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Plan of Talk

In this talk, we review the relation between dilogarithm identities (DI) and cluster
algebras (CA), which is recently updated in view of cluster scattering diagrams (CSD).

Caution: Cluster scattering diagrams are nothing to do with scattering amplitudes
which is one of the theme of this workshop.

@ History in B.C. (1980s-2000)
@ D1 and CA (2000-2015)

© DiandcsD (2015-)
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@ History in B.C. (1980s-2000)
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History in B.C. (1980s—2000)
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Dilogarithms

Euler dilogarithm: (z < 1) (1768)

Rogers dilogarithm: (0 < z < 1) (1907)

1 (% (log(l— 1
L(x):_7/ {Og( Y L ogy}dy.
2Jo Y l-y

1
= Lia(z) + 5 log xlog(1 — x).

modified Rogers dilogarithm (no official name): (0 < z) (1990’s—)

i(z):l/ {log(1+y) _ 1ogy}dy
2 0 Yy 1 4‘ Yy

1
= —Liz(—z) — 5 log z log(1 + x)

:L<1ix)'

In this talk we maily use L(z). (Its importance is a key point of this talk.)
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History in B.C. (1980s—2000)
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Dilogarithm conjecture from Bethe ansatz method

@ In 1980’s Faddeev and others in Leningrad (St. Petersburg) started to study
integrable systems by the Bethe ansatz method.
@ The Rogers dilogartihm L(x) mysteriously appeared through the calculation of
the specific heats of various integrable lattice models.
X, simply laced Dynkin diagram:

Ay D, Eg Er Eg
For nodes a and b in X, we write a ~ b if it is adjacent in X..
Fix an integer ¢ > 2, called the level.
For a pair (X, £), we define a system of algebraic equations for Qﬁ,‘f)
(a=1,...,7;m=1....,0—1):
a 2 a a a a
@system) Q)" =@, Q) + [T @, Y =@ =1
b:b~a

Conjecture [Kirillov89, Bazhanov-Reshetikhin 90]

For the unique positive real solution of the Q-system, the following equality holds:

55 o (Mo @) _ rhte=n =
5;)2 h+¢ 6

(h: Coxeter number of X.).

a=1m=1

Remarkably, Kirillov proved it for type A, by the explicit solution [Kirillov89]. 5/24



History in B.C. (1980s—2000)
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Functional generalization of dilogarithm conjecture

@ The Y-system (a system of functional equations) was introduced by
Al. Zamolodchikov in 1991 to study some integrable field theories.

@ Gliozzi and Tateo conjectured the functional generalization of the dilogarithm
conjecture based on the Y'-system for certain integrable field theories.

For the same pair (X, ¢) of the Q-system, we define a system of functional equations
fOI’YT<na)(u) (a=1,....,;m=1.... .0 —1;u €Z):
b
[ppa(+ Y (w),

(LY @)D+ Y ()71
Y (w)"t = v ()~ =o.
One can regard it as a system of recursion relations along discrete parameter u
(discrete dynamical system) with the initial variables A (0) and Y,,@(l).

(V-system) Yi® (u— 1)V, (u+1) =

)

Conjecture [Gliozzi-Tateo95]
(1) (Periodicity) Y,\® (u + 2(h + £)) = Y, (w). (for £ = 2, [Zamlodchikov91])
(2) (functional dilogarithm identity)

2(h4+0)—1 r £—

(@) (4)) = m?
Z > Z L(Yom =2rh(t—1)=

a=1m=1

For the positive constant solution, the DI reduces to the DI conjectured by [BR90]. 6124
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Examples of Y-system DI

Example 1. (X, ¢) = (A1, 2), where h = 2, period 2(h + ¢) = 8.

We have only variables Y (u) = Y1(1>(u), and the Y-system is given by
Y(u+1)Y(u—1)=1.

It has a reduced period of 4: Y (u +4) = Y (u+2)~! = Y (u). The corresponding DI is
Liy)+ Ly ") = %2~

This is Euler’s identity.

Example 2. (X, ¢) = (A2, 2), where h = 3, period 2(h + ¢) = 10.

We have variables Y7 (u) := Y\ (u), Y2 (u) := Y{? (u), and the Y-system is given by
Yi(fu+1)Yi(u—1) =1+ Ya(u), Yo(u+1)Ya(u—1)=1+Yi(u).

