
LECTURE NOTES FOR NT III/IV

HERBERT GANGL

1. Motivation

In September 1994, the British mathematician Andrew Wiles finished his proof
of a long-held conjecture which stated that

For n > 3, there are no solutions in positive integers x, y, z of
xn + yn = zn .

Fermat famously had scribbled “I have a truly marvelous proof of this fact but
the margin here is too small to contain it” on his copy of Diophantus’s Oeuvre
“Arithmetica”, and the search for such a proof had challenged number theorists for
more than 350 years...

“Fermat’s Last Theorem”, as the statement was called, is in a sense an em-
blematic problem for number theory: it is a question about integer solutions of an
easily formulated equation but whose proofs are often exceedingly hard. In the
quest of finding a solution for it, important structures were found (like ideals, class
groups, . . . ) and amazing connections were uncovered (to elliptic curves, Galois
representations, algebraic K-theory, . . . ).

It should be emphasized that Wiles was building on work of many other math-
ematicians (Taniyama, Shimura, Weil, Frey, Ribet, Mazur, Langlands, Tunnell,
Taylor. . . ).

The proof of FLT is far beyond what we are able to cover in this course. Never-
theless, we will use similar questions which can be treated with considerably easier
methods, but which still have a “Diophantus–Fermat-like” flavour.

The main number theorist of ancient Greek times is Diophantus (∼250 A.D.),
who studied more generally equations with integer coefficients and found ingenious
methods to solve them in integers or also rationals. In honor of this eminent scholar
such equations, where one is only interested in rational numbers—or sometimes only
integers—as solutions, are called Diophantine equations.

For Diophantus, elementary geometry triggered a number of challenging ques-
tions, like the following one inspired by Pythagoras’s theorem:

Q.1: Are there infinitely many “Pythagorean triples”, i.e. solutions (in positive
integers x, y and z) of the equation

x2 + y2 = z2 ?

Can one list/describe all the solutions?
[[ Note that the square of an odd number is again odd, and since any odd integer
2n+1 is the difference of two successive squares n2 and (n+1)2, there are certainly
infinitely many Pythagorean triples. ]]

Using a geometric method one can parametrise the set of all solutions.

Q.2: Which primes can occur as the hypotenuse of a right-angled triangle with
integer sides? (This refines Q.1.) Formally, for which prime p can we write
p2 = x2 + y2 with x, y > 0?
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[[ Answer: roughly “half of them”: precisely when p ≡ 1(4). ]]

Q.3: How often does a cube exceed a square by 2? In mathematical notation:
what are the solutions (in integers x and y) of

x2 + 2 = y3 ?

[[ There are two rather simple solutions x = ±5, y = 3; and they are in fact the only
ones. ]]

This is an equation which can be adequately analysed by a very rich theory, the
arithmetic of elliptic curves which also plays an important role in Wiles’s proof.

One of the first renowned people in “modern” times deserving the name “number
theorist” is Pierre de Fermat (1601–1665) who by profession was actually a lawyer
in Toulouse. He had obtained one of the six books that Diophantus had left as his
legacy, which turned out to be the stimulus for Fermat’s ingenuity in inventing new
methods (and new interesting, often innocuous-looking, problems) for the solutions
of Diophantine equations. Among his findings are the following:

Q.4: Which primes can be expressed as a sum of two (integer) squares? Varia-
tions on this question: given an integer N , which primes p can be written
as

p = x2 +Ny2 , x, y ∈ Z ?

[[ For N = 1, the solutions are p = 2 and, again, all primes p ≡ 1(4).
For N = 2, one can solve it precisely the primes p ≡ 1(8) and p ≡ 3(8).
For N = −2, one can solve it precisely the primes p ≡ 1(8) and p ≡ 7(8). ]]

Statements like the three ones above led to one of the most celebrated theories
of 20th century mathematics, the so-called class field theory. The latter establishes
e.g. the fact that the factorization of primes in Z[i] is determined simply by its
congruence class modulo 4.

Q.5: Are there finitely many or infinitely many solutions of

x2 − 2y2 = 1 ?

Can you describe the set of all solutions?
[[ Write xn + yn

√
2 = (3 + 2

√
2)n for n ∈ Z, then the pairs ±(xn, yn) describe

precisely the—infinitely many—solutions of the above equation. ]]
In the literature, this and similar questions are nowadays referred to as “Pell’s

equation”. It is intimately connected with one of the fundamental objects in al-
gebraic number theory, the units in number rings. Furthermore, it is also directly
related to continued fractions.

A result which at first glance is very surprising is which integers can be written
as a sum of four squares (here terms 02 is allowed, e.g. 5 = 22 + 12 + 02 + 02,
1367 = 272 + 252 + 32 + 22, or 1234567891 = 287292 + 202292 + 32 + 02).

Q.6: Show that all positive integers are sums of four squares!
[[ We will see a proof shortly. ]]

The first proof is accredited to Lagrange (while Fermat was the first to have
claimed the fact, and very likely had a proof).

Even more surprisingly, two centuries after Fermat (who did not pass on a proof
of his claim) another renowned number theorist, C.G. Jacobi (1804–1851), in a
brilliant piece of work using Fourier analysis of elliptic functions, found an explicit
formula expressing the number of ways in which an integer can be written as
such a sum of four squares.
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Fermat did not only look at quadratic equations (although they already provide
a wealth of beautiful and intricate structures). For example, another innocuous-
looking question about triangles leads naturally to an equation of degree 3:

Q.7: Which integers are congruent numbers, i.e. occur as the area of a right-
angled triangle with rational sides?

[[ For instance, 6 does occur, since 32 + 42 = 52, there is a right-angled triangle with
sides of lengths 3, 4 and 5, whose area is 6. Since

(
20
3

)2 +
(

3
2

)2 =
(

41
6

)2, one can
conclude the non-obvious fact that 5 is also a congruent number.

Amusingly enough, the number 157 is congruent and, although itself rather small,
its least complicated corresponding right triangle has hypotenuse length for which
both numerator and denominator have a whopping 45 digits. ]]

In order to tackle problems as the ones above, many ingenious techniques had
to be invented. The more elementary ones deal with divisibility questions (often
in an ad hoc manner), other more sophisticated approaches use more systematic
tools like number rings (like Z[

√
2] in Q.5) or even elliptic curves (like the last two

questions). Typically one is immediately led to rather profound mathematics.

Acknowledgments. What follows is based in large parts on a course by Steve
Wilson (thanks to Ruth Jenni for providing me with the notes).

2. Diophantine equations via divisibility

2.1. Pythagorean triples. We want to find all triples (a, b, c) of integers which
satisfy the “Pythagorean” equation x2 + y2 = z2. Since from each such solution
we get (infinitely) many others (ka, kb, kc) by simply multiplying all three by the
same number k, we restrict ourselves to the case where they are coprime, i.e. where
gcd(a, b, c) = 1.

Problem 2.1. Determine all primitive Pythagorean triples, i.e. all triples (a, b, c),
a, b, c ∈ N>0 such that a2 + b2 = c2 (“Pythagorean”) and gcd(a, b, c) = 1 (“primi-
tive”).

Solution. We first investigate the parity of a, b and c, working first modulo 2
and then modulo 4.

Observe:
• not all three numbers a, b, c are ≡ 0(2) [[ otherwise 2 | gcd(a, b, c) ]] .
• a, b are not both even [[ or else c would also be; this we just ruled out ]] .
• a, b are not both odd: consider both sides modulo 4 [[ consider squares of

integers mod 4: m even ⇒ m2 ≡ 0 (mod 4); m odd ⇒ m2 ≡ 1 (mod 4) ]] .
If a and b were odd, then LHS ≡ 2 (mod 4), but RHS ≡ 0 or 1 (mod 4).

This is impossible.
• Therefore precisely one of a and b is odd, and consequently, c must be odd.

Swapping roles of a and b, if necessary, we can assume a even, b odd.
• Put a = 2n; note a2 = c2 − b2 = (c − b)(c + b), and both factors on the

right are even (since both b and c are odd).
Put c − b = 2v, c + b = 2w; then we obtain (2n)2 = 2v · 2w, and thus

n2 = vw (*) [[n, v and w are all non-zero ]] .
• v and w are coprime [[ a common factor would divide both b(= w − v) and
c(= w + v) ]] .

• By unique factorisation in Z, (*) therefore implies v = r2 and w = s2 [[ a
prime factor dividing v, say, does not divide w, due to their being coprime;
it also divides the LHS, in fact to an even power, and thus it divides v to
that same (even) power ]] .
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• So (a, b, c) is necessarily of the form (2rs, s2 − r2, s2 + r2).
• Conversely, each such triple does satisfy the Pythagorean equation (check!).

In summary, we get as the complete list of primitive Pythagorean triples the fol-
lowing:

{(2rs, s2 − r2, s2 + r2) | r, s ∈ N>0} .
So by letting r and s run through all positive integers independently, we can create
as many Pythagorean triples as we like (they will actually be primitive whenever r
and s are coprime)—indeed, we get all those triples in this way. (This is called a
parametrisation of the solutions.)

Note: This apparently has already been known to the Babylonians (some 3500
years ago), e.g. they listed the example

49612 + 64802 = 81612 .

2.2. How many solutions to c2−b2 = n? We can ask a more refined question: in
how many Pythagorean triples does a given a occur (as one of the smaller numbers)?
It turns out that in a way it is more convenient to answer a slightly more general
question: how often can a number n be represented in the form c2 − b2 (previously
n was a square a2)?

Interlude. How many (positive) factors does an integer n(> 0) have? Notation:
σ0(n) = number of divisors of n. [[ More generally, in number theory one often
considers the function σk(n) =

∑
d|n d

k, i.e. the sum of powers dk where d runs
through the divisors of n. ]] A short table shows:

n 1 2 3 4 5 6 7 8 9 10
σ0(n) 1 2 2 3 2 4 2 4 3 4

This suggests the

Claim: σ0(n) is odd precisely when n is a square.

Indeed: as factors come in pairs (d, n/d), it would seem that the number of
divisors should always be even, except if d and n/d agree (then this divisor d = n/d
would only be counted once). But the latter happens precisely when n = d2, i.e.,
n is a square.

Now we first try to evaluate σ0(n) for the building blocks which in our context
are prime powers.

Claim: σ0(pm) = m+ 1. [[ Proof: the divisors of pm are 1, p, p2, . . . , pm ]]

Mini-exercise: the function σ0(n) is multiplicative, i.e., if gcd(m,n) = 1
(m,n ∈ N>0) then σ0(mn) = σ0(m)σ0(n).

Using the multiplicativity, we get the following result: suppose n has the prime
decomposition n =

∏
i p
mi
i (i.e., the pi are (mutually different) primes), then we

get

σ0(n) =
∏
i

(mi + 1) .

Example: Let n = 55000. Since n = 23 · 54 · 11, we get σ0(n) = 4 · 5 · 2 = 40.

This ends the interlude, and we can now tackle the question stated at the beginning
of this subsection..

Problem 2.2. Let n > 0 be an integer.
How many solutions are there to x2 − y2 = n, with x and y in N>0?
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Solution. As in the previous problem, we first try to find a necessary form for
the pairs (x, y).

So suppose (x, y) is a solution. Put d = x+ y and e = x− y. Then the equation
is rewritten as de = n. We can deduce parity for d and e: since d + e = 2x, we
know that d ≡ e mod 2. Since d− e = 2y > 0, we also know that d > e.

Thus (x, y) lies in the following set

S :=
{(d+ e

2
,
d− e

2
)

such that de = n, d ≡ e mod 2 and d > e > 0
}
.

Again, one checks easily that each element in S indeed provides a solution.

