Michaelmas 2012, NT III/IV, Solutions to Problem Sheet 6.

1. $d=7$:-
$7 \not \equiv 1 \bmod 4$ so we can solve $a^{2}-7 b^{2}= \pm 1$ for the smallest $b>0$.

b	$7 b^{2} \pm 1$	a^{2}	
1	6	8	
2	27	29	
3	62	64	$64=8^{2}$

$d=30:-$
$30 \not \equiv 1 \bmod 4$ so we can solve $a^{2}-30 b^{2}= \pm 1$ for the smallest $b>0$.

b	$30 b^{2} \pm 1$	a^{2}
1	29	31
2	119	121

$d=53:-$
$53 \equiv 1 \bmod 4$ so we must solve $x^{2}-30 y^{2}= \pm 4$ for the smallest $y>0$.

y	$53 y^{2} \pm 4$	x^{2}
1	49	57

2. Put $K=\mathbb{Q}(\sqrt{30})$. and $u=11+2 \sqrt{30}$. Then $u \tilde{u}=121-4 \times 30=1$.
(So u is a unit - in fact the fundamental unit - of $\mathbb{Z}[\sqrt{30}]$.)
Now $u>11+2 \times 5=21$. So $0<11-2 \sqrt{30}=1 / u<1 / 21$ and $\sqrt{30}>$ $(11-1 / 21) / 2$.
Hence $u^{2}=241+44 \sqrt{30}>241+44(11-1 / 21) / 2=241+242-22 / 21=481$.
Whence $241-44 \sqrt{30}=(\tilde{u})^{2}=1 / u^{2}<1 / 481$.
So that $0<241 / 44-\sqrt{30}<1 /(44 \times 481)=1 / 21164<1 / 20000=$ 5×10^{-5}.
3. [Note that, since $n^{2} \equiv 0$ or $1 \bmod 4, d \equiv 2$ or $3 \bmod 4$ and so d cannot be a square.]
Let $u=n^{2}-1+n \sqrt{d}$. Then $u \tilde{u}=\left(n^{2}-1\right)^{2}-n^{2}\left(n^{2}-2\right)=1$.
So u is certainly a unit of $\mathbb{Z}[\sqrt{d}]$.
If $v=a+b \sqrt{d}$ is the fundamental unit then, for some $r \geq 1$, $u=v^{r}=a^{r}+r a^{r-1} b \sqrt{d}+r(r-1) a^{r-2} b^{2} d / 2+\cdots$.
If $r>1$ then, equating rational parts,
$n^{2}-1 \geq a^{r}+a^{r-2} b^{2} d \geq a^{2}+b^{2}\left(n^{2}-2\right)$.
So $a=b=1$ and $\pm 1=v \tilde{v}=1-d$. Thus $d=2$ and $n=2$. Contradiction.
So $r=1$ and u is the fundamental unit.
4. From Q1 the fundamental unit of $\mathbb{Z}[\sqrt{7}]$ is $8+3 \sqrt{7}$.

If we have $x, y \in \mathbb{Z}$ such that $9 x^{2}-7 y^{2}= \pm 1$ then we can assume that $x, y>0$.
Then $3 x+y \sqrt{7}$ is a unit greater than 1 .
So $3 x+y \sqrt{7}=(8+3 \sqrt{7})^{r}$ for some $r \in \mathbb{Z}^{>0}$.
Reducing coefficients mod 3, we have $\pm \sqrt{7} \equiv(-1)^{r}$ which is impossible.
So there are no solutions.
(Actually there's a low-tech way of doing this. Can you see it?)
5. Take $K=\mathbb{Q}(\sqrt{6})$. We know that $R=\mathbb{Z}[\sqrt{6}]$ is a UFD.
(i) Put $\alpha=x+y \sqrt{6}$. Then we require those $\alpha \in R$ such that $N_{K}(\alpha)(=$ $\left.x^{2}-6 y^{2}\right)=1$, i.e. those units α of R of norm 1 .
The fundamental unit of $\mathbb{Q}(\sqrt{6})$ is easily found to be $u=5+2 \sqrt{6}$. So α is a unit iff

$$
\begin{equation*}
\alpha= \pm u^{t}, \text { with } t \in \mathbb{Z} \tag{*}
\end{equation*}
$$

But $N\left(\pm u^{t}\right)=N(u)^{t}=(1)^{t}=1$ for all t. So (*) gives a solution for every value of t.