It has a half periodicity Y1 (u +5) = Y2(u), Y2(u+5) = Yi(u). The corresponding Dl is

L) + Lwa(t +90) + L (192 +9192) + Lo v (1 92) + L") = £

This is Abel’s identity (the pentagon identity).

So, Y-system Dls are vast generalization of these classic identities by root systems.
They were very mysterious and only proved partially before cluster algebras (= B.C.).

7124
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@ DI and CA (2000-2015)

8/24



DI and CA (2000-2015)
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Development after cluster algebra

Solutions of Y'-system conjectures for (X, £):

Who and When | periodicity | DI | idea/method/result
Gliozzi-Tateo 95 (Ar,2) (Ar,2) explicit solution
Frenkel-Szenes 95 (Ar,2) (Ar,2) explicit solution

constancy condition (1)
Fomin-Zelevinsky 00~ - - cluster algebra
Fomin-Zelevinsky 03 (any,2) cluster structure (2)

Coxeter transformation (3)
Chapoton 05 (any, 2) (1) +(2)

evaluation at 0/oo limit (4)
Szenes 06 (Ar,any) flat connection on graph
Volkov 06 explicit solution
Fomin-Zelevinsky 07 - - coefficients/ F-polynomials (5)
Keller 08 (any, any) (5)

cluster category

Auslander-Reiten theory
N 09 (any, any) | (1)+(2)+(3)+(4)+(5)

There are other types of Y'-systems, and the corresponding problems were also solved
by the cluster algebraic methods.

nonsimply-laced Y -system: [Inoue-lyama-Kuniba-N-Suzuki13]

sine-Gordon Y'-system: [N-Tateo10], [N-Stella14]
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DI and CA (2000-2015)
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Cluster algebra basics (1)

We say that an r x r integer matrix B = (b;;) is skew-symmetrizable if it has a
decomposition (skew-symmetric decomposition)

B = AQ,

where A is a diagonal matrix whose diagonals are positive integers and Q is a
skew-symmetric matrix.
For an integer a, let

la]+ = max(a,0).

For an n x n skew-symmetrizable matrix Band k = 1,...,r, anew r x r integer
matrix B’ = (b} ;) = px(B) is defined by

b = —bi]' i=korj=k,

* bij + bin[brsl+ [=bix)+br; 1,5 # k-

It is called the mutation of B in direction k.

(1) B’ is also skew-symmetrizable with common skew-symmetrizer A.
(2) p is involutive, i.e., ux(B’) = B.

10/24



DI and CA (2000-2015)
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Cluster algebra basics (2)

A pair T = (y, B) is called a Y-seed, where y = (y1, ..., yr) is an r-tuple of formal
variables, and B is an r x r skew-symmetrizable matrix.

ForaY-seed Y = (y,B)andk=1,...,r,anew Y-seed uy(Y) =Y = (y’,B’) is
defined by B’ = uy(B) and

= y,;l i =k,
;= bri Y

H e SRR L )
It is called the mutation of Y in direction .

wr is involutive, i.e., ux(y’, B') = (y, B).

We define a left action of permutation o of {1,...,7} onaseed T = (y, B) by
o(T) =" = (y',B’), where

Vi = Yom1(y i = bom1(iyo1()-

11/24
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DI associated with a period in CA

Consider a sequence of mutations

T(0) = (v(0), BO)) 2% T(1) = (y(1), B)) 2 ... "E51 v(P) = (y(P), B(P)).

We say that it is o-period if Y(P) = o(Y(0)) for a permutation o.
@ After proving several Y-system Dls, | recognized that the periodicity is essential.

Theorem [N12]. (DI associated with a period in CA)

For any o-period as above, the following DI holds:

P-1

Z Sky Lyn, () = N*

where A = diag(d1,. .., d,) is @ common skew symmetrizer of B(s) = AQ(s) and N
is some positive integer. It is also rewritten in the form (zero constant form)

ZES(S]C s)k ):07

where e5 € {£1} is the tropical sign of yy_ (s). y

Y -systems are embedded in some sequences of mutations. Their periodicities and Dls
are special instances of the above.
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DI and CA (2000-2015)
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Examples of Dls (1)

type A4, (involution). r = 1, B = (0).

By the involution of the mutation, we have a periodicity
T(0) = (v, B) = T(1) - 1(0).