In order to determine the size of S, we distinguish two cases.
I. Case n odd. In this case any divisor of n = de is also odd, so the condition
d ≡ e (mod 2) is automatically satisfied. Furthermore, once we know d,
the other number e is determined (e = n/d). Therefore |S| is the number
of divisors of n with d > n/d, i.e., such that d >

√
n.

Now to each such d >
√
n dividing n there is an e = n/d <

√
n < d, so

d contributes a member to S. But all factorisations of n = de, d > e, entail
d >
√
n > e or d =

√
n = e. The latter occurs precisely if n is a square.

If we denote the number of (positive) divisors of a number n by σ(n),
we can therefore conclude

|S| = σ(n)
2

,

except when n is a square, in which case it reads

|S| = σ(n)− 1
2

,

II. Case n even. This case can be somehow reduced to the previous case. One
of d and e must be even, and due to the condition d ≡ e (mod 2) both have
to be. Therefore we can conclude that for n/2 odd there are no solutions,
i.e. |S| = 0.

On the other hand, if 4|n, then we get d = 2d′ and e = 2e′ with d′, e′

in Z and d′e′ = n/4, and so we can restate the set S for the case n even in
terms of d′ and e′ (the description is slightly simpler as the condition d ≡ e
(mod 2) is no longer needed)

S = {(d′ + e′, d′ − e′) such that d′e′ = n/4, and d′ > e′ > 0} .

Proceeding as in Case I, we see that |S| is the number of divisors of n/4
which are greater than n/4, i.e.

|S| =

{
σ0(n/4)

2 if n is not a square,
σ0(n/4)−1

2 if n is a square.

2.3. The four-square theorem. The following striking statement, together with
its proof, should give a first glimpse of the power of ingenious ideas. It is not so
difficult to find four squares which add up to 111, say (111 = 92 + 52 + 22 + 12),
but it seems forbidding to achieve such a presentation for a much larger number,
say, the prime 1234567891. Fermat had already stated that each natural number
can be thus represented, albeit he didn’t leave a proof. The first proof came from
J.L. Lagrange (1736–1813), and we will follow his argument.

Theorem 2.3. Any N ∈ N, there are w, x, y, z in Z such that

N = w2 + x2 + y2 + z2 .
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Proof: Step 0. The statement is clear for N = 2 since 2 = 12 + 12 + 02 + 02.
Step 1. Reduction to N a prime: we use an identity by l. Euler (1707–1783):

(a2 + b2 + c2 + d2)(w2 + x2 + y2 + z2) = (aw + bx+ cy + dz)2

+(ax− bw − cz + dy)2

+(ay + bz − cw − dx)2

+(az − by + cx− dw)2 .

Therefore the product of two four-squares (as on the left) is also a four-square (as
on the right). Thus it is enough to show the statement of the theorem for the
(multiplicative) building blocks, i.e., for N = p prime.

Step 2. It is rather easy to show that a slightly weaker claim holds: the four-
square property holds for a non-zero multiple of the prime p:

∃m > 0 such that mp = w2 + x2 + y2 + z2 for some w, x, y, z ∈ Z .
One actually shows, using the pigeon-hole principle, the following even stronger
claim:

Lemma 2.4. For a prime p, there exists m < p such that mp can be written as a
sum of 3 squares; more precisely, mp = x2 + y2 + 1 for some integers x, y.

[[ Proof: Exercise; for hints see Problem Sheet 1, Ex. 5. ]]

Step 3. Starting from the claim in Step 2, successively replace m by smaller m′,
still satisfying the four-square property for m′p, until m′ = 1. Then we are done.

How to replace? Distinguish two cases, according to whether m is even or odd:
I. Case m even. If mp satisfies the four-square property, then so does m

2 p:
More generally, if 2N = w2 + x2 + y2 + z2, then there are an even number
of odd integers and also an even number of even integers among w, x, y,
z. So we can group them in pairs, say w ≡ x(2) and y ≡ z(2). Then

N =
(w + x

2

)
+
(w − x

2

)
+
(y + z

2

)
+
(y − z

2

)
.

We can assume p > 2 (cf. Step 0) and therefore, if m is even, reduce m
to m/2.

II. Case m odd. By assumption, we have mp = w2 +x2 +y2 +z2 (from Step 2);
in fact, we can assume 0 < m < p by the lemma above. Now we “switch”
the point of view and work modulo m. We choose the unique a, b, c and
d which are congruent to w, x, y and z modulo m, respectively, such that
−m/2 < a, b, c, d < m/2. This immediately implies that

a2 + b2 + c2 + d2 ≡ w2 + x2 + y2 + z2 ≡ 0 (mod m) ,

and in fact that

a2 + b2 + c2 + d2 = km with 0 < k < m .

The latter claim on the size of k follows directly from a2 <
(
m
2

)2 (and
similarly for b, c, d) so that a2 + b2 + c2 + d2 < 4

(
m
2

)2 = m2 and so
k < m. Note that k 6= 0. [[ Otherwise a = b = c = d = 0 and therefore
w ≡ x ≡ y ≡ z ≡ 0 (mod m) which implies thatm2 divides w2+x2+y2+z2.
But the latter is equal to mp by assumption and so m | p which contradicts
the outcome of the above lemma (0 < m < p). ]]

Finally, all we need is to use Euler’s identity again, this time with the
specific expressions above. On the left hand side, we get (a2 + b2 + c2 +
d2)(w2 + x2 + y2 + z2) = km ·mp, while on the right hand side we have
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the squares of aw + bx + cy + dz, ax − bw − cz + dy, ay + bz − cw − dx
and az − by + cx − dw, respectively. But the way we have chosen a, b, c, d
implies that all these four expressions are divisible by m. Therefore we can
conclude that

kp = W 2 +X2 + Y 2 + Z2 ,

where W , X, Y and Z are these expressions divided by m, e.g. W =
(aw + bx + cy + dz)/m, X = (ax − bw − cz + dy)/m, etc. which are all
integers by the above.

This finishes the reduction step for m odd, and therefore also the proof of the
theorem.

The above proof does not provide any specific decomposition, but one can give a
“constructive” proof, e.g., check at http://www.alpertron.com.ar/4SQUARES.HTM,
where one can find an applet (http://www.alpertron.com.ar/FSQUARES.HTM) by
Dario Alpern which gives in our case above

1234567891 = 287292 + 202292 + 32 + 02 .

2.4. The descent method. Many Diophantine equations have either no solution
or infinitely many solutions. Fermat invented a technique which can deal with either
situation! This technique is called the descent (method). The idea, roughly, is to
devise a mechanism which produces from a given “old” solution a “new” (different)
one.

More precisely, the new solution should be in some sense “smaller” than the old
one (typically one takes as measure the smallest—in absolute value—member in a
given solution). Note that a variant of this has already been used in the proof of
the 4-square theorem (when passing from a solution for mp to a solution for m′p,
0 < m′ < m). Surprisingly, the descent also works when there is no solution.

A good example for the method is Fermat’s last theorem (FLT) for the expo-
nent 4.

Proposition 2.5. The equation

x4 + y4 = z4

has no (non-trivial) solution in integers.

For the proof, we will use the “descent technique”, but also our knowledge of
the shape of Pythagorean triples. Again, we will actually show a slightly stronger
statement:

Claim 2.6. The equation x4 + y4 = z2 has no (non-trivial) solution in integers.

Proof: Assume we had a primitive solution (x, y, z) of this equation (i.e., where
gcd(x, y, z) = 1), then, writing it as (x2)2 +(y2)2 = z2, this is a Pythagorean triple,
so necessarily of the form (up to possibly swapping the roles of x and y)

x2 = 2rs , y2 = s2 − r2 , z = s2 + r2

for some r, s ∈ N, s > r. Note that gcd(r, s) = 1 [[ otherwise gcd(x2, y2, z) 6= 1, but
then also gcd(x, y, z) 6= 1, contrary to our assumption ]] .

We can rewrite the equation as

x4 = (z − y2)(z + y2) .

As before, we would like to conclude that each of the factors on the right is itself
a fourth power. (This is not quite true, but it is not far from being correct.) So
suppose p prime divides both factors, then p|(sum=)2z and p|(diff =)2y2, so p|2
[[ as (z, y) = 1 implies also (z, y2) = 1 ]] . Therefore (z − y2, z + y2) = 2 [[ check that
no higher power of 2 can divide the gcd ]] .
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Although we thus cannot conclude that both z−y2 and z+y2 are fourth powers,
we get at least that

• either z − y2 = 2a4, a odd, z + y2 = 23b4

• or z − y2 = 23a4, z + y2 = 2b4, b odd.
But the first alternative would imply 2y2 = 23b4−2a4, and so y2 = 4b4−a4, which
is impossible as we see upon reducing both sides modulo 4 [[ LHS≡ 1 (mod 4), while
RHS≡ 0− 1 = −1 (mod 4) ]] .

Therefore we can only have the second alternative, from which we deduce

y2 = b4 − 4a4 , z = b4 + 4a4 .

Note that the latter equation implies 0 < b < z, while the former gives

4a4 = (b2 − y)(b2 + y) .

Similar to our reasoning above, the gcd of the two factors on the RHS is 2 [[ check
this! ]] , so we have

b2 − y = 2c4 , b2 + y = 2d4 ,

and by eliminating y from them (add them up and then divide both sides by 2) we
get

b2 = c4 + d4 ,

which constitutes a new solution [[ recall 0 < b < z ]] .
Conclusion: From each solution we can construct a new, in fact “smaller” one (as
b < z), which is also non-trivial (as 0 < b).

Now in order to finish the proof, suppose we took the solution of x4 + y4 = z2

with the smallest possible z. Then by the above we could fabricate an even smaller
one. Contradiction.

Therefore we have shown: there cannot be a (non-trivial) solution of x4+y4 = z2

[[ we could always reduce it to an even smaller one, and after a finite number of steps
it would have to be reduced to the smallest one—which we just showed cannot
exist ]] . �

From this Claim we can immediately deduce the above Proposition, i.e., the case
n = 4 of FLT. [[ If we cannot find solutions to x4 + y4 = z2, then we have an even
harder time finding a solution with the further constraint that z be a square. ]]

2.5. Rings larger than Z and (the lack of) uniqueness of factorisation.
Our final motivational example gives a short indication of the Pell equation (Q.5
above). The problem is to find solutions to

x2 − 10y2 = 1 (1)

in (positive) integers x, y. With trial and error we can find x = 19, y = 6. Is this
the only solution—and if not, how can we find more?

An elegant way to deal with this question uses several notions from ANTII: the
idea is to pass to a slightly larger number system, in order to be able to factorise
the left hand side of (1): we consider (as in ANTII) the following ring:

Z[
√

10] = {a+ b
√

10 | a, b ∈ Z}
[[ Recall that a ring (R, +, ·) is a non-empty set R with two binary operations + and

· (i.e., it is closed under addition + and multiplication ·), and is an abelian group wrt.
+, is associative under ·, and the two operations are compatible as formulated in the
distributive law. ]]
(this is a subring of R), for which we can write the LHS as

(x+ y
√

10)(x− y
√

10) .
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From ANTII we may remember that this is precisely the norm function

N : Z[
√

10] −→ Z , N(a+ b
√

10) = a2 − b2 · 10 .

So we can rephrase (1) as saying that x+ y
√

10 is a unit in Z[
√

10].
[[ Recall that a unit u in a ring R satisfies uv = 1 for some v in R. ]]
The norm is multiplicative, so we can derive from each solution (x, y) of (1)

infinitely many others:

N
(
(x+ y

√
10)r

)
=
(
N(x+ y

√
10)
)r = 1 ,

since (x + y
√

10)r ∈ Z[
√

10] [[ use closedness under multiplication ]] . All these
solutions turn out to be different.