Recovering x and y from $\alpha= \pm u^{t}$ we get the complete solution of $(*)$:

$$
\begin{aligned}
& x= \pm \frac{u^{t}+\tilde{u}^{t}}{2}= \pm \frac{(5+2 \sqrt{6})^{t}+(5-2 \sqrt{6})^{t}}{2} \\
& y= \pm \frac{u^{t}-\tilde{u}^{t}}{2 \sqrt{6}}= \pm \frac{(5+2 \sqrt{6})^{t}-(5-2 \sqrt{6})^{t}}{2 \sqrt{6}}
\end{aligned}
$$

for $t \in \mathbb{Z}$.
(ii) This question differs from (i) only in that we are asked for to solve $N_{K}(\alpha)=-1$. i.e. to find those units α of R of norm -1 . But we have just shown that all units of R have norm +1 . So the equation has no solutions.
(iii) Take $\alpha=x+y \sqrt{6} \in R$, as before.

Then our equation demands those $\alpha \in R$ such that $\alpha \widetilde{\alpha}=5$ (so α will be a prime in R and a factor of 5).
Put $\beta=1+\sqrt{6}$ and then $N(\beta)=-5$.
So β is prime in R and $5=-\beta \tilde{\beta}$ is a prime factorization of 5 .
Hence $\alpha \sim \beta$ or $\tilde{\beta}$. i.e. $\alpha= \pm u^{m} \beta$ or $\pm \widetilde{u^{m} \beta}$.
Now β and $\tilde{\beta}$ both have norm -5 . Furthermore, $N(u)=1$.
So with α as in $(\dagger), \alpha \widetilde{\alpha}=N(\alpha)=(1)^{m}(-5)=-5$.
Thus $N(\alpha)=5$ is impossible for $\alpha \in R$ and the equation has no solution.
(iv) We now require those $\alpha \in R$ such that $\alpha \widetilde{\alpha}=-5$.

And again the possibilities for α are $\alpha= \pm u^{m} \beta$ or $\pm \widetilde{u^{m}} \beta$, where $m \in \mathbb{Z}$, and as observed above all these have norm -5 and give solutions to our problem. So the solution is
$x= \pm \frac{\beta u^{m}+\tilde{\beta} \tilde{u}^{m}}{2}= \pm \frac{(5+2 \sqrt{6})^{m}(1+\sqrt{6})+(5-2 \sqrt{6})^{m}(1-\sqrt{6})}{2}$
$y= \pm \frac{\beta u^{m}-\tilde{\beta} \tilde{u}^{m}}{2 \sqrt{6}}= \pm \frac{(5+2 \sqrt{6})^{m}(1+\sqrt{6})-(5-2 \sqrt{6})^{m}(1-\sqrt{6})}{2 \sqrt{6}}$
for $m \in \mathbb{Z}$.
(v) We may reform the equation by multiplying by 3 , obtaining $(3 x)^{2}-$ $2 y^{2}=3$.
Note that all solutions to

$$
\begin{equation*}
z^{2}-6 y^{2}=3 \tag{**}
\end{equation*}
$$

will give solutions to our equation, since z^{2}, and hence z, must be divisible by 3 .
Put $\alpha=z+y \sqrt{6}$.