The associated Dl is )

L) + L) =

This is Euler’s identity. The zero constant form is trivial:
L(y1) — L(y1) = 0.

type A1 x A; (commutativity/square periodicity). r = 2, B = (8 8)

Since two mutations p1 and pe are commutative, we have a periodicity

T(0) = (v, B) = T(1) = T(2) -5 1(3) = T(0).

The associated Dl is
2
= = - = ™
L(y1) + L(y2) + L(y; 1) + L(yz ") = T

Again, this is Euler’s identity. The zero constant form is trivial:
L(y1) + L(y2) — L(y1) — L(y2) = 0.

13/24



DI and CA (2000-2015)
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Examples of Dls (2)

type As (pentagon periodicity).

We have a nontrivial periodicity
T(0) = (v, B) = T(1) = T(2) — T(3) = T(4) - m127(0).
The associated Dl is
E(y1)+ Ly2(1+y1)) + Ly Y1 +y2+y192) + Ly g MU +2)) + Ly~ = =
This is Abel’s identity (the pentagon identity). The zero constant form is

L(y1) + L(y2(1 +91)) = Ly (L +v2 +3192) ") — L{yay2(1+92) ") — L(y2) = 0.

1 0

type Bs (hexagon periodicity). r — 2, B — (3 _01> = (O ) (O _1> — AQ.

We have a nontrivial periodicity

T(0) = (v, B) -5 T(1) =5 T(2) = T(3) - T(4) - T(5) = T(0).
The associated DI in the zero constant form is

L(y1) +2L(y2(1 + v1)) — L(ya (1 + y2 + y1y2) 2)

—2L(y1y2(1 4 2y2 + 43 + v193) ") — L(y1y3 (1 + y2) %) — 2L(y2) = 0.
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Methods/Ideas of Proof of DIs in CA

Method 1: Algebraic method [N12].

Constancy condition [Frenkel-Szenes95] (based on the idea of [Bloch78]:

P

P
th(u) A1+ fi(uw)=0 = Zf/(ft(u)) = const.
t=1

t=1

To show the constancy condition, we use the idea of [Fock-Goncharov09]):

For each Y-seed Y(s), we attach certain quantity V' (s) such that

V(s+1) — V(s) = 0k, Yk, (s) A (1 +yg,(s)). Then, the periodicity implies the
constancy condition. (The proof does not explain why such V (s) exists.)

G

Method 2: via Quantization [Kashaev-N11].

Fo each o-period one obtains the quantum dilogarithm identities (QDI) for Faddeev’s
quantum dilogarithm &, («) [Fock-Goncharov09]. Taking the limit ¢ — 1 and apply the
saddle point method, we recover the classical DI. (The saddle point method (in
multivariables) is standard in physics, but difficult to be validated rigorously.)

.

Method 3: Classical mechanical method [Gekhtman-N-Rupel17].

One can bypass quantization by directly formulating mutations as classical mechanical
system, where the Hamiltonian is given by the Euler dilogarithm [Fock-Goncharov09].
Then, the modified Rogers dilogarithm appears as the Lagrangian, and the Dl is
obtained as the invariance of the action integral due to the discrete-time analogue of
Noether’s theorem. (This explains the intrinsic meaning of DIs.)

4 15/24
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Cluster Scattering Diagram (CSD)

@ Around 2015, Gross-Hacking-Keel-Kontsevich [GHKK18] proved some important
conjectures on cluster algebras by using cluster scattering diagrams (CSDs).

@ The notion of scattering diagram (a.k.a. wall-crossing structure) was originally
introduced by [Gross-Siebert11] and [Kontsevich-Soibelman06] to study the
homological mirror symmetry.

@ Roughly speaking, any cluster pattern is embedded in the corresponding CSD.
Example:

B= (g _03) infinite type, nonaffine

G-fan (representing a cluster pattern). principle: mutation

CSD (only the support is presented). principle: consistency

-
« N e

deg < 1 deg < 2 deg <3 deg the Badlands
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Badlands (the dark side)

Badlands National Park, South Dakota, USA
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Example: the Badlands in a rank 3 CSD

0 -1 0
B=|1 0 =2 (infinite, nonaffine).
0 2 0

the stereo graphic projection of the support: (The right figure is the magnified one of
the shaded region in the left figure.)