Important properties that we have used in our deduction:
• we enlarged the ring of integers (e.g., to Z[

√
D] for some D),

• we (implicitly) have used the uniqueness fo factorisation in Z, e.g.:{
x2 = vw

(v, w) = 1

}
⇒ v = ±�, w = ±� . (2)

Crucial fact: The latter uniqueness is no longer guaranteed in Z[
√
D]!

Example: 1. In the ring Z[
√

10] above, we have

(
√

10 + 1)(
√

10− 1) = 9 = 32 . (3)

But one can check that all the factors on the left and on the right of this equation
are irreducible in Z[

√
10].

[[ Recall that an element a in a ring R is irreducible if for any decomposition a = bc
with b, c in R one has that b or c must be a unit. ]]

In particular, neither 1 +
√

10 nor 1−
√

10 is a square in Z[
√

10], so we cannot
conclude as in (2). (Also, the gcd might not exist in such larger rings.) In summary,
we have encountered the new phenomenon of an ambiguity of decomposition of a
number into irreducibles.

2. This phenomenon sincerely limits our capability to solve Diophantine equa-
tions. For example, we could rather easily solve “half” of Fermat’s Last Theorem
if we always had uniqueness of factorisation in the “cyclotomic” number rings Z[ζp]
given as follows: let p be an odd prime and ζp a primitive pth root of unity (e.g.,
ζp = e2πi/p), then

Z[ζp] := {a0 + a1ζp + · · ·+ ap−2ζ
p−2 | a0, . . . , ap−2 ∈ Z} .

We could factor

zp = xp + yp = (x+ y)(x+ ζpy)(x+ ζ2
py) · · · (x+ ζp−1

p y)

and then we could conclude that each factor on the right is itself a pth power (times
a unit) which would readily lead to a contradiction.

2.6. A way out. The big question thus is: how to overcome this ambiguity in
the decomposition? The solution was suggested by E.E. Kummer (1810–1893) who
postulated “ideal elements” into which numbers in such a larger ring then would
decompose. We illustrate with our previous example Z[

√
10]: suppose there were

“ideal elements” π1, π2 with the following properties
3 = π1 · π2 ,√

10 + 1 = π2
1 ,√

10− 1 = π2
2 ,
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then (3) would become
π2

1 · π2
2 = (π1π2)2 ,

which looks very good already. We would still need certain important properties of
these ideal elements: they should respect the divisibility properties that we want
to use

(
e.g. (π | α and π | β) ⇒ π | (α± β)

)
. Furthermore, we would need to add

and multiply them. Kummer showed that this can be done consistently.

But where can we find these ideal numbers? The complex numbers will not
be of much help. [[ This is not quite true, one can in fact view the ideal numbers
as being represented by certain algebraic numbers (keyword “Hilbert class field”)
which can be embedded into the complex numbers. But this would take us too far
afield. ]] Instead, R. Dedekind (1831–1916) had a very nice point of view: one can
characterise an ideal number π by the “shadow” that it throws in the underlying
ring of integers R in the following sense: the shadow of π is the set of all integers
in R which are divisible by π. From this idea is derived the notion of an ideal (=the
above shadow) in a ring, which replaces Kummer’s notion of an ideal element.

This concludes our motivation for the study of such (number) rings and ideals.

3. Recap of Rings and Ideals

We collect a number of properties of rings and ideals from ANTII, occasionally
recalling definitions.
General assumption: A ring in this course is always understood to be commu-
tative with identity (unless otherwise stated).

Definition 3.1. An integral domain is a ring R (i.e., commutative with identity
by our general assumption) without zero divisors, i.e.

a, b ∈ R− {0} ⇒ a · b ∈ R− {0} .

Note. The units of R form an (abelian) group, denoted by R∗. We can think of
them as the “divisors of 1”.

Examples:
(1) R = Z[

√
−5] is a subring of C, in fact a integral domain. Its group of units

is given by R∗ = {±1}.
(2) R = Z[i] has units R∗ = {±1,±i}.
(3) For R = Z[

√
10] we have seen that {(19 + 6

√
10)r | r ∈ Z} ⊂ R∗. This is

actually not the full story: it will turn out (later in the course) that

R∗ = {±(3±
√

10)r | r ∈ Z} .

Definition 3.2. Two elements a, b in a ring R are called associate (to each other),
denoted

a ∼ b
if a = ub for some unit u ∈ R∗.

Examples:
(1) In Z[i], we have

2 + i ∼ −1 + 2i ∼ −2− i ∼ 1− 2i .

(More generally a+ bi ∼ −b+ ai ∼ . . . )
(2) In the integral domain Q[X] (polynomials in one variable with coefficients

in Q), we have f(x) ∼ af(x) for any a ∈ Q∗(= Q− {0}).
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Definition 3.3. An element a in the ring R divides b ∈ R—or “b is divisible
by a ∈ R”—if b = a · c for some c ∈ R. If, furthermore, a 6∼ b (i.e., the c above
6∈ R∗), then a is called a proper divisor of b.

Lemma 3.4. Let R = Z[
√
−d] ⊂ C where d ∈ Z>0, and let α, β ∈ R∗. Then

(1) αᾱ ∈ Z>0 (here ᾱ is the complex conjugate of α). Note that αᾱ = N(α) in
our previous notation.

(2) If α | β in R, then αᾱ | ββ̄ in Z.
(3) Let α | β. Then α is a proper divisor of β if and only if αᾱ < ββ̄.

Lemma 3.5. Let a, b be elements in a ring R. Then we have
(1) a | b and b | a ⇒ a ∼ b.
(2) a ∼ 1 ⇔ a is a unit in R.

Definition 3.6. An element r ∈ R \R∗ is irreducible if

r = a · b, with a, b ∈ R ⇒ a ∈ R∗ or b ∈ R∗ .

In other words: any proper divisor of an irreducible element is a unit.

The above definition of irreducible is what we typically use to characterise prime
numbers. Instead, the algebraic definition of being prime is the following:

Definition 3.7. An element r ∈ R \ R∗ is prime if r | ab for some a, b ∈ R
implies that r | a or r | b.

For Z both concepts (prime and irreducible) turn out to be the same.

Examples:

(1) Prime numbers in Z are irreducible.
(2) In Q[X], the irreducible polynomials are indeed irreducible in the above

sense.
(3) δ = 1− 3

√
−6 in Z[

√
−6] is irreducible.

Proof of (3).

• δ is not a unit [[ we know that the units in Z[
√
−d], d > 1, are only ±1:

their norm has to be 1, i.e., a2 +b2d = 1, and this is only possible for b = 0,
whence a = ±1. ]]

• Suppose α is a proper divisor of δ. Need to show: α is a unit. By the above
lemma we know αᾱ | δδ̄(= 55) and so αᾱ < δδ̄. Therefore α ∈ {1, 5, 11}.

But αᾱ = 5 entails a2 + b2 · 6 = 5, whence b = 0 and a2 = 5 which is not
possible. Similarly αᾱ = 11 would give either b = 0 and a2 = 11, or else
b = ±1 and a2 = 5; both cases are not possible.

Therefore αᾱ = 1, i.e., α is a unit.

Problem: Factorise β = 16 + 7
√
−6 into irreducibles in R = Z[

√
−6].

Solution: Suppose α|β, then also N(α)|N(β) = 550. Now we only need to check
divisors of 550 up to

√
550 < 24, i.e. 1, 2, 5, 10, 11, 22.

Putting α = a + b
√
−6 = a2 + 6b2 can not become 2 or 5. [[ b would have to be

0. . . ]] On the other hand, N(α) = 10 is possible: b = ±1, a = ±2.
So we check whether we can divide β by any of these four numbers—which, up

to associates, are only two different ones, e.g., 2±
√
−6. Division gives

16 + 7
√
−6

2±
√
−6

=
16 + 7

√
−6

2±
√
−6

2∓
√
−6

2∓
√
−6

=
32± 42 + (14∓ 16)

√
−6

10
.
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This shows that the “upper” sign gives a number which is not in R, while the
lower sign gives −1 + 3

√
−6, and this number we happen to have just recognized

as irreducible (see above). Thus we get

β = (2−
√
−6)(−1 +

√
−6) ,

and both factors are irreducible (any proper divisor of 2 −
√
−6 would have norm

2 or 5, but we just saw that there are no such. . . ).

Two central notions in an integral domain which are particular interesting for
us are the notions of prime and irreducible. The former implies the latter, but in
general not vice versa:

Proposition 3.8. Let π ∈ R, where R is an integral domain. Then if π is prime
(in R), then it is also irreducible (in R).

Proof. Write π = ab. We want to show: a or b is a unit.
Since in particular π | ab, we have (use that π is prime) π | a or π | b.

Up to swapping a and b, we can suppose π | a, i.e., a = πρ for some ρ ∈ R. Then

π = ab = (πρ)b = π(ρb)

and hence ρb = 1, i.e., b is a unit.
Conclusion: π = ab ⇒ b is a unit or a is a unit (keep above swapping in mind). �

Many of our proofs of statements about, say, Diophantine equations so far have
invoked the (implicit) use of unique factorisation into irreducibles, but we have seen
that for more general rings we cannot expect this property to hold. Therefore we
distinguish this class:

Definition 3.9. An integral domain R is called a unique factorisation domain
(=UFD) if every non-zero element factors into a product of irreducible elements
and the factorisation is unique, up to replacing each irreducible element by an as-
sociate one, and up to reordering the factors. In less verbose terms:

for any x ∈ R, if x = up1 · · · pr = vq1 · · · qs for u, v ∈ R∗ with pi, qj irreducible in
R, then r = s and, after possible reordering of the qj, we have pj ∼ qj (1 6 j 6 r).

For these especially nice rings we have a converse of the above proposition:

Proposition 3.10. In a UFD, any irreducible element is also prime.

Proof. Let π be irreducible in the UFD R (in particular, π is not a unit).
Suppose π | ab for some a, b ∈ R. Then we need to show that π | a or π | b.
Start by decomposing both a and b into irreducibles pi and units ua and ub,

respectively:

a = uap1 · · · p` , b = ubp`+1 · · · p`+r , and so ab = uaubp1 · · · p`+r .
By assumption, the decomposition of ab is unique, up to replacing each pi by an
associate and up to reordering the pi.

Now π | ab implies ab = πρ, where ρ = uρq1 · · · qs is some decomposition into
irreducibles. Since the factorisation of ab is unique (in the above sense), π must be
associate to one of the pi as well [[ compare the two decompositions uρq1 · · · qs · π =
uaubp1 · · · p`+r ]] . If 1 6 i 6 `, then π | a, otherwise π | b. �

Examples:
(1) The following are UFDs: Z, Z[i] and Z[ζp] with p prime 6 19.
(2) The following are no UFDs: Z[

√
−6], in fact most rings of the form Z[

√
−d],

d > 0 squarefree, are not UFDs; nor are Z[ζp] with p prime > 23.

This motivates the quest for criteria to
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• to find UFDs, or at least,
• in non-UFDs, to “measure” the ambiguity in how many wways we can

decompose a number [[ this will be the number of ideal classes below ]] .

3.1. Passing from one ring to another. We have used before, that we can
transfer a problem about the integers (an infinite ring), e.g. solving x2 − 4y2 = 3
in integers, to a—hopefully easier—problem about Zm = Z/mZ (a finite ring); e.g.
we can take m = 4 and see immediately that the resulting reduced equation x2 ≡ 3
(mod 4) has no equations in Zm.

In the process we need to keep the relevant structures, which leads to the notion
of a homo(=same)morphism(=structure):

Definition 3.11. Let A and B be rings. A homomorphism of rings ϕ : A→ B is
a map respecting both ring operations, i.e.,

ϕ(a+A b) = ϕ(a) +B ϕ(b) ,
ϕ(a ∗A b) = ϕ(a) ∗B ϕ(b) .