Then $(* *)$ demands those $\alpha \in R$ such that $\alpha \widetilde{\alpha}=3$.
(So α will be a prime in R and a factor of 3.)
Put $\beta=3+\sqrt{6}$ and then $N(\underset{\sim}{\beta})=9-6=3$.
So β is prime in R and $3=\beta \tilde{\beta}$ is a prime factorization of 3 .
Hence $\alpha \sim \beta$ or $\tilde{\beta}$. i.e. $\alpha= \pm u^{m} \beta$ or $\pm \widetilde{u^{m} \beta}$.
Now β and $\tilde{\beta}$ both have norm 3 .
So with α as above, $\alpha \widetilde{\alpha}=N(\alpha)=(1)^{m} 3=3$, as required.
Hence the solution to the original equation is (taking care to divide z by 3 to get x):
$x= \pm \frac{\beta u^{m}+\tilde{\beta} \tilde{u}^{m}}{6}= \pm \frac{(5+2 \sqrt{6})^{m}(3+\sqrt{6})+(5-2 \sqrt{6})^{m}(3-\sqrt{6})}{6}$
$y= \pm \frac{\beta u^{m}-\tilde{\beta} \tilde{u}^{m}}{2 \sqrt{6}}= \pm \frac{(5+2 \sqrt{6})^{m}(3+\sqrt{6})-(5-2 \sqrt{6})^{m}(3-\sqrt{6})}{2 \sqrt{6}}$
for $m \in \mathbb{Z}$.
6. (i) Take $K=\mathbb{Q}(\sqrt{13})$. Then $13 \equiv 1 \bmod 4$.

So we take $R=\mathbb{Z}[\theta]\left(=\int(K)\right)$, where $\theta=\frac{1+\sqrt{13}}{2}$.
Put $\alpha=x+y \sqrt{13}$. Then our problem, to solve:

$$
\begin{equation*}
x^{2}-13 y^{2}=-1, \quad \text { such that }(x, y) \in \mathbb{Z} \times \mathbb{Z} \tag{*}
\end{equation*}
$$

asks for those $\alpha \in \mathbb{Z}[\sqrt{13}]$ such that $N_{K}(\alpha)=-1$.
Now $N(\alpha)= \pm 1$, so α is a unit.
The fundamental unit of K is easily found to be $u=\frac{1}{2}(3+\sqrt{13})=1+\theta$.
So we must have $\alpha= \pm u^{t}$ for some integer t.
Then, since $N(u)=-1, N(\alpha)=(-1)^{t}=-1$ iff t is odd.
Again $\mathbb{Z}[\sqrt{13}]=\mathbb{Z}[2 \theta]=\mathbb{Z}+2 R$.
So $\mathbb{Z}[\sqrt{13}]=\{\beta \in R \mid \beta \equiv b \bmod 2 R$ for some $b \in \mathbb{Z}\}$.
Thus $\alpha \in \mathbb{Z}[\sqrt{13}]$ demands that α be congruent to an integer $\bmod 2 R$.
Now $u^{2}=\frac{1}{2}(11+3 \sqrt{13})=4+\theta$ and $u^{3}=18+5 \sqrt{13}=13+10 \theta \equiv 1$ $\bmod 2 R$.
And also $u^{-3}=(-\tilde{u})^{3} \equiv 1 \bmod 2 R$.
Thus, if $t=3 q+r$ with $r=0,1$ or 2 then
$u^{t}=u^{3 q} u^{r} \equiv u^{r} \equiv 1,1+\theta$ or $\theta \bmod 2 R$, respectively.
Therefore $\pm u^{t}$ is congruent to an integer $\bmod 2 R$ iff $t \equiv 0 \bmod 3$. ($\dagger \dagger$)
So the solutions to $(*)$ are given by those $\alpha= \pm u^{t}$ satisfying (\dagger) and ($\dagger \dagger$)
That is, we require $t \equiv 3 \bmod 6$.
The solutions to $(*)$ are, therefore:

$$
\begin{aligned}
& x= \pm \frac{u^{6 m+3}+\tilde{u}^{6 m+3}}{2} \\
& y= \pm \frac{u^{6 m+3}-\tilde{u}^{6 m+3}}{2 \sqrt{13}}
\end{aligned}
$$

for $m \in \mathbb{Z}$.
(ii): Now $12=2^{2} \times 3$. So take $K=\mathbb{Q}(\sqrt{3})$ and $R=\mathbb{Z}[\sqrt{3}]$, a UFD (see, e.g., the list in Stewart-Tall, or simply check it as for other cases).

