \times \alpha_{29}^t \times \bar{\alpha}_{29}^{(1-t)} \times \alpha_{113}^u \times \bar{\alpha}_{113}^{(4-u)} \tag{\dagger}$$

where r = 0, 1, 2 or 3 and t = 0 or 1 and u = 0, 1, 2, 3 or 4. So there are $4 \times 2 \times 5 = 40$ solutions to (**) in *R*.

But which of these α give a solution to (*)?

They are those α with imaginary part divisible by 5,

that is, such that $\alpha \equiv a \mod 5R$ for some $a \in \mathbb{Z}$.

Now, modulo 5R,

 $\begin{aligned} &\alpha_{113}\equiv-2i(1+i),\\ &\bar{\alpha}_{113}\equiv2(1+i) \text{ and }\\ &\alpha_{29}\equiv\bar{\alpha}_{29}\equiv2. \end{aligned}$

So with α as given at (†):

$$\alpha \equiv i^{r+u}(-1)^u(1+i)^{2+4} \times 2^{1+4} \equiv (-1)^u i^{r+u+3}$$

(Note: $(1+i)^2 = 2i, 2^4 \equiv 1 \mod 5$).

Thus α is congruent to a rational integer mod 5R iff the power of *i* here is even, that is, iff $r \equiv u + 3 \mod 2$.

But for any choice of t and u exactly half the possibilities for r satisfy this condition.

Thus half the α of (†) give solutions to (*), which therefore has 20 solutions in \mathbb{Z}^2 and 5 in $(\mathbb{N})^2$ (cf. previous examples).

(Note that we have proved a bit more, namely that either the real part or the imaginary part of α (but not both) is divisible by 5. This is equivalent to saying that in every solution of

$$a^2 + c^2 = M, \quad a, \ c \in \mathbb{Z}$$

(and from (\dagger) there are 40 of these) exactly one of *a* or *c* is divisible by 5. Maybe you can see a quick way of proving this fact (by reducing the equation mod 5). This would provide an alternative way of finishing the problem.)

2 (iv) We have 2 units, all three primes involved are split in \mathcal{O}_-7 , norm of $(a + b\sqrt{-7})/2$ is $2 \cdot 23 \cdot 43$ (note that we should divide by 4 first and then use that \mathcal{O}_7 is a UFD), hence we can find $2 \times 2 \times 2 \times 2 = 16$ solutions in \mathbb{Z} , as well as 4 ones in \mathbb{N} (they come in packages of 4, as a = 0 or b = 0 is impossible), e.g. (a, b) = (53, 27).

- 2 (v) Note that there should be a minus sign in the expression on the left hand side, giving a^2-ab+b^2 . There are 6 units ω^j $(j=0,\ldots,5)$ in R; the three primes involved are 3 (ramified) as well as 7 and 61 (both split), all to exponent 1. For example, we find $7 = N(2 + \sqrt{-3}) = N(3 + 2\omega) = N(1 2\omega)$ and $61 = N(7 + 2\sqrt{-3}) = N(9+4\omega) = N(5-4\omega)$. Overall, we get $6 \times 1 \times 2 \times 2 = 24$ solutions, all of which are integer solutions. This time, they also come in packets of four, but for a different reason: with (a, b) also (b, a), (-a, -b) and (-b, -a) are solutions. Moreover, there is a further symmetry: with (a, b) also (a, a b) gives a solution. With the help of those symmetries, we actually can group the solutions into two packets of 12, arising from (a, b) = (11, 40) and (16, 41). Each packet of 12 contains precisely 4 solutions in natural numbers.
- **2** (vii) Suppose that $a^2 2b^2 = 21$ for some $a, b \in \mathbb{Z}$. If $3 \mid b$ then $3 \mid a$ and $3^2 \mid a^2 - 2b^2 = 21$. # So $3 \nmid b$ or a. And hence, $a^2 \equiv b^2 \equiv 1 \mod 3$. But $a^2 \equiv 2b^2 \mod 3$. So $1 \equiv 2 \mod 3$. # Therefore $a^2 - 2b^2 = 21$ has no solutions $a, b \in \mathbb{Z}$.
- **2** (viii) We work in the ring $R = \mathbb{Z}[\sqrt{-2}]$. We know that R is Euclidean and hence a UFD.