In the following we will drop the subscripts indicating in which ring we are working.

Examples:
(1) For any m ∈ N, we have the reduction homomorphism ϕ : Z −→ Zm, where

ϕ(a) = ā = a+mZ = {a+mn | n ∈ Z}.
(2) For any a ∈ C there is the specialisation homomorphism ϕ : Z[X] → Z[a],

where ϕ
(
f(X)

)
= f(a).

Note that both homomorphisms are surjective. What are their kernels? Recall:

Definition 3.12. The kernel of a ring homomorphism ϕ : A → B, denoted by
ker(ϕ), is the set ϕ−1(0B)(= {a ∈ A | ϕ(a) = 0B}).

Note further that ker(ϕ) is always a subring (but not necessarily with identity!)
of A. It is in fact an ideal (see below).

Examples: For the previous example, we have
(1) in the first case

ker(ϕ) = {a ∈ Z | ā = 0̄ in Z/mZ} = {a ∈ Z | a ∈ mZ} = mZ ,
(2) in the second case

ker(ϕ) = (X2 + 1)Z[X] . (Exercise)

This gives us yet another motivation to introduce the following

Definition 3.13. An ideal I in the ring R is a subgroup of (R,+) which is closed
under multiplication by elements in R, i.e.,

∀a ∈ I ∀r ∈ R : ar ∈ I ,
i.e. I ·R ⊂ I .

[[ You can think of the ideal as a “black hole” swallowing everything which comes
“near” it. . . ]]

We can see the connection of ideals to divisibility questions:
(1) The subgroup property: if b ∈ R divides a and a′ in R, then b divides a−a′

as well.
(2) Furthermore, if b ∈ R divides a, then b ∈ R divides ar for any r ∈ R.

Examples: For the previous example, we have
(1) For m ∈ Z, we have the ideal (m)Z = {rm | r ∈ Z}
(2) For a, b ∈ Z, the set I = (a+ bi)Z[i] ⊂ Z[i] forms an ideal.
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In either case, the ideals given are the only ones.

We can compute with ideals (just as we would expect to compute with “ideal
elements/numbers”):

Lemma 3.14. If I, J are ideals in R, then so are I + J , I · J and I ∩ J .

Using the ideals in the previous example, we can get a feel for the corresponding
operations:

• (m)Z + (n)Z corresponds to taking the multiples of m and the multiples
of n together; if we allow to add them, we get the gcd(m,n) and all its
multiples, i.e.,

(
gcd(m,n)

)
Z.

• (m)Z(n)Z corresponds to taking among the numbers which are divisible by
m those numbers which are further divisible by n, i.e., the multiples of mn,
or as an ideal (mn)Z.

• (m)Z ∩ (n)Z corresponds to taking numbers which are at the same time
multiples of m and n, i.e., the multiples of the lcm(m,n).

We still should recall how we are allowed to compute with sets: for any subgroups
A and B of (R,+) we define

A+B := { a+ b | a ∈ A, b ∈ B } ,
A ·B := {

∑
finite

aibi | ai ∈ A, bi ∈ B} = 〈ab | a ∈ A, b ∈ B〉gp .

Lemma 3.15. (i) IJ ⊂ I, I + J ⊃ I ,

(ii) I · J ⊂ I ∩ J ⊂
{
I
J

}
⊂ I + J .

3.2. Principal and non-principal ideals. The simplest ideals in R are given as
“all the multiples of a given a ∈ R”:

Lemma-Definition 3.16. For a ∈ R, the set {ar | r ∈ R} is an ideal. It is called
the principal ideal generated by a. We write it as aR = (a)R = (a) (the latter
notation, albeit sloppy, is the standard one, while in the book of Stewart–Tall, it is
denoted 〈a〉).

We collect a few simple immediate consequences of the definitions.

Lemma 3.17. Let I ⊂ R be an ideal, and let a, b ∈ R.
(i) For any a ∈ R, we have (a)R ⊂ I.
(ii) a | b ⇔ (a)R ⊃ (b)R ⇔ b ∈ (a)R ;
(iii) a ∼ b ⇔ (a)R = (b)R ;
(iv) (a)R · (b)R = (ab)R ;
(v) a ∈ R∗ ⇒ (a)R = R .

Notation. For a, b ∈ R, we write

(a, b)R = (a)R + (b)R = {ar + bs | r, s ∈ R} ,
and more generally

(a1, . . . , an)R = {
n∑
i=1

airi | ri ∈ R} ,

the ideal generated by {a1, . . . , an}.

Proposition 3.18. Let a, b, c, d ∈ R, and let I ⊂ R be an ideal. Then
(i) (a)RI = aI

(
:= {ar | r ∈ I}

)
;

(ii) (a, b)R · (c)R = (ac, bc)R;
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(iii) (a, b)R · (c, d)R = (ac, bc, ad, bd)R and so forth for more generators:

(a1, . . . , am)R · (b1, . . . , bn)R = (. . . , aibj , . . . )R .

We just indicate the proof of (ii), leaving the rest as a simple exercise:

(a, b)R · (c)R =
(
(a)R + (b)R

)
· (c)R = (a)R(c)R + (b)R(c)R = (ac)R + (bc)R .

For (iii), we need to apply the distributive law several times.

Example (of a non-principal ideal): take R = Z[
√
−6].

Claim: I = (2,
√
−6) is not principal.

Proof. Suppose I were principal, then for some α ∈ R (we can put α = a+ b
√
−6

for some a, b ∈ Z) we have

I = (α)R = (a+ b
√
−6)R .

Then α | 2 and α |
√
−6 [[ as α = (2,

√
−6) contains both (2) and (

√
−6) ]] . Applying

the norm map N : a + b
√
−6 7→ a2 + 6b2 yet again gives N(α) | N(2) = 4 and

N(α) | N(
√
−6) = 6, from which we deduce N(α) | 2, i.e. a2 + 6b2 = 1 or = 2;

but the latter is obviously not possible. Therefore we can colclude that b = 0 and
a = ±1, i.e. α = ±1, a unit.

But then we know that I = (±1)R = R [[ Lemma 3.17(v) ]] , so in particular 1 ∈ I,
and we should be able to write

1 = 2β +
√
−6 , for some β, γ ∈ R .

Putting β = r+ s
√
−6, γ = t+u

√
−6, then we find 1 = 2r−6u+ (2s+ t)

√
−6, and

taking the real part on both sides of the latter equation gives 1 = 2r − 6u which
obviously cannot hold.

Conclusion: our supposition (that I is principal) cannot hold. Therefore we have
found that I is not principal. �

Although in general we cannot take the gcd of two numbers in a ring R (with
identity denoted by 11R), we still have it for the numbers m · 11R which correspond
to the integers m ∈ Z:

Lemma 3.19. Let R be an integral domain. If m,n ∈ Z \ {0} with d = gcd(m,n),
then

(m · 11R, n · 11R)R = (d · 11R)R .

Proof. Since d | m and d | n, we have (d·11R)R ⊃ (m·11R)R and (d·11R)R ⊃ (n·11R)R,
from which we deduce that the LHS equals (m · 11R)R + (n · 11R)R ⊂ (d · 11R)R, the
latter just being the RHS.

Moreover, since d = am+ bn for some a, b ∈ Z, we have

d · 11R = a(m · 11R) + b(n · 11R) ∈ (m · 11R, n · 11R)R
and so the RHS is contained in the LHS as well. �

Now we can “remedy” the non-uniqueness of factorisation, if only on the “level
of ideals”:

Example: In R = Z[
√
−6], we have

(1 + 3
√
−6)(1− 3

√
−6) = 5 · 11 as numbers in R .

In terms of ideals this gives

(1 + 3
√
−6)R(1− 3

√
−6)R = (5)R · (11)R as ideals in R . (4)

Now define two ideals

p5 = (5, 1 + 3
√
−6)R , p′5 = (5, 1− 3

√
−6)R ,
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and similarly

p11 = (11, 1 + 3
√
−6)R , p′11 = (11, 1− 3

√
−6)R .

Then we have p5 · p′5 = (5)R and p11 · p′11 = (11)R:

p5 · p′5 = (5, 1 + 3
√
−6)R · (5, 1− 3

√
−6)R

= (25, 5 · (1− 3
√
−6), (1 + 3

√
−6) · 5, 55)R

= (25, 55, 5 · (1− 3
√
−6), 5 · (1 + 3

√
−6))R

= (25, 5, 5 · (1− 3
√
−6), 5 · (1 + 3

√
−6))R

= (5)R ,

the latter identity holds because all four generators are multiples of the second one,
5, so can be discarded.

A similar fact holds for p11 · p′11.
Now another possible product of the four ideals under consideration is

p5 · p11 = (5, 1 + 3
√
−6)R · (11, 1 + 3

√
−6)R

= (55, 5 · (1 + 3
√
−6), (1 + 3

√
−6) · 11, (1 + 3

√
−6)2)R

= (55, 5 · (1 + 3
√
−6), 1 + 3

√
−6, (1 + 3

√
−6)2)R

= (1 + 3
√
−6)R ,

since all four generators are divisible by the third one, 1 + 3
√
−6.

In a similar way, we can find that p′5 · p′11 = (1− 3
√
−6)R.

Finally, (4) becomes

(p5 · p11)R · (p′5 · p′11)R = (p5 · p′5)R · (p11 · p′11)R ,

which indicates that the original ambiguity of the decomposition is now resolved.

It turns out that the above ideals pi and p′i (i ∈ {5, 11}) can be viewed as
“building blocks” among the ideals in Z[

√
−6], in a similar fashion as the prime

numbers are building blocks for Z. In particular, we will be able to deduce that if
one of them divides one side of some equation, then it also has to divide the other
side. So the following notion should be not particularly surprising.

Definition 3.20. An ideal p ( R is called prime if it satisfies the condition

∀a, b ∈ R with a · b ∈ p we have a ∈ p or b ∈ p .

Note that, just as 1 ∈ Z is not a prime, we do not consider (1)R (which is equal
to R itself) as a prime ideal ((1)R would “destroy” unique factorisation). On the
other hand, (0)R is considered to be a prime ideal.

Proposition 3.21. Let I, J and p be non-zero ideals in R, let p be prime. Then

p ⊃ IJ ⇔ p ⊃ I or p ⊃ J .

Proof. “⇒” is obvious, as e.g. I ⊃ IJ .
“⇐”: Suppose p ⊃ IJ , but p 6⊃ I. Then ∃a ∈ I \ p. Now for any b ∈ J we have

a · b ∈ I · J ⊂ p, so a ∈ p or b ∈ p. But a /∈ p [[ by the choice of a ]] , so b ∈ p.
Conclusion: J ⊂ p. �

Note: Let us define divisibility of ideals in the obvious manner, i.e., I | J (for two
ideals I and J in R) if there is an ideal K such that J = I · K. Then it is clear
that I | J implies I ⊃ J [[ since J = IK ⊂ IR ⊂ I ]] . The converse holds only for
special rings—e.g., for so-called “Dedekind rings”, to be introduced later—in which
case the proposition says: p | IJ ⇒ p | I or p | J . In other words: prime ideals
then “behave” analogously to prime elements. Good news: most of the rings in the
course will indeed turn out to be “Dedekind rings”.
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Definition 3.22. An ideal m ( R is called maximal if there is no ideal properly
containing it except R itself, i.e., for any ideal I in R, we have I ) m ⇒ I = R.

Recall that, for a ring R and an ideal I in R, the set of cosets r + I, r ∈ R,
forms a ring, the quotient ring of R with respect to I, which is denoted R/I.
[[ This is compatible to our previous notation: r + I = {r} + I = {r + i | i ∈ I}.
Furthermore, we have an addition of cosets: (r + I) + (s+ I) = (r + s) + I, and a
multiplication of cosets: (r + I)(s+ I) = (rs) + I. ]] Note that a+ I = I ⇔ a ∈ I.