Putting $\alpha=x+2 y \sqrt{3}$ with $(x, y) \in \mathbb{Z} \times \mathbb{Z}$, our equation,

$$
x^{2}-12 y^{2}=13
$$

becomes

$$
N_{K}(\alpha)=13
$$

So we require those $\alpha=x+z \sqrt{3}$ in $\mathbb{Z}[\sqrt{3}]$ such that
(a) $N(\alpha)=13$ and
(b) 2 divides z.

Now $13=\beta \widetilde{\beta}$ where $\beta=2+\sqrt{3}$. So 13 splits (since $3 \nmid 13$).
Thus α is either β or $\widetilde{\beta}$ times a unit.
The fundamental unit of K is easily found to be $u=2+\sqrt{3}$, of norm 1 .
So α is $\pm \beta u^{t}$ or its conjugate, for some $t \in \mathbb{Z}$.
Since $N(u)=1$, all these possibilities have norm 13 and so satisfy (a), above.
Thus it remains to find out which of them satify (b).
Note that $u^{-1}=\tilde{u}$. So if $\alpha= \pm \beta u^{t}$, then, choosing $\epsilon= \pm 1$ so that $t=\epsilon|t|$,

$$
\alpha= \pm(2+\sqrt{3})^{t}(4+\sqrt{3})= \pm(2+\epsilon \sqrt{3})^{|t|}(4+\sqrt{3}) \equiv \sqrt{3}^{|t|+1} \bmod 2 R
$$

So, for this $\alpha=x+z \sqrt{3}$, we have $z \equiv 0 \bmod 2$ iff $|t|+1$ is even, i.e. t odd.
The same argument works for the associates of $\widetilde{\beta}$.
Hence the required α are the $\pm \beta u^{2 s+1}$ and their conjugates $(s \in \mathbb{Z})$.
So the solution is:

$$
\begin{aligned}
x & = \pm \frac{\beta u^{2 s+1}+\tilde{\beta} \tilde{u}^{2 s+1}}{2} \\
y & = \pm \frac{\beta u^{2 s+1}-\tilde{\beta} \tilde{u}^{2 s+1}}{4 \sqrt{3}}
\end{aligned}
$$

for $s \in \mathbb{Z}$.
7. $894=2 \times 3 \times 149$ and since $2,3,5,7,11$ do not divide 149 , it is prime.

Thus 894 is squarefree and hence $\mathcal{O}_{\mathbb{Q}(\sqrt{894})}=\mathbb{Z}[\sqrt{894}]$.
So the fundamental unit is $v=a+b \sqrt{894}$, for some $a, b \in \mathbb{Z}^{>0}$.
Put $u=299+10 \sqrt{894}$. Then $u \tilde{u}=299^{2}-89400=1$ so u is a unit.
Hence $u=v^{r}$ for some $r \in \mathbb{Z}^{>0}$. That is

$$
u=v^{r}=a^{r}+r a^{r-1} b \sqrt{894}+r(r-1) a^{r-2} b^{2} 894 / 2+\cdots
$$

If $r>1$ then, equating rational parts,
$299 \geq a^{r}+a^{r-2} b^{2} 894 \geq 894$. Contradiction.
So $r=1$ and u is the fundamental unit.
8. Check that θ satisfies

$$
\theta^{3}=\frac{(1+\sqrt[3]{2})^{3}}{3}=\frac{1+3 \sqrt[3]{2}^{2}+3 \sqrt[3]{2}^{2}+2}{3}=1+\sqrt[3]{2}+\sqrt[3]{2}^{2}
$$

and hence

$$
\left(\theta^{3}-1\right)^{3}=\sqrt[3]{2}^{3}(1+\sqrt[3]{2})^{3}=2 \cdot 3 \theta^{3}
$$

the last equality being deduced form the previous equality.
So θ is a root of the monic (degree 9) integer polynomial $\left(x^{3}-1\right)^{3}-6 x^{3}$.