We have already seen $R^* = \{\pm 1\}$.

Put $\alpha = a + b\sqrt{-2}$ and $N = 3^{14} \times 43^{10}$. Then

$$a^{2} + 2b^{2} = 3^{14} \times 43^{10} = N$$
, with $a, b \in \mathbb{Z}$ (1)

may be written

$$\alpha \widetilde{\alpha} = N, \text{ with } \alpha \in \mathbb{Z}[\sqrt{-2}].$$
 (1')

If π is a prime of R which divides α then π divides $\alpha \tilde{\alpha} = N$.

So π divides one of the prime integer factors (3 and 43) of N

We proceed to factorise these in R. We see by inspection (i.e. we try to solve $p = \pm \alpha_p \tilde{\alpha}_p = r^2 + 2s^2$, where $\alpha_p = r + s\sqrt{-2}$) that

 $3 = \alpha_3 \widetilde{\alpha}_3$ where $\alpha_3 = 1 + \sqrt{-2}$, so 3 splits in R

 $43 = \alpha_{43}\widetilde{\alpha}_{43}$ where $\alpha_4 = 5 + 3\sqrt{-2}$, so 43 splits R.

So $\pi \sim \alpha_3$, $\tilde{\alpha}_3$, α_{43} or $\tilde{\alpha}_{43}$. And since these primes are non-associate α may be written uniquely as a product of powers of these primes times a unit:

$$\alpha = \pm 1 \times \alpha_3^t \times \tilde{\alpha}_3^u \times \alpha_{43}^v \times \tilde{\alpha}_{43}^w$$

where t, u, v, w are non-negative integers. To satisfy (1') the norm of the RHS must be N vis.

$$3^{t+u} \times 43^{v+w} = 3^{14} \times 43^{10}.$$

This holds iff t + u = 14 (viz. t = 14 - u = 0, 1, 2, ... or 14) and v + w = 10 (viz. v = 10 - w = 0, 1, 2, ... or 10).

Thus we have the following independent choices:

2 (for units) \times 15 (for (t, u)) \times 11 (for (v, w)).

This gives 330 choices for the element $\alpha \in \mathbb{Z}[\sqrt{-2}]$ satisfying (1') and hence 330 solutions $(a, b) \in \mathbb{Z} \times \mathbb{Z}$ satisfying (1).

Now every "positive" solution, $(a, b) \in \mathbb{N} \times \mathbb{N}$, gives rise to 4, $(\pm a, \pm b) \in \mathbb{Z}^* \times \mathbb{Z}^*$. This does not exhaust all the solutions in $\mathbb{Z} \times \mathbb{Z}$ since there are also the solutions $(\pm 3^7 43^5, 0)$. So there are 330-2 = 328 solutions in $\mathbb{Z}^* \times \mathbb{Z}^*$ and therefore 328/4 = 82 solutions to (1) in $\mathbb{N} \times \mathbb{N}$. **3** We work in the ring $R = \mathbb{Z}[\sqrt{-2}]$. We know (from the lectures) that R is Euclidean and hence a UFD. Moreover, we have already seen that the units of R are given by $R^* = \{\pm 1\}$.

One can re-interpret the equation

$$a^{2} + 2b^{2} = p^{11}q^{13} = N$$
, with $a, b \in \mathbb{Z}$ (1)

using norms, putting $\alpha = a + b\sqrt{-2}$ and $N = p^{11}q^{13}$. Then

$$\alpha \tilde{\alpha} = N, \text{ with } \alpha \in \mathbb{Z}[\sqrt{-2}].$$
 (1')

Now we analyse the possible shape of primes dividing α . Any prime π of R which divides α also divides $\alpha \tilde{\alpha} = N = p^{11}q^{13}$, hence divides either one of the prime integer factors (p and q) of N.

Since we work in a quadratic field, we can conclude that, up to sign, π has norm p, p^2 , q or q^2 . In fact, since we work in an imaginary quadratic field, only positive norms occur, so

$$N(\pi) \in \{p, p^2, q, q^2\}.$$

We will now restrict further by showing that p^2 and q^2 cannot occur. More precisely, we have the

Claim: Both p and q split in $\mathbb{Z}[\sqrt{-2}]$.