Now there is a very useful characterisation of prime and maximal ideals, respec-
tively, in terms of the corresponding quotient rings.

Theorem 3.23. Let R be an integral domain.
(1) An ideal p ⊂ R is prime ⇔ R/p is an integral domain.
(2) An ideal m ⊂ R is maximal ⇔ R/m is a field.

Proof
(1) Let a, b ∈ R. They correspond to cosets a+ p, b+ p in R/p.

The prime condition ab ∈ p ⇒ a ∈ p or b ∈ p translates into the
integral domain condition “no zero divisors”

a · b ∈ p = 0̄ in R/p ⇒ a+ p = 0̄ or b+ p = 0̄ in R/p .

Note that, moreover, 11R ∈ R maps to an identity 11R/p(= 11R + p) in R/p.
(2) “⇒”: Suppose m is maximal. Need to show: any class a+ m, a /∈ m, has

an inverse. [[ Here a+m = {a}+m = {a+m | m ∈ m} is the coset notation,
not to be confused with the ideal addition. ]]

Since (a)R + m ) m, it must be equal to R [[ by the maximality of m ]] .
In particular, we have 11R ∈ (a)R + m, i.e., 1R = ba+ cm for some b, c ∈ R.
For the corresponding cosets with respect to m, we get

1R + m = ba+ cm+ m = ba+ m = (b+ m)(a+ m) .

Conclusion: for a /∈ m, we have found an inverse b+ m in R/p.
“⇐”: Suppose R/m is a field. Take an ideal n such that m ( n ⊂ R.

Need to show: n = R. [[ Then we can conclude that m has to be maximal. ]]
Choose a ∈ n \ m [[ this is possible, as our assumption on n implies

n \m 6= ∅ ]] . Then a+ m 6= m, so it must have an inverse, say b+ m. [[ Note
that necessarily b + m 6= m, i.e., b /∈ m. ]] Thus ab + m = 11R + m and in
particular 11R ∈ (a)R + m ⊂ n, which implies that n = R. �

Corollary 3.24. Every maximal ideal is also a prime ideal.

3.3. Principal ideal domains and Euclidean domains. We have seen above
that it is preferable to work in a unique factorisation domain. But it is not clear
how to make sure that a given ring is indeed a UFD. If we could actually argue
with ideals as we are used to do for the integers, say, then we should be in a good
position to prove a statement like unique factorisation. A “nice” ring R in this
respect would be one in which any ideal came from a single element in R.

Definition 3.25. An integral domain R is called a principal ideal domain
(PID) if all its ideals are principal ideals (i.e., can be written with a single gener-
ator).

Examples:
1) In Z, every ideal has the form (m)Z, for some m ∈ Z. Thus Z is a PID.
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2) In Q[X], every ideal has the form (f(X))Q[X], for some polynomial f(X) ∈
Q[X], and so Q[X] is a PID.

3) The rings Z[
√
−5] and Z[

√
−6] are not PIDs (see our examples above).

4) The ring Z[X] is not a PID: e.g., the ideal (2, X)Z[X] cannot be written
with a single generator.

Theorem 3.26. Every PID is a UFD.

An important step in the proof of the theorem is the following

Proposition 3.27. In a PID R, every irreducible element is prime.

Proof. Let π be irreducible in R, and suppose that π | αβ for some α, β ∈ R.
We have to show: π | α or π | β .
Consider the ideal generated by π and α, denote it by I = (π, α)R. Since R is a

PID, there is a γ ∈ R such that I = (γ)R, in particular γ | π (and γ | α).
But π is irreducible, so either I) γ ∼ π or II) γ ∼ 1 [[ i.e., γ is a unit ]] .
Case I) implies π | α [[ as γ | α ]] , while Case II) implies 1 = λπ + µα, and

multiplying both sides by β gives

β = βλπ + µαβ .

Now since π divides the RHS, we have that π | LHS as well i.e., π | β.
Conclusion: in either case the claim is shown. �

The rest of the proof of the theorem involves claims like

Proposition 3.28. In a PID R, each element can be factored into (a finite number
of) irreducibles.

The proof of the latter is somewhat more involved, one typically introduces the
notion of a Noetherian ring: a ring in which every ideal is finitely generated. The
rings that we consider in the course will typically be of that type. (An example of
a non-Noetherian ring is the polynomial ring over Q in infinitely many generators
Q[X1, X2, X3, . . . ].) One shows that the above condition (that every ideal is finitely
generated) can be equivalently stated as saying that each ascending chain of ideals
I1 ⊆ I2 ⊆ · · · ⊆ In ⊆ . . . becomes stationary, i.e. Im = Im+1 for all large enough
m ∈ N. Yet another equivalent condition is that every (non-empty) set of ideals
has a maximal element, i.e., an element which is not properly contained in any
other element of that set. (Cf., e.g., Proposition 4.5 in Stewart-Tall.) The above
proposition then is a corollary of the fact that the corresponding statement indeed
holds for any Noetherian ring (cf. Theorem 4.6 in Stewart–Tall). [[ Note that a PID
is (rather obviously) a Noetherian ring. ]]

Finally one shows that, granted one can factor into irreducibles, a ring is a
UFD if (and only if) every irreducible element is prime (cf., e.g., Theorem 4.13 in
Stewart-Tall.) Putting this together with the two propositions above then provides
a proof of the Theorem.

What have we won so far? Instead of checking whether an integral domain is a
UFD, we are now left with the task of checking whether it is a PID. Now if we had
a way to always replace, in an ideal I = (a1, . . . , an)R, two generators by a single
one, then we would succeed—since after a finite number of steps we are left with a
single generator only, i.e., I would indeed turn out to be a principal ideal.

Recall how this is achieved for Z: (m,n)Z = (d)Z, where d = gcd(m,n); and the
gcd can be obtained by the Euclidean algorithm, the basis of which is division with
remainder.

Examples:
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1) In Z, divide a by b: we can find q and r such that a = q · b + r and with
the crucial condition on r being 0 6 r < b.

2) In Q[X], divide similarly two polynomials, say, a(X) by b(X). This time
there is no “smaller” relation among the elements in Q[X], but still we can
introduce some notion of size: the degree of the polynomial. Then there
are q(X) and r(X) such that a(X) = q(X)b(X)+r(X) and with the crucial
condition on r(X) being: either r = 0 or deg(r(X)) < deg(b(X)).

This suggests the following: whenever we have a “good” way to measure the size
of elements in R, there is a chance that a gcd can be taken [[ and then R has a chance
to be a PID, and in particular a UFD ]] . Some consistencies should be kept in mind,
though: the size should be measured by, say, numbers in N ∪ {0} (it is not enough
to take Z, otherwise there may not be a stopping criterion); furthermore, the size
should somehow be compatible with divisibilities (if a | b then size(a) 6 size(b)).

Definition 3.29. Let R be an integral domain. A Euclidean function (or norm)
for R is a function ϕ : R \ {0} → N such that

(i) for a, b ∈ R \ {0}, one has a | b ⇒ ϕ(a) 6 ϕ(b);
(ii) ∀a, b ∈ R \ {0} ∃ q, r ∈ R : a = b · q + r with either r = 0 or ϕ(r) < ϕ(b).

Examples:
1) For Z, consider ϕ : Z \ {0} → N given by a 7→ |a| (and extend by 0 7→ 0).
2) For Q[X], consider ϕ : Q[X] \ {0} → N given by a(X) 7→ deg(a(X)) (and

we can extend it by putting ϕ(0) = −∞).
3) For Z[i], consider ϕ : Z[i] \ {0} → N given by a+ bi 7→ N(a+ bi) = a2 + b2.

Definition 3.30. An integral domain for which a Euclidean function exists is called
a Euclidean domain.

Geometric idea to prove 3) above, i.e., that Z[i] is Euclidean: consider the el-
ements in Z[i] ⊂ C as lattice points ((a, b) with a, b ∈ Z) in the plane (where a
complex number x+ iy is identified as usual with the point (x, y) ∈ R2). To visu-
alise the division with remainder for two elements α, β in Z[i], take the point in the
plane corresponding to their quotient α/β (which certainly lies in Q[i] ⊂ C) and
choose a nearest lattice point (s, t) to approximate it (this need not be unique!).
Then the corresponding point γ = s+ it satisfies∣∣∣α

β
− γ
∣∣∣ 6 1

2

√
2 < 1 ,

and putting r := α− βγ, we get |r| = |α− βγ| < |β|.

Theorem 3.31. A Euclidean domain R is also a PID.

Proof. Let I be an ideal in the Eculidean domain R, and let ϕ be a Euclidean
function for R.

To show: I is principal.
We can assume that I 6= (0)R [[ I = (0)R is principal ]] and so we can choose an

x 6= 0 in I.
Main point: We can choose x such that ϕ(x) is minimal.
Now take any y ∈ I and show that it is a multiple of x: division with remainder

of y by x gives y = qx+ r for some q, r ∈ R, with r = 0 or ϕ(r) < ϕ(x).
Both y and x are in I, so r, as a linear combination of the two, must also be.

Due to the minimality of ϕ(x) we have in fact r = 0, whence y = qx, a multiple of
x.

Conclusion: since any y ∈ I is a multiple of x ∈ I, it follows that I is principal
(with generator x). �
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It is clear now how to define a gcd for elements in a Euclidean domain R: as the
last “divisee” in the Euclidean algorithm which results from a Euclidean function
on R.

Lemma 3.32. Let α, beta, gamma ∈ R, an integral domain. Then

gcds(α, β) = gcds(α, β − γα) ,

wher “gcds” detoes the set of all possible gcd’s.

[[ Proof: Common divisors on the left are also common divisors on the right and
vice versa. ]]

Remark 3.33. 1) There are comparatively few Euclidean domains known;
e.g. one knows around two dozens among Z[

√
m] or, if m ≡ 1(4), among

the Z
[ 1+
√
m

2

]
.

2) One can weaken the condition on the Eulidean function somewhat, and still
deduce that the corresponding ring is a UFD. With that generalization, we
may produce a few more examples.

The remark makes it clear that this approach (i.e., trying to find UFDs by
establishing a Euclidean function on them) is not really the way to go if we want
to develop a general theory. Instead, we will find unique factorization into prime
ideals, in particular for so-called “number rings” (like Z[

√
m] or Z[ζn], to be defined

more precisely below) which naturally lie inside “number fields” (like Z inside Q,
or Z[i] inside Q[i]).

3.4. Number fields. We have already encountered fields like Q or Q(
√
m). They

can be viewed as subfields of C. [[ Not all fields are subfields of C: for example,
the finite fields Z/prZ (p prime, r > 1) cannot be embedded into C—where
“embedded” means via a homomorphism, not just as a set; other example: C(X),
the field of rational functions in one variable X. ]]

There is an obvious (ring) homomorphism Q → Q(
√
m), sending q ∈ Q to

q + 0 ·
√
m. Thus we can view Q as a subfield of Q(

√
m) or, conversely, Q(

√
m) as

an “overfield” or as a “field extension” of Q. More generally:

Definition 3.34. Let K and L be fields. If K is contained in L, then K is a
subfield of L; conversely, L is a field extension of F .

Here “contained” means “contained as a subring” (i.e. 0 and 1 agree, and F is
closed under + and ·.)

Remark 3.35. If L is a field extension of F , then L is in particular a vector
space over F [[ recall: F -vector space = abelian group with scalar multiplication by
elements of F ]] .

