Michaelmas 2012, NT III/IV, Problem Sheet 6.

- 1. Find the fundamental units of $\mathbb{Q}(\sqrt{d})$ for d = 7, 30 and 53.
- 2. Use a unit in $\mathbb{Z}[\sqrt{30}]$ to prove that the difference between 241/44 and $\sqrt{30}$ is less than 5×10^{-5} .
- 3. Let $n \in \mathbb{Z}$, n > 2 and put $d = n^2 2$. Show that $n^2 1 + n\sqrt{d}$ is a unit of $\mathbb{Z}[\sqrt{d}]$. Is it necessarily the fundamental unit? (Give a proof or a counterexample.)

[Hint: A unit must be \pm a power of the fundamental unit. Also, it may be helpful to use inequalities.]

4. Give formulae for all the solutions $(x, y) \in \mathbb{Z} \times \mathbb{Z}$ (if any) to

$$9x^2 - 7y^2 = \pm 1$$
.

- 5. Give formulae for all the solutions (x, y) ∈ Z × Z (if any) to
 (i) x² 6y² = 1; (ii) x² 6y² = -1; (iii) x² 6y² = 5;
 (iv) x² 6y² = -5 and (v) 3x² 2y² = 1.
 [You may assume that Z[√6] is a PID.]
- 6. Give formulae for all the solutions $(x, y) \in \mathbb{Z} \times \mathbb{Z}$ (if any) to (i) $x^2 - 13y^2 = -1$; (ii) $x^2 - 12y^2 = 13$; (iii) $x^2 - 375y^2 = \pm 11$ and (iv) $x^2 - 375y^2 = -51$.
- 7. Determine whether $299 + 10\sqrt{894}$ is the fundamental unit of $\mathbb{Q}(\sqrt{894})$. [Hint: A unit must be \pm a power of the fundamental unit.]
- 8. Show that $\theta := (1 + \sqrt[3]{2})/\sqrt[3]{3}$ is a unit of $R = \mathcal{O}_{\mathbb{Q}(\sqrt[3]{2}, \sqrt[3]{3})}$. [Remember that you need to show, amongst other things, that $\theta \in R$.]
- 9. Let d be a positive non-square integer and let u be the fundamental unit of $\mathbb{Z}[\sqrt{d}]$.
 - (i) Show that if $n \in \mathbb{Z}^{>0}$ then the fundamental unit of $\mathbb{Z}[n\sqrt{d}]$ is u^m for some $m \in \mathbb{Z}^{>0}$.
 - (ii) By considering the powers of $u \mod n$, or otherwise, show that $m < n^2$.

Some challenging problems for long winter evenings

1. The two numbers

$$\sqrt{11+2\sqrt{29}} + \sqrt{16-2\sqrt{29}+2\sqrt{55-10\sqrt{29}}}$$

and

$$\sqrt{5} + \sqrt{22 + 2\sqrt{5}}$$

are equal up to the first 20 decimal places to

 $7.38117594089565797098\ldots$

Are they equal?

2. Show that if

$$\frac{a^2 + b^2}{ab+1}$$

(for a, b in \mathbb{N}) is integral, then it is a square.

3. Let p = 2m - 1 be an odd prime. Show that the polynomial

$$(1-x)^m + 1 + x^m$$

is twice a square in $F_p[x]$.

- 4. Show that for $k, n \in \mathbb{Z}_{>0}$, with k odd, $1^k + 2^k + \cdots + n^k$ is divisible by $1 + 2 + \cdots + n$.
- *5. There exist no positive integers a, b such that both $a^2 + b^2$ and ab are square.