It suffices to show the claim for p, as q can be treated completely analogously.

The power of p dividing N is odd, hence there must be a prime α_p of norm p dividing α (here we use that there is at least one solution to (1')); so p cannot be inert. But p cannot be ramified either: $p = \alpha_p \tilde{\alpha}_p$ with $\alpha_p \sim \tilde{\alpha}_p$ would necessarily entail $\alpha_p = -\tilde{\alpha}_p$ (since $R^* = \{\pm 1\}$, and $\alpha_p = \tilde{\alpha}_p$ would imply $\alpha_p \in \mathbb{Q}$), so if we write $\alpha_p = c + d\sqrt{-2}$, then we must have c = 0 and so $\alpha_p = d\sqrt{-2}$ with $p = N(\alpha_p) = 2d^2$. This contradicts our assumption that p is odd.

Conclusion: Any prime π of R dividing α is associate to either one of α_p , $\tilde{\alpha}_p$, α_q or $\tilde{\alpha}_q$.

Since these primes are non-associate, α may be written uniquely as a product of powers of these primes times a unit:

$$\alpha = \pm 1 \times \alpha_p^t \times \tilde{\alpha}_p^u \times \alpha_q^v \times \tilde{\alpha}_q^w.$$

where t, u, v, w are non-negative integers. To satisfy (1') the norm of the RHS must be equal to N, which gives

$$^{t+u} \times q^{v+w} = p^{11} \times q^{13}.$$

This holds iff t + u = 11 (viz. t = 11 - u = 0, 1, 2, ... or 11) and v + w = 13 (viz. v = 13 - w = 0, 1, 2, ... or 13).

Thus we have the following independent choices:

2 (for units) \times 12 (for (t, u)) \times 14 (for (v, w)).

This gives 336 choices for the element $\alpha \in \mathbb{Z}[\sqrt{-2}]$ satisfying (1') and hence 336 solutions $(a, b) \in \mathbb{Z} \times \mathbb{Z}$ satisfying (1).

4 We work in the ring $R = \mathbb{Z}[(1 + \sqrt{-11})/2]$. From the lectures we know that R is a UFD, and we find again that $R^* = \{\pm 1\}$.

Put $\alpha = X + Y\sqrt{-11}$ and $N = 4p^{23}$. Then

$$X^{2} + 11Y^{2} = 4p^{23} = N$$
, with $X, Y \in \mathbb{Z}$ (1)

may be written

$$\alpha \tilde{\alpha} = N$$
, with $\alpha \in \mathbb{Z}[\sqrt{-11}]$. (1')

First consider the primes dividing 2: note that since there is no integer solution to $c^2 + 11d^2 = 8$, there is no element of norm 2 in R. So 2 is inert and prime in R.

Then analyse the decomposition of p: since p is not prime in R, we deduce $p = \alpha_p \tilde{\alpha}_p$ for some $\alpha_p = (c + d\sqrt{-11})/2 \in R$.

We show that p does not ramify: if $\alpha_p \sim \tilde{\alpha}_p$ then $\alpha_p = -\tilde{\alpha}_p$ (since $R^* = \{\pm 1\}$). This would imply c = 0, i.e., $\alpha = d\sqrt{-11}/2$, whence $p = 11b^2/4$ and p must be 11. #

Conclusion: The prime integer p splits as $p = \alpha_p \tilde{\alpha}_p$.

Now if π is a prime of R which divides α then π also divides $\alpha \tilde{\alpha} = 2^2 (\alpha_p \tilde{\alpha}_p)^{23}$. Hence the possibilities for such π are $\pi \sim 2$, α_p or $\tilde{\alpha}_p$.

Since these primes are non-associate, α may be written uniquely as a product of powers of these primes times a unit:

$$\alpha = \pm 1 \times 2^s \times \alpha_p^t \times \tilde{\alpha}_p^u,$$

where s, t and u are non-negative integers. To satisfy (1') the norm of the RHS must be N, i.e.

$$2^{2s} \times p^{t+u} = 4p^{23}.$$

This holds iff s = 1 and t + u = 23.

Note that, in (1), $p \mid X \iff p \mid Y$.

We are looking for solutions with $p \not\mid X$ and $p \not\mid Y \iff p(=\alpha_p \tilde{\alpha}_p) \not\mid \alpha \iff$ either u = 0 or v = 0.