Example: Q(
√
−2) = {a+ b

√
−2 | a, b,∈ Q} is isomorphic, as a vector space only,

to {(a, b) |, b ∈ Q} ' Q⊕Q, a 2-dimensional vector space over Q.
We have the following correspondence:

addition:
a1 + b1

√
−2 ↔ (a1, b1) ,

+R (a2 + b2
√
−2) ↔ ⊕ (a2, b2) ,

= (a1 + a2) + (b1 + b2)
√
−2 ↔ = (a1 + a2, b1 + b2) ,

scalar multiplication:
r(a1 + b1

√
−2), r ∈ Q ↔ r(a1, b1) ,

= ra1 + rb1
√
−2, ↔ (ra1, rb1) .
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Think of 1 and
√
−2 as basis vectors in Q(

√
−2) corresponding to (1, 0) and (0, 1)

in Q + Q, respectively.

Definition 3.36. Let L be a field extension of F . Then the degree [L : F ] of L
over F is given by the dimension dimL(F ) of L as a vector space over F .

Example:

1) [C : R] = 2, with standard basis {1, i};
2) Similarly, for m a non-square in Z, we have

[Q(
√
m) : Q] = 2 ,

with basis, e.g., {1,
√
m}.

3)

Q( 3
√

2) = {a+ b
3
√

2 +
( 3
√

2
)2 | a, b, c ∈ Q}

' Q⊕Q⊕Q = Q3 ,

a 3-dimensional vector space over Q (the sign ' here denotes isomorphism
of vector spaces). Here 3

√
2 is a root of the (by Eisenstein irreducible)

polynomial x3 − 2. [[ An elementary way to see that 1, 3
√

2 and ( 3
√

2)2 are
linearly independent: suppose they were linearly dependent, i.e., for some
a, b, c in Z with gcd 1 we have a + b 3

√
2 = c( 3

√
2)2. Taking cubes on both

sides gives a3 + 2b3 + 6abc = 4c3, and now considering successively mod 2,
mod 4 and mod 8 we can conclude that 2 | a, 2 | b and 2 | c, respectively,
contradicting the gcd 1 condition on a, b and c. ]]

Definition 3.37. Let L be a field extension of F . An element α ∈ L is algebraic
over F if it satisfies f(α) = 0 for some polynomial f(X) ∈ F [X]. If all elements
of L are algebraic over F , then L is called an algebraic extension of F (or simply
“is algebraic over F”)

Examples:

1) C is algebraic over R with standard basis {1, i}, but it is not algebraic over
Q [[ e.g., the famous number π =

√
6
∑∞
n=1 n

−2 = 3.1415 . . . is not ]] .
2) Q( m

√
n) is algebraic over Q, for any m > 2.

3) Q( 2
√

5)(X) is algebraic over Q(X).

Proposition 3.38. If [L : F ] = d <∞, then L is algebraic over F .

Proof. Take any α ∈ L and form the set {1, α, α2, . . . , , αd} of cardinality d + 1,
the elements of which lie in L. They are linearly dependent (since dimF (L) = d),
i.e. for some ri ∈ F one has

∑d
i=0 riα

i = 0, i.e., α is root of f(X) =
∑d
i=0 riX

i; in
particular, α is algebraic over F . �

Definition 3.39. A number α ∈ C which is algebraic over Q is called an
algebraic number. A field with Q ⊂ F ⊂ C and [F : Q] < ∞ is called an
(algebraic) number field.

Examples:

• 17
√

13−
√

3
√
−5 + 1

3√−7
5 is algebraic.

• One can show: e (Euler’s number) and π are not algebraic (instead they
are called “transcendental”).
• Q( n

√
m), n > 2, m ∈ Z, defines a number field.
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• In fact, any number field is isomorphic to a quotient ring

Q[X]
/(
f(X)

)
Q[X]

for some irreducible polynomial f(X). [[ Since f(X) is irreducible in the Eu-
clidean domain Q[X], it follows that

(
f(X)

)
is a maximal ideal (cf. Problem

Sheet 4, 4(i)); therefore the above quotient ring is indeed a field. ]]

Definition 3.40. Let α be algebraic over a field F . The minimum polynomial
of α is the monic polynomial of smallest degree in Q[X] \ {0} such that f(α) = 0.

[[ This is unique, and in fact irreducible. ]]

Examples:
• The minimum polynomial of i =

√
−1 and

√
3 over Q are given by X2 + 1

and X2 − 3, respectively.
• The minimum polynomial of n

√
m over Q is not always given by Xn −m:

2
√

25 is either 5 or −5, so its minimum polynomial equals X − 5 or X + 5.
• The minimum polynomial of α = 3 + i over Q is given by X2 − 6 + 10,

since α satisfies (α− 3)2 = i2 = −1 (and it obviously cannot have a linear
(i.e. degree 1) minimum polynomial over Q).

• What is the minimum polynomial of α =
√

3 + i over Q? We square both
sides of the equation α − i =

√
3, thus getting rid of at least one square

root: (α− i)2 = 3, and the resulting identity α2− 2 = 2αi (we again try to
separate one of the square roots from the rest) gets squared a second time,
yielding that α is a root of the polynomial X4 − 4X2 + 16. Note that α2

satisfies the quadratic equation X2 − 4X + 16, so we can first solve for α2

and then take the square root, which gives the degree 2 · 2 = 4 for α. This
is an instance of the following

Theorem 3.41. (The Tower Theorem) Let L ⊃ K ⊃ F be algebraic field exten-
sions. Then

[L : F ] = [L : K] · [K : F ] .
More precisely, if {α1, . . . , αr} is a basis for K over F and {β1, . . . , βs} is a basis
for L over K, then B := {αjβk | 1 6 j 6 r, 1 6 k 6 s} is a basis for L over F .

Proof. Let γ ∈ L, then γ =
∑s
k=1 λkβk for some λk ∈ K, and each λk can be

written as λk =
∑r
j=1 µjkαj for some µjk ∈ F , whence γ =

∑
k

∑
j µjkαjβk. Thus

B spans L over F .
We still need to show the linear independence of the vectors αjβk, in order to

establish the basis property of B: so suppose
∑
j

∑
k µjkαjβk. Regrouping terms

gives ∑
k

(∑
j

µjkαj
)
βk = 0 ,

but the βk are a basis of K over F , thus necessarily µjkαj = 0 for all k = 1, . . . , s.
Now use that the αj in turn form a basis of L over K, so that necessarily all µjk = 0.

This establishes the linear independence of B. �

Example: Let L = Q
(√

2, 3
√

5
)
⊃ K = Q(

√
2) ⊃ F = Q. (By 3

√
5 we understand

the real root of the (Eisenstein-)irreducible polynomial X3 − 5.)
We first note that α = 3

√
5 /∈ K [[α has degree 3, while any element a+ b

√
2 ∈ K

(a, b ∈ Q) has degree 6 2 ]] . The other (non-real) roots of X3 − 5 are also not in
Q(
√

2), from which we deduce that α has the same minimum polynomial over K.
But L = Q

(√
2, 3
√

5
)

=
(
Q(
√

2)
)

( 3
√

5) = K( 3
√

5) and so [L : K] = 3. Further-
more, we have of course [K : Q] = 2, and so the Tower Theorem gives [L : Q] = 6,
a basis of L/Q can e.g. be given by {1,

√
2, 3
√

5, 3
√

5
√

2, ( 3
√

5)2, ( 3
√

5)2
√

2}.
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Can we perhaps generate L by a single element? A typical candidate is
√

2+ 3
√

5
(or also the product of the two generators, as a member of the audience suggested
in the lecture) [[ squaring still leaves us with a cube root, while taking cubes still
leaves us with a square root, the smallest conceivable power which would make
both terms rational thus being 6 ]] . Indeed, we have more generally the

Theorem 3.42. (Simple Extension Theorem) Every algebraic number field K (i.e.
[K : Q] <∞) has the form K = Q(θ) for some θ ∈ K.

[[ Idea of proof: reduce the number of generators successively, a typical reduction
step being—with α and β generating algebraic elements over Q—the following:
Q(α)(β) = Q(α, β) !=Q(α + λβ) for some λ ∈ Q, in fact, most λ do the trick, but
one needs to perform this carefully (see, e.g., Theorem 2.2 in Stewart–Tall). ]]

We still need to justify the notation Q(α) (which indicates a quotient field) for
the ring Q[α], if α is an algebraic number.

[[ Aside: recall that one can obtain Q as a quotient field Q = frac(Z) of the
ring of integers. One introduces pairs (a, b) which correspond to rational numbers
a
b , defines a multiplication on those pairs which exactly mirrors the one for rational
numbers (simply put (a, b)∗(a′, b′) := (aa′, bb′)). Inversion corresponds to swapping
the two members of such a pair, addition is defined as (a, b)+(a′, b′) = (ab′+a′b, bb′),
and finally one identifies two such pairs if the corresponding rational expressions
represent the same fraction

(
i.e., (a, b) ∼ (a′, b′) if there are c, d ∈ Z such that

(ac, bc) = (a′d, b′d)
)
. Analogously we can form the fraction field frac(R) of any

integral domain R. ]]
We already know that for deg(α) = 2 the ring Q[α] agrees with its quotient

field Q(α): by using the corresponding norm map we can invert each element in
a quadratic field (if β = a + b

√
D, then 1/β = (a − b

√
D)/N(β) = a/N(β) −

b/N(β)
√
D ∈ Q[α]). For number fields of higher degree this is less obvious, but

should become clear in the following.

We can think of a “hierarchy of structures” for a number field K; we illustrate
this first in the case [K : Q] = 2.

as a Q-vector space ⇐ as a ring ⇐ as a field

Q + Q ·
√
D Q[

√
D] Q(

√
D)

addition and addition and addition and
multipl. by scalars (elts. in Q) multipl. by elts. in K multipl. in K + inverses

How would the ring multiplication in Q[
√
D] look like on the underlying vector

space? We compute it on the obvious (ordered) basis {β1 := 1, β2 :=
√
D}:

β1 : a+ b
√
D 7→ a+ b

√
D = a · β1 + b · β2 ,

β2 : a+ b
√
D 7→ a

√
D + bD = bD · β1 + a · β2 ,

and we obtain, after identifying β1=̂(1, 0) and β2=̂(0, 1) in Q + Q that(
1
0

)
7→
(
a ∗
b ∗

)(
1
0

)
,

(
0
1

)
7→
(
∗ bD
∗ a

)(
0
1

)
,

which together produces the matrix

A =
(
a bD
b a

)
.
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Therefore we can view α = a + b
√
D ∈ Q[

√
D] as producing a linear map with

the above matrix A. [[ Furthermore, we know that α 6= 0 has an inverse in Q[
√
D],

and we can check that the group Q[
√
D]∗ (=the units) acts on the vector space

Q + Q ·
√
D in the sense of representation theory. ]]

Example: Consider a field K = Q[θ] of degree 3 over Q, where θ3− θ+ 2 = 0 (i.e.,
the minimum polynomial pθ(X) = X3 −X + 2, which obviously is irreducible). In
this case we get

β1 : a+ bθ + cθ2 7→ a · β1 + b · β2 + c · β3 ,

β2 : a+ bθ + cθ2 7→ aθ + bθ2 + cθ3︸︷︷︸
=cθ−2c

= −2c · β1 + (a+ c) · β2 + b · β3 ,

β3 : a+ bθ + cθ2 7→ aθ2 + bθ3︸︷︷︸
=bθ−2b

+ cθ4︸︷︷︸
=cθ2−2cθ

= −2b · β1 + (b− 2c) · β2 + (a+ c) · β3 .

The corresponding matrix therefore has the form

A =

a −2c −2b
b a+ c b− 2c
c b a+ c

 .

