Michaelmas 2012, NT III/IV, Problem Sheet 6.

1. Find the fundamental units of $\mathbb{Q}(\sqrt{d})$ for $d=7,30$ and 53 .
2. Use a unit in $\mathbb{Z}[\sqrt{30}]$ to prove that the difference between $241 / 44$ and $\sqrt{30}$ is less than 5×10^{-5}.
3. Let $n \in \mathbb{Z}, n>2$ and put $d=n^{2}-2$. Show that $n^{2}-1+n \sqrt{d}$ is a unit of $\mathbb{Z}[\sqrt{d}]$. Is it necessarily the fundamental unit? (Give a proof or a counterexample.)
[Hint: A unit must be \pm a power of the fundamental unit. Also, it may be helpful to use inequalities.]
4. Give formulae for all the solutions $(x, y) \in \mathbb{Z} \times \mathbb{Z}$ (if any) to

$$
9 x^{2}-7 y^{2}= \pm 1
$$

5. Give formulae for all the solutions $(x, y) \in \mathbb{Z} \times \mathbb{Z}$ (if any) to
(i) $x^{2}-6 y^{2}=1 ; \quad$ (ii) $x^{2}-6 y^{2}=-1 ; \quad$ (iii) $x^{2}-6 y^{2}=5$;
(iv) $x^{2}-6 y^{2}=-5$ and (v) $3 x^{2}-2 y^{2}=1$.
[You may assume that $\mathbb{Z}[\sqrt{6}]$ is a PID.]
6. Give formulae for all the solutions $(x, y) \in \mathbb{Z} \times \mathbb{Z}$ (if any) to
(i) $x^{2}-13 y^{2}=-1 ; \quad$ (ii) $x^{2}-12 y^{2}=13$;
(iii) $x^{2}-375 y^{2}= \pm 11$ and (iv) $x^{2}-375 y^{2}=-51$.
7. Determine whether $299+10 \sqrt{894}$ is the fundamental unit of $\mathbb{Q}(\sqrt{894})$.
[Hint: A unit must be \pm a power of the fundamental unit.]
8. Show that $\theta:=(1+\sqrt[3]{2}) / \sqrt[3]{3}$ is a unit of $R=\mathcal{O}_{\mathbb{Q}(\sqrt[3]{2}, \sqrt[3]{3})}$.
[Remember that you need to show, amongst other things, that $\theta \in R$.]
9. Let d be a positive non-square integer and let u be the fundamental unit of $\mathbb{Z}[\sqrt{d}]$.
(i) Show that if $n \in \mathbb{Z}^{>0}$ then the fundamental unit of $\mathbb{Z}[n \sqrt{d}]$ is u^{m} for some $m \in \mathbb{Z}^{>0}$.
(ii) By considering the powers of $u \bmod n$, or otherwise, show that $m<n^{2}$.

Some challenging problems for long winter evenings

1. The two numbers

$$
\sqrt{11+2 \sqrt{29}}+\sqrt{16-2 \sqrt{29}+2 \sqrt{55-10 \sqrt{29}}}
$$

and

$$
\sqrt{5}+\sqrt{22+2 \sqrt{5}}
$$

are equal up to the first 20 decimal places to

$$
7.38117594089565797098 \ldots
$$

Are they equal?
2. Show that if

$$
\frac{a^{2}+b^{2}}{a b+1}
$$

(for a, b in \mathbb{N}) is integral, then it is a square.
3. Let $p=2 m-1$ be an odd prime. Show that the polynomial

$$
(1-x)^{m}+1+x^{m}
$$

is twice a square in $F_{p}[x]$.
4. Show that for $k, n \in \mathbb{Z}_{>0}$, with k odd, $1^{k}+2^{k}+\cdots+n^{k}$ is divisible by $1+2+\cdots+n$.
*5. There exist no positive integers a, b such that both $a^{2}+b^{2}$ and $a b$ are square.