279 pp.
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CSD Basics

@ B = AQ: skew-symmetric decomposition of the initial exchange matrix
@ the structure group G = Ggq
alattice N =Z", Nt = {n € N |n#0,n € (Z>0)"}.
Lie algebra g: generators X,, (n € Nt) with [X,,, X,,/] =
g: completion of g with respect to deg
exponential group G = exp(g): the product is defined by the
Baker-Campbell-Hausdorff formula

o dilogarithm elements: W[n] = exp(3_52, (71;2“1 Xjn) €G(neNT).

@ action of G on Q[[y]]: Xn(y™) = {n,n/ Yoyt Whnly" =y™ (1+y"){mnte.
@ pentagon relation: if {n,n'} =c¢> 0,
\Ij[n]l/c\l}[n/]l/c — ‘l/[n/}l/‘:\l/[n + n’]l/c‘l/[n}l/c.
@ wall w = (0, ¥[n]¢),: n € NT: normal vector,
codimension 1 cone @ C n'- C R”: support, ¥[n]¢ (c € Q): wall element
@ scattering diagram ©: a collection of walls (satisfying the finiteness condition)
@ scattering diagram D@ is consistent if for any loop ~ in R", the product of wall
elements (with intersection sign) along ~ is the identity in G.
Theorem/Definition [GHKK18] Cluster scattering diagram (CSD)

There is a unique consistent scattering diagram © (up to equivalence) such that
o (e, Ule;)%)e, (i = 1,...,r) are walls of ® (incoming walls)

7

e any other wall w = (9, ¥'[n]¢), in © satisfies Bn ¢ 0 (outgoing walls)

{nv n,}QX'rH»n' .

20/24




Dl 'and CSD (2015-)

00000000

Dlin CSD

D = D(B): CSD for the initial exchange matrix B
~: any loop in ©
e consistency relation along a loop ~:

base point

-
[ wns)ees =id
S

es: the intersection sign, ¢s € Q.

Theorem [N21]
The following DI holds:
Zescsi(ys) =0,

e
—

— —€tCt Ns i i 1
Ys = <Hm<s Wng] )y (generalization of mutation).

@ The sum is an infinite one in general.

@ When the loop ~ is completely inside the G-fan, the DI coincides with the one
associated with a period of CA.

@ The proof is given by the extension of Method 3 (classical mechanical method).

21/24
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Infinite reduciblity

The following structure theorem for CSDs is known.

Fact [GHKK18,N23]

Any consistency relation in a CSD is reduced to a trivial one by applying the pentagon
and commutative relation in G possibly infinitely many times.

)

Shortly speaking, the dilogarithm elements and the pentagon relation are everything for
a CSD.
As a result, we have the following infinite reducibility of DI for a CSD.

Theorem [N21] (inifnite reducibility of Di)

The DI associated with any loop in a CSD is reduced to a trivial one by applying
pentagon identity possibly infinitely many times.

This is also applicable to the DI associated with any period in a CA, which is a finite
sum.

On the other hand, according to the recent result of [de Jeu20], any finite DI whose
arguments are rational functions is finitely reducible.

Thus, the DI associated with any period in a CA is actually finitely reducible. (This is a
little disappointing to me at this moment because the structure group G fails to catch
this finite reducibility.)

22/24
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Examples (1)

1 0\ /0

type B2 (hexagon periodicity). »r = 2, B = (g _01> = (O 2) (1

We write [n] := ¥[n]. The consistency relation along ~ is generated by the pentagon
relation as follows:

) HHE-KEEe
o -HHERM
R “HHEEAE

Accordingly, one can generate the corresponding DI by the pentagon identity.

H 1 [?] Lo +M+ L)

So, this is finitely reducible. )} 23724
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Examples (2)

type AE” (infinite periodicity). »r = 2, B =

The consistency relation along + is as follows:
112 _
o 0212_122“’32’.__11"[2J""2
[0]21 o] — o] [1] |2 _021'
=
1

The associated Dl is an infinite sum and infinitely reducible.

CA associated with torus with two punctures

There is period of length 32 that is not a product of the pentagon and square periodicity
[Fomin-Shapiro-Thurston07]. Similar examples are known in [Kim-Yamazaki18]. A
schematic picture in CSD is as follows:

~
The loop + is not shrinkable inside the G-fan due to an obstacle (joint of type A§1>).
The associated Dl is infinitely reducible. (However, according to the result of [de
Jeu20], this is actually finitely reducible by some other means.)

V.
24/24
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