Any α = a+ bθ + cθ2 thus defines the multiplication-by-α map

α̂ : Q[θ] → Q[θ] ,
λ 7→ α · λ ,

which is linear (i.e., α̂(rλ) = rα̂(λ) if r ∈ Q and α̂(λ + µ) = α̂(λ) + α̂(µ) for
λ, µ ∈ Q[θ]), and this in turn gives a map of vector spaces of Q + Qθ+ Qθ2 to itself
which on our standard basis {1, θ, θ2} is given by the above matrix.

Recall from linear algebra that the matrix associated to a linear map of vector
spaces depends on the choice of a basis, but we can derive from it basis invari-
ant information: its determinant and its trace, or better even its characteristic
polynomial.

Definition 3.43. Let K be a number field. The (absolute) norm and trace of
α ∈ K from K to Q are defined as

NK(α) = det(A) ,
TrK(α) = trace(A) ,

where A denotes the matrix representing the Q-linear map α̂ associated to α.

Note: Both NK(α) and TrK(α) lie in Q [[ since the entries in the corresponding
matrix A do ]] .

Examples:

1) Let α := a+ b
√
D ∈ K = Q[

√
D], then NK(α) = det

(
a bD
b a

)
= a2− b2D,

which fittingly coincides with our old norm map (for fields of degree 2 over
Q).

2) Let K = Q[θ], where θ3 = θ − 2 (as in one of the examples above). Then

NK(α) = a3 − 2b3 + 4c3 + 2a2c+ ac2 − ab2 + 2bc2 + 6abc
and TrK(α) = 3a+ 2c .

Proposition 3.44. Let K be a number field, Then
(i) for α ∈ K, we have: NK(α) = 0 ⇔ α = 0;
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(ii) multiplicativity of the norm (certainly the most important property of the
“old” norm that we have used so far):

∀α, β ∈ K : NK(αβ) = NK(α)NK(β) ;

(iii) Q-linearity of the trace:

∀α, β ∈ K , ∀λ, µ ∈ Q : TrK(λα+ µβ) = λTrK(α) + µTrK(β) ,

i.e., TrK : K → Q is a Q-linear map;
(iv) for α ∈ Q, we have

NK(α) = α[K:Q] , TrK(α) = [K : Q]α .

Proof. (i) The statement is easy to see on the level of rings, i.e., by considering
the multiplication-by-α map α̂ : Q[θ] → Q[θ], λ 7→ αλ (instead of α itself). This
map is bijective if and only α 6= 0. [[ Note that in Q[θ] there are no zero divisors. ]]

(ii) Follows from the corresponding properties for the determinant:

NK(αβ) = det(α̂β) = det(α̂β̂) = det(α̂) det(β̂) = NK(α)NK(β) .

(iii) Obvious since trace(A) equals the sum of all the diagonal elements of A.
(iv) The corresponding matrix is simply the diagonal matrix α · Id.

The above brings us closer to seeing Q[θ] = Q(θ) for α algebraic. [[ Note that
for X an indeterminate the corresponding equality does not hold, as the field of frac-
tions Q(X) is considerably larger than the polynomial ring Q[X]—since X does not
satisfy any algebraic relation over Q, we can consider it as being “transcendental”. ]]

Any α ∈ K = Q[
√
D] divides its own norm NK(α) = (a+ b

√
D)(a− b

√
D) ∈ Q,

since we just multiply by its “conjugate” a− b
√
D [[ for D < 0, this coincides with

the “complex conjugate” for the complex numbers ]] .
In general, consider Q[θ], where the minimum polynomial pθ(X) of θ is of degree

n, say; then we will see that any α = a0 + a1θ + · · · + αn−1θ
n−1 divides its own

norm NQ[θ](α) = α · β ∈ Q , for some β ∈ Q[θ] , which then allows us to invert,
since 1/α = β/NQ[θ](α) ∈ Q[θ]. In order to figure out what that β looks like (in
terms of α), it is useful to consider the minimum polynomial again.

Proposition 3.45. The minimum polynomial pα(X) ∈ Q[X] of an algebraic num-
ber α has no repeated roots.

Proof. Note first that gcd(pα(X), p′α(X)) = 1. [[ We have p′α(X) 6= 0 and
deg(p′α(X)) < deg(pα(X)); so a common factor must be different from pα(X) itself
and cannot have positive degree, otherwise pα(X) would be reducible. ]]

Therefore we can write

q(X)pα(X) + r(X)p′α(X) = 1 , (5)

with some q(X), r(X) ∈ Q[X]. A repeated root ρ of pα(X) would also be a root
of p′α(X) [[ since then pα(X) = (X − ρ)2 · s(X) for some s(X) ∈ C[X], and so
p′α(X) = 2(X−ρ) s(X)+(X−ρ)2 s′(X) ]] . Plugging in β into (5) would give 0 = 1,
a contradiction.

Conclusion: pα(X) cannot have a repeated root. �

Definition 3.46. For an algebraic number α, the roots in C of its minimum poly-
nomial pα(X) (over Q) are called the conjugates of α (over Q). [[ We can replace
here Q by any more general fields, in particular by a number field, K and some
algebraic number α over K. ]]

Depending on the shape of pα(X), there may be hidden symmetries among the
roots—they were discovered by Galois and Abel when trying to solve the general
quintic equation. Nowadays those symmetries are usually made apparent using
“field homomorphisms”, studied in detail in Galois theory.
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Lemma 3.47. A homomorphism ϕ : K → L of fields K and L is always injective.

[[ The kernel of ϕ (which is in particular a ring homomorphism) is an ideal in
K; but there are only two such ideals: (0)K and (1)K , as any non-zero element
in K is a unit. Now (1)K cannot be the kernel, since im(ϕ) is necessarily a field
and thus must have at least two elements (the neutral elements for addition and
multiplication, which have to be different). ]]

Proposition 3.48. For all the conjugates αi, i = 1, . . . , n, of an algebraic integer
α of degree n, one has

Q[αi] ' Q[α] .

Idea of proof: One has pα(X) = pαi(X) ∀i, now Q[α] ' Q[X]
(pα(X)) by the first

isomorphism theorem for rings. . .

In the proposition, we should think of the quotient ring Q[X]
(pα(X)) as being an “ab-

stract” polynomial ring. Now we can try to view it more “concretely” by mapping
(embedding) it into C:

σi :
Q[X](
pα(X)

) −→ C (i = 1, . . . , n)

g(X) 7→ g(αi)

in n different ways.

Examples: 1. For n = 2, consider Q[λ] := Q[X]
(X2+1) , with the two embeddings

σ1 : g(λ) 7→ g(i) ,
σ2 : g(λ) 7→ g(−i)

for any polynomial g(λ).
2. For n = 3, consider Q[λ] := Q[X]

(X3−5) , with the embeddings

σi : g(λ) 7→ g(αi)

with α1 = 3
√

5, α2 = 3
√

5 · ω, α3 = 3
√

5 · ω2, where ω = −1+
√
−3

2 . Note that α2 and
α3 are in C \ R.

Thus we obtain 3 different field homomorphisms Q[λ]→ C, and also among the
Q[αi]: Q[αi] ' Q[αj ] 1 6 i, j 6 3.

Better even: consider L = Q[αi, ω] (here we can take any of the three in-
dices i = 1, 2, 3), which can be also written as L = Q[α1, α2, α3, ω] or also as
L = Q[α1, α2, α3]. This is a field of degree 6 over Q, and, e.g., the map sending
g(α1, α2, α3, ω) to g(α2, α3, α1, ω) [[ cyclic shift of the elements αi ]] is an isomorphism
of the field with itself.

Definition 3.49. An isomorphism ϕ of a field L with itself is a (field) automor-
phism. If ϕ leaves a subfield K fixed pairwise, then ϕ is a K-automorphism.

The key point of the above discussion in our context is the following: for an
algebraic number α as above, the conjugates are precisely the roots of pα(X) ∈
Q[X], so over C we have

pα(X) =
n∏
i=1

(X−αi) = Xn−
( n∑

i=1

αi︸ ︷︷ ︸
=TrQ[α](αj)

)
Xn−1 ± . . .+(−1)n

n∏
i=1

αi︸ ︷︷ ︸
=NQ[α](αj)

, (any j)
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which is invariant under permutations of the αi, and since the coefficients are in Q,
we get

1
αi

=

∏
j 6=i αj∏
all j αj

∈ Q[α] ,

since the denominator, being a norm, lies in Q. Therefore we get

Corollary 3.50. For any algebraic number α, we have

Q[α] = Q(α) .

This implies that the algebraic numbers form a field, which we will denote by C.

3.5. Algebraic integers. An algebraic number is a root of a polynomial in Q[X],
in fact, in Z[X]. After clearing denominators, we see that for m

n ∈ Q (m ∈ Z, n ∈ N)
we can take the polynomial x − m

n ∈ Q[X] or nx −m ∈ Z[X], and for m ∈ Z we
can simply take x−m ∈ Z[X]. The integers are thus characterized as satisfying a
monic (linear) polynomial ∈ Z[X]. In general, one defines

Definition 3.51. An algebraic integer is the root of a monic polynomial in Z[X].

Examples: 1. m
√
D (m ∈ N, D ∈ Z) is a root of xm −D and thus is an algebraic

integer (note that we do not require the monic polynomial to be irreducible).
2. A surprise, maybe: 1+

√
−3

2 is a root of X6 − 1 (or also of the irreducible
polynomial X2 − X + 1), so is—despite appearances—an algebraic integer. More
generally, for m ≡ 1 (mod 4), we have that α = 1+

√
m

2 is an algebraic integer. Note
that α2 = m+1

2 +
√
m
2 has only denominator 2, since m is odd, and α2 − α = m−1

4

lies in Z by our assumption on m. Thus α is a root of X2 −X − m−1
4 ∈ Z[X].

Our next aim is to see that sums and products of algebraic integers are again
algebraic integers, i.e., the algebraic integers form a ring. This is not obvious (try
to check directly, say, that 3

√
5 + 1+

√
17

2 − 3i is an algebraic number...).

The idea is the following: in the above example, α = 1+
√
m

2 was found to be
“okay” since α2 still had bounded denominator (6 2). For instance, β =

√
m
2 would

not work: β2 has “worse” denominator, and in general βn has denominator 2n.
Thus the denominators of these powers are unbounded as n grows, so the set of all
powers of β cannot be captured by linear combinations of a finite set of numbers.

This idea is made more precise in the following

Theorem 3.52. Let α be an algebraic number with minimum polynomial pα(X) ∈
Q[X]. Then the following are equivalent (=“TFAE”)

(i) α is an algebraic integer,
(ii) pα(X) is in Z[X],
(iii) Z[α] is a finitely generated abelian group [[ whence ∃n ∈ N such that Z[α] =

Z + Zα+ Zα2 + · · ·+ Zαn−1 ]] ,
(iv) there is a finitely generated abelian subgroup G ⊂ Q[α], G 6= 0, such that

αG ⊆ G .

Proof. (i)⇒(ii): Let f(X) be a monic polynomial in Z[X] of smallest degree such
that f(α) = 0 [[ this exists by definition of an algebraic integer ]] .

Then f(X) is irreducible in Z[X] [[ otherwise we can find a decomposition f(X) =
q(X) ·r(X) in Z[X] with deg(q(X)), deg(r(X)) < deg(f(X)), and since f(α) = 0 in
the integral domain Q[α], it follows that q(α) or r(α), contradicting the minimality
of deg f(X) ]] . By the Gauss lemma, f(X) is irreducible in Q[X] as well, which is
a Euclidean domain.
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Note that f(X) lies in the ideal

I := {g(X) ∈ Q[X] | g(α) = 0} .

[[ Check that this is indeed an ideal! ]] Now in a Euclidean domain any ideal is
principal and generated by an element of smallest (non-zero) Euclidean norm [[ we’ve
seen this argument before ]] , which here is the degree.