Clearly, with this condition, we get just 4 elements α of norm N.

Moreover, since for each of these we need s = 1, we find $\alpha \in 2R \subset \mathbb{Z}[\sqrt{-11}]$.

So each α yields a solution to our problem and there are therefore 4 such solutions.

5 The equation in question

$$X^2 + 11 = Y^3 \tag{1}$$

can be rewritten as

 $\alpha \tilde{\alpha} = y^3$

with $\alpha = X + \sqrt{-11}$, and $X \in \mathbb{Z}$.

We want to work in the ring $R = \mathbb{Z}\left[\frac{1+\sqrt{-11}}{2}\right]$ instead of $\mathbb{Z}[\sqrt{-11}]$ since the former is a UFD (as we know from set work), and so we can apply our usual arguments.

For this, we first need to distinguish the primes dividing both α and $\tilde{\alpha}$ from the primes dividing precisely one of them.

The former are the primes π dividing a gcd of α and $\tilde{\alpha}$ (in a UFD, we can form a gcd of two numbers!), hence dividing also their sum $\alpha + \tilde{\alpha} = 2X$, of norm $4X^2$, and their difference $\alpha - \tilde{\alpha} = 2\sqrt{-11}$, of norm $4 \cdot 11$.

Now X cannot be divisible by 11 [otherwise 11 divides the LHS of (1) and hence also its RHS, but every exponent on the RHS is divisible by 3, while the LHS is not divisible by 11^2].

Hence the only possibility for a π dividing $gcd(\alpha, \tilde{\alpha})$ is $\pi|2$.

We note that 2 is inert in R (as $N(\frac{a+b\sqrt{-11}}{2}) = 2$ is impossible for $a, b \in \mathbb{Z}$ where $a \equiv b \pmod{2}$, and so $\pi \sim 2$ or $\pi \sim 1$. This implies that α has the form

$$\alpha = u \times 2^{s_0} \pi_1^{s_1} \cdots \pi_r^{s_r}$$

for some unit u and (mutually non-associate) irreducibles π_i (i = 1, ..., r) which are also non-associate to 2, and for $\tilde{\alpha}$ we get the same powers but instead for the irreducibles $\tilde{\pi}_i$. Therefore

$$\alpha \tilde{\alpha} = u \tilde{u} \times 2^{2s_0} \pi_1^{s_1} \tilde{\pi}_1^{s_1} \cdots \pi_r^{s_r} \tilde{\pi}_r^{s_1}$$

and we know that units in R must have the form $u = \pm 1$, so $u\tilde{u} = 1$. Furthermore, we can deduce that all exponents s_i (i = 0, ..., r) are divisible by 3. This allows us to take a cube root β of α in R by setting

$$\beta := 2^{s_0/3} \pi_1^{s_1/3} \cdots \pi_r^{s_r/3} \, .$$

But β must also have the form $\frac{m+n\sqrt{-11}}{2}$ for some $m, n \in \mathbb{Z}$ with $m \equiv n \pmod{2}$. This yields the further constraint (we multiply both sides by 8 to get rid of denominators)

$$8(X + \sqrt{-11}) = 8\alpha = (2\beta)^3 = (m + n\sqrt{-11})^3$$
$$= m^3 - 33mn^2 + \sqrt{-11}(3m^2n - 11n^3)$$

Comparing the coefficient of $\sqrt{-11}$ gives the condition

$$n(3m^2 - 11n^2) = 8\,,$$

hence in particular n|8, which already cuts it down to only 8 possible cases,

$$n \in \{\pm 1, \pm 2, \pm 4, \pm 8\},\$$

and this will produce only two solutions for the remaining factor: for n = -1, this leads to $m = \pm 1$, while n = 2 allows a further solution $m = \pm 4$. All the other possibilities for n easily lead to a quadratic equation for m which has no integer solutions.

Conclusion: the only possible solutions are given for

$$\beta \in \left\{\frac{1-\sqrt{-11}}{2}, 2+\sqrt{-11}\right\}$$

which leads, via $\alpha = \beta^3$, to the following solutions of (1):

$$(X, Y) = (\pm 4, 3)$$
 or $(X, Y) = (\pm 58, 15)$.