
Michaelmas 2012, NT III/IV, Solutions to Problem Sheet 6.

1. d = 7:-
7 6≡ 1 mod 4 so we can solve a2 − 7b2 = ±1 for the smallest b > 0.

b 7b2 ± 1 a2

1 6 8
2 27 29
3 62 64 64 = 82

So the fundamental unit is 8 + 3
√

7.

d = 30:-
30 6≡ 1 mod 4 so we can solve a2 − 30b2 = ±1 for the smallest b > 0.

b 30b2 ± 1 a2

1 29 31
2 119 121 121 = 112

So the fundamental unit is 11 + 2
√

30.

d = 53:-
53 ≡ 1 mod 4 so we must solve x2 − 30y2 = ±4 for the smallest y > 0.

y 53y2 ± 4 x2

1 49 57 49 = 72
So the fundamental unit is

7 +
√

53
2

.

2. Put K = Q(
√

30). and u = 11 + 2
√

30. Then uũ = 121− 4× 30 = 1.
(So u is a unit — in fact the fundamental unit — of Z[

√
30].)

Now u > 11 + 2 × 5 = 21. So 0 < 11 − 2
√

30 = 1/u < 1/21 and
√

30 >
(11− 1/21)/2.

Hence u2 = 241+44
√

30 > 241+44(11−1/21)/2 = 241+242−22/21 = 481.

Whence 241− 44
√

30 = (ũ)2 = 1/u2 < 1/481.

So that 0 < 241/44 −
√

30 < 1/(44 × 481) = 1/21164 < 1/20000 =
5× 10−5.

3. [Note that, since n2 ≡ 0 or 1 mod 4, d ≡ 2 or 3 mod 4 and so d cannot be
a square.]

Let u = n2 − 1 + n
√
d. Then uũ = (n2 − 1)2 − n2(n2 − 2) = 1.

So u is certainly a unit of Z[
√
d].

If v = a+ b
√
d is the fundamental unit then, for some r ≥ 1,

u = vr = ar + rar−1b
√
d+ r(r − 1)ar−2b2d/2 + · · · .

If r > 1 then, equating rational parts,
n2 − 1 ≥ ar + ar−2b2d ≥ a2 + b2(n2 − 2).

So a = b = 1 and ±1 = vṽ = 1− d. Thus d = 2 and n = 2. Contradiction.
So r = 1 and u is the fundamental unit.

4. From Q1 the fundamental unit of Z[
√

7] is 8 + 3
√

7.
If we have x, y ∈ Z such that 9x2 − 7y2 = ±1 then we can assume that
x, y > 0.
Then 3x+ y

√
7 is a unit greater than 1.

So 3x+ y
√

7 = (8 + 3
√

7)r for some r ∈ Z>0.
Reducing coefficients mod 3, we have ±

√
7 ≡ (−1)r which is impossible.

So there are no solutions.
(Actually there’s a low-tech way of doing this. Can you see it?)
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5. Take K = Q(
√

6). We know that R = Z[
√

6] is a UFD.

(i) Put α = x + y
√

6. Then we require those α ∈ R such that NK(α)(=
x2 − 6y2) = 1, i.e. those units α of R of norm 1.

The fundamental unit of Q(
√

6) is easily found to be u = 5 + 2
√

6. So α is
a unit iff
α = ±ut, with t ∈ Z. (∗)

But N(±ut) = N(u)t = (1)t = 1 for all t. So (∗) gives a solution for every
value of t.

Recovering x and y from α = ±ut we get the complete solution of (∗):

x = ±u
t + ũt

2
= ± (5 + 2

√
6)t + (5− 2

√
6)t

2

y = ±u
t − ũt

2
√

6
= ± (5 + 2

√
6)t − (5− 2

√
6)t

2
√

6
for t ∈ Z.

(ii) This question differs from (i) only in that we are asked for to solve
NK(α) = −1. i.e. to find those units α of R of norm −1. But we have just
shown that all units of R have norm +1. So the equation has no solutions.

(iii) Take α = x+ y
√

6 ∈ R, as before.
Then our equation demands those α ∈ R such that αα̃ = 5 (so α will be a
prime in R and a factor of 5).

Put β = 1 +
√

6 and then N(β) = −5.

So β is prime in R and 5 = −ββ̃ is a prime factorization of 5.

Hence α ∼ β or β̃. i.e. α = ±umβ or ±ũmβ. (†)

Now β and β̃ both have norm −5. Furthermore, N(u) = 1.
So with α as in (†), αα̃ = N(α) = (1)m(−5) = −5.

Thus N(α) = 5 is impossible for α ∈ R and the equation has no solution.

(iv) We now require those α ∈ R such that αα̃ = −5.
And again the possibilities for α are α = ±umβ or ±ũmβ, where m ∈ Z,

and as observed above all these have norm −5 and give solutions to our
problem. So the solution is

x = ±βu
m + β̃ũm

2
= ± (5 + 2

√
6)m(1 +

√
6) + (5− 2

√
6)m(1−

√
6)

2

y = ±βu
m − β̃ũm

2
√

6
= ± (5 + 2

√
6)m(1 +

√
6)− (5− 2

√
6)m(1−

√
6)

2
√

6
for m ∈ Z.

(v) We may reform the equation by multiplying by 3, obtaining (3x)2 −
2y2 = 3.
Note that all solutions to

z2 − 6y2 = 3 (∗∗)

will give solutions to our equation, since z2, and hence z, must be divisible
by 3.
Put α = z + y

√
6.
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Then (∗∗) demands those α ∈ R such that αα̃ = 3.
(So α will be a prime in R and a factor of 3.)

Put β = 3 +
√

6 and then N(β) = 9− 6 = 3.
So β is prime in R and 3 = ββ̃ is a prime factorization of 3.

Hence α ∼ β or β̃. i.e. α = ±umβ or ±ũmβ.

Now β and β̃ both have norm 3.
So with α as above, αα̃ = N(α) = (1)m3 = 3, as required.

Hence the solution to the original equation is (taking care to divide z by 3
to get x):

x = ±βu
m + β̃ũm

6
= ± (5 + 2

√
6)m(3 +

√
6) + (5− 2

√
6)m(3−

√
6)

6

y = ±βu
m − β̃ũm

2
√

6
= ± (5 + 2

√
6)m(3 +

√
6)− (5− 2

√
6)m(3−

√
6)

2
√

6
for m ∈ Z.

6. (i) Take K = Q(
√

13). Then 13 ≡ 1 mod 4.
So we take R = Z[θ] (=

∫
(K)), where θ = 1+

√
13

2 .

Put α = x+ y
√

13. Then our problem, to solve:
x2 − 13y2 = −1, such that (x, y) ∈ Z× Z (∗)

asks for those α ∈ Z[
√

13] such that NK(α) = −1.

Now N(α) = ±1, so α is a unit.
The fundamental unit of K is easily found to be u = 1

2 (3 +
√

13) = 1 + θ.
So we must have α = ±ut for some integer t.
Then, since N(u) = −1, N(α) = (−1)t = −1 iff t is odd. (†)
Again Z[

√
13] = Z[2θ] = Z + 2R.

So Z[
√

13] = {β ∈ R | β ≡ b mod 2R for some b ∈ Z}.
Thus α ∈ Z[

√
13] demands that α be congruent to an integer mod 2R.

Now u2 = 1
2 (11 + 3

√
13) = 4 + θ and u3 = 18 + 5

√
13 = 13 + 10θ ≡ 1

mod 2R.
And also u−3 = (−ũ)3 ≡ 1 mod 2R.
Thus, if t = 3q + r with r = 0, 1 or 2 then
ut = u3qur ≡ ur ≡ 1, 1 + θ or θ mod 2R, respectively.

Therefore ±ut is congruent to an integer mod 2R iff t ≡ 0 mod 3. (††)
So the solutions to (∗) are given by those α = ±ut satisfying (†) and (††)

That is, we require t ≡ 3 mod 6.

The solutions to (∗) are, therefore:

x = ±u
6m+3 + ũ6m+3

2

y = ±u
6m+3 − ũ6m+3

2
√

13
for m ∈ Z.

(ii): Now 12 = 22 × 3. So take K = Q(
√

3) and R = Z[
√

3], a UFD (see,
e.g., the list in Stewart–Tall, or simply check it as for other cases).
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Putting α = x+ 2y
√

3 with (x, y) ∈ Z× Z, our equation,
x2 − 12y2 = 13,

becomes
NK(α) = 13.

So we require those α = x+ z
√

3 in Z[
√

3] such that
(a) N(α) = 13 and
(b) 2 divides z.

Now 13 = ββ̃ where β = 2 +
√

3. So 13 splits (since 3 |/ 13).

Thus α is either β or β̃ times a unit.
The fundamental unit of K is easily found to be u = 2 +

√
3, of norm 1.

So α is ±βut or its conjugate, for some t ∈ Z.
Since N(u) = 1, all these possibilities have norm 13 and so satisfy (a),
above.
Thus it remains to find out which of them satify (b).

Note that u−1 = ũ. So if α = ±βut, then, choosing ε = ±1 so that t = ε|t|,

α = ±(2 +
√

3)t(4 +
√

3) = ±(2 + ε
√

3)|t|(4 +
√

3) ≡
√

3
|t|+1

mod 2R.
So, for this α = x+ z

√
3, we have z ≡ 0 mod 2 iff |t|+ 1 is even, i.e. t odd.

The same argument works for the associates of β̃.
Hence the required α are the ±βu2s+1 and their conjugates (s ∈ Z).

So the solution is:

x = ±βu
2s+1 + β̃ũ2s+1

2

y = ±βu
2s+1 − β̃ũ2s+1

4
√

3
for s ∈ Z.

7. 894 = 2× 3× 149 and since 2, 3, 5, 7, 11 do not divide 149, it is prime.
Thus 894 is squarefree and hence OQ(

√
894) = Z[

√
894].

So the fundamental unit is v = a+ b
√

894, for some a, b ∈ Z>0.
Put u = 299 + 10

√
894. Then uũ = 2992 − 89400 = 1 so u is a unit.

Hence u = vr for some r ∈ Z>0. That is
u = vr = ar + rar−1b

√
894 + r(r − 1)ar−2b2894/2 + · · · .

If r > 1 then, equating rational parts,
299 ≥ ar + ar−2b2894 ≥ 894. Contradiction.
So r = 1 and u is the fundamental unit.

8. Check that θ satisfies

θ3 =
(1 + 3

√
2)3

3
=

1 + 3 3
√

2 + 3 3
√

2
2

+ 2
3

= 1 + 3
√

2 + 3
√

2
2

and hence
(θ3 − 1)3 = 3

√
2
3
(1 + 3

√
2)3 = 2 · 3θ3 ,

the last equality being deduced form the previous equality.
So θ is a root of the monic (degree 9) integer polynomial (x3−1)3−6x3.