Certainly pα(X) ∈ I and it is of smallest degree, i.e. generates I, and so f(X)
must be a multiple of pα(X). But both are irreducible and monic, so must coincide.

(ii)⇒(iii): Let pα(X) be of degree n, i.e., = Xn + an−1X
n−1 + · · ·+ a0, ai ∈ Z.

Then

αn = −an−1α
n−1−· · ·−a0 ∈ 〈1, α, α2, . . . , αn−1〉gp

(
= Z+Zα+Zα2+· · ·+Zαn−1

)
.

Inductively, let m > n, and assume we know αk ∈ 〈1, α, . . . , αn−1〉gp for k =
0, 1, . . . ,m− 1, then

αm = αm−n · αn ∈ 〈αm−n αm−n+1, . . . , αm−1〉gp ⊆ 〈1, α, α2, . . . , αn−1〉gp .

Thus any power of α lies in the finitely generated abelian group 〈1, α, α2, . . . , αn−1〉gp.
(iii)⇒(iv): Take G = Z[α], then

αG = αZ[α] = 〈α, α2, . . . , αn〉gp ⊆ 〈1, α, α2, . . . , αn−1〉gp = Z[α] = G.
(iv)⇒(i): Let G ⊆ Q[α] be a finitely generated abelian subgroup, generated, say,

by γ1, . . . , γr, i.e., G = Zγ1 + · · · + Zγr [[ over Z! ]] . By assumption on G, we can
express

αγi =
r∑
j=1

µijγj , i = 1, . . . , r with µij ∈ Z .

We can combine this and state it in terms of matrices as

α

γ1

...
gr

 =

µ11 . . . µ1r

...
µr1 . . . µrr


︸ ︷︷ ︸

=:M

γ1

...
gr

 .

In other words, α is an eigenvalue (to the eigenvector (γ1, . . . , γr)t), in particular α
is a root of the characteristic polynomial of M , given by det(Id ·X −M) which is
monic with coefficients in Z. �

Corollary 3.53. The algebraic integers form a ring, sometimes denoted Z (in
analogy with Q, the field of algebraic numbers).

Definition 3.54. For a number field K, denote

OK := {α ∈ K | α is an algebraic integer} ,

the ring of integers in K or number ring of K.

Note that OK is indeed a ring [[ it is equal to the intersections of the two rings Z
and K ]] .

As expected, the algebraic integers among the rational numbers are precisely the
integers:

Proposition 3.55. OQ = Z.

Remark 3.56. (cf. Problem Sheet 6)
(1) We can write

K = {α
β
| α, β ∈ OK} ,
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in fact somewhat better

K = {α
n
| α ∈ OK , n ∈ N} .

(2) Let S be a subring of a field K and suppose there are α, β ∈ S \{0} such that
(i) α

β /∈ S, yet
(ii) α

β is a root of a monic polynomial in S[X].

Then S cannot be a UFD.

4. Quadratic fields and their rings of integers

Definition 4.1. Let d ∈ Z\{0}. We call d squarefree if there is no integer m > 1
such that m2 | d.

Note: If n ∈ Z \ {0} and s is the largest integer such that s2 | n, then n
s2 , the

squarefree part of n is indeed squarefree. [[ Check! ]]

Theorem 4.2. Let K be an extension of Q of degree 2. Then K = Q(
√
d) for

some squarefree d ∈ Z \ {0, 1}.

Definition 4.3. A field as in the theorem is called a quadratic field. More

precisely, it is called

{
real quadratic
imaginary quadratic

}
if

{
d > 0
d < 0

}
.

Proof. Choose an α ∈ K \ Q [[ this exists since K = Q would be an extension
of Q of degree 1 ]] . As a vector space, K is 2–dimensional, so 1, α, α2 are linearly
independent over Q, i.e.,

Rα2 + Sα+ T = 0 for some R,S, T ∈ Q , R 6= 0 .

Solving the quadratic equation, we get α = A ±
√
D, for some A,D ∈ Q, D 6= 0.

Now “pull out” the squarefree integer part of D = B
C , where B,C ∈ Z, so

√
D =

√
BC

C2
=

√
n2d

C2
= ±n

c

√
d ,

where d is the squarefree part of BC. Solving α = A ± n
c

√
d for

√
d gives

√
d =

∓(α−A)Cn ∈ K , i.e., Q(
√
d) ⊆ K.

But both fields also have the same dimension (= 2) over Q, so must coincide. �

In the following we want to determine its ring of integers.

Lemma 4.4. Let K = Q(
√
d), with d ≡ 1(4) squarefree ( 6= 1). Then

(i) Z
[

1+
√
d

2

]
⊆ OK ;

(ii) Z
[1 +

√
d

2
]

= {r + s
√
d

2

∣∣ r, s ∈ Z, r ≡ s (mod 2)}.

Proof. (i) has been checked before.
(ii) Put θ = 1+

√
d

2 . If β ∈LHS, then it can be written as x+yθ for some x, y ∈ Z,

i.e., as 2x+y+y
√
d

2 and indeed 2x+ y ≡ y (mod 2), as required [[ i.e., β ∈RHS ]] .
Conversely, if β ∈RHS, then β = r−s

2 + s
(

1+
√
d

2

)
∈ Z + Zθ =LHS. �

Theorem 4.5. Let K = Q(
√
d), d squarefree ( 6= 0, 1). Then

OK =

{
Z[
√
d] if d ≡ 2, 3 (mod 4) ,

Z[ 1+
√
d

2 ] if d ≡ 1 (mod 4) .



30 HERBERT GANGL

Proof. RHS⊂ OK is clear from our previous considerations.
Conversely, put α = a+b

√
d

c , with a, b, c ∈ Z, gcd(a, b, c) = 1. Then

pα(X) =
(
X − a+ b

√
d

c

)(
X − a− b

√
d

c

)
= X2 − 2

a

c
X +

a2 − b2d
c2

.

Now a and c are coprime [[ if a prime p divides gcd(a, c), then p2 divides b2d, but d is
squarefree, so necessarily p | b, a contradiction to the assumption gcd(a, b, c) = 1 ]] .

• The case c = 1 is okay, as then α = a+ b
√
d ∈ Z[

√
d].

• The case c = 2 implies a, b odd, and furthermore a2−b2d
4 ∈ Z, i.e., a2−bd2 ≡

0 (mod 4) with a2 ≡ b2 ≡ 1 (mod 4). This entails d ≡ 1 (mod 4).

Conversely, d ≡ 1 (mod 4) gives for a, b odd that a+b
√
d

2 is an algebraic integer.
Conclusion: if d 6≡ 1 (mod 4), then c = 1 and OK ⊆ Z[

√
d], while if d ≡ 1

(mod 4), then either c = 1 or c = 2 and a, b odd, so in this case we get OK ⊆
Z[ 1+

√
d

2 ].
Hence equality must hold in both cases.

Proposition 4.6. Od := OQ(
√
d) is a factorization domain (not necessarily a

unique factorization domain, though), i.e., each element can be decomposed into
finitely many irreducibles.

[[ Idea of proof: Use ψ(α) := |NQ(
√
d)| satisfies the condition of Problem Sheet 4,

Q2, hence by Q2c) is a factorization domain. ]]

Lemma 4.7. Let α ∈ OK be prime. Then
1) α | p for some prime p in Z, and then p factorises in three possible ways

into irreducibles:
(i) p is prime also in OK , so p ∼ α; p is then called inert;
(ii) p = ±αα and α 6∼ α; p is then called split;

(iii) p = ±αα and α ∼ α; p is then called ramified.
Note that α is also prime in Od.

2) If Od is a UFD, then any prime p ∈ Z has a prime factorization of one of
the above types. Moreover,

p is not inert ⇔

{
p = ±(a2 − b2d) if d ≡ 2, 3 (mod 4) ,
4p = ±(a2 − b2d) if d ≡ 1 (mod 4)

for some a, b ∈ Z.

Proof. 1) α | NK(α) = ±(product of primes) . Hence α divides (at least) one of
these primes [[ being prime itself ]] ; denote one of those by p. Then NK(α) | NK(p) =
p2.

Thus either NK(α) = ±p2 and so necessarily α ∼ p [[ a proper factor of p would
have a norm which is a proper factor of the integer NK(p) ]] or NK(α) = ±p.

2) In a UFD, the above factorization into irreducibles is also a factorization into
primes [[ since then “irreducible ⇔ prime” ]] .

Moreover, p is not inert⇔ p = ±αα and α is of the form α = a+b
√
d (if d ≡ 2, 3

(mod 4)) or α = a+b
√
d

2 (if d ≡ 1 (mod 4)), for some a, b in Z.

Examples:

1) d = −1: Od = Z[
√

3]. We have
• 2 = (1+i)(1−i) and we have 1+i = i(1−i) ∼ 1−i, whence 2 ∼ (1−i)2

is ramified in Z[i];
• 3 6= a2 + b2 for a, b ∈ Z, thus 3 is inert in Z[i];
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• 5 = 12 + 22 = (1 + 2i)(1 − 2i) and 1 + 2i 6∼ 1 − 2i [[ the units in Z[i]
are {±1,±i} ]] , thus 5 splits in Z[i].

More generally, we have seen that all primes p ≡ 1 (mod 4) can be written
as a sum of two integer squares, and thus are split in Z[i] [[ p = a2 + b2 =
(a + ib)(a − ib) ]] , and all primes ≡ 3 (mod 4) cannot be written as such a
sum, hence are inert [[ reduce modulo 4 ]] .

2) d = 3: O3 = Z[
√

3].
• 3 = (

√
3)2 is ramified;

• 2 = (
√

3 + 1)(
√

3− 1) is not inert. But
√

3+1√
3−1

= 2 +
√

3 ∈ O3, and similarly

for the reciprocal expression, so
√

3 + 1 ∼
√

3 − 1. Hence 2 is ramified in
O3.
• Is 5 = a2− 3b2 possible with a, b ∈ Z? If so, then 5 6 | b [[ otherwise 5 | a and

in fact 52 would divide the RHS, but not the LHS, a contradiction ]] .
So choose c (mod 5) such that bc ≡ 1 (mod 5). Since a2 ≡ 3b2 (mod 5),

we get (ac)2 ≡ 3(bc)2 ≡ 3 (mod 5), a contradiction.
Hence 5 is inert in O3.
In general, it turns out that precisely the primes ≡ ±1 (mod 12) are

split, and the primes ≡ ±5 (mod 12) are inert in O3.

Examples:
(i) How many solutions in integers a, b are there to

a2 + 2b2 = M , where M = 29 · 115 · 132 · 19 ?

Recognize the left hand side as the “norm form” on the UFD O2 = Z[
√
−2]:

α = a+ b
√
−2 has norm N(α) = a2 + 2b2.

So try to find α such that αᾱ = M .
Possible prime factors for α must also occur in M , where M is viewed as a
number in O2. Hence we check the prime factorizations of 2, 11, 13 and 19
in O2:
(a) • 2 = −(

√
−2)2 is ramified;

(b) • 11 = (3 +
√
−2)(3−

√
−2) is split (the two factors are not associate

since the only units in O2 are ±1);
(c) • 13 = 13 is prime in O2;
(d) • 19 = (1 + 3

√
−2)(1− 3

√
−2) is also split.

Altogether: every prime in O2 dividing α is associated to
√
−2, 3 ±

√
−2,

13 or 1± 3
√
−2, and α has the prime power decomposition

α = unit× (
√
−2)r(3 +

√
−2)s(3−

√
−2)t13u(1 + 3

√
−2)v(1− 3

√
−2)w . (6)

This decomposition is unique, as O2 is a UFD. The factor “unit” here rep-
resents ±1. [[ Note that for other number rings there may be more choices,
e.g. for O−1 it would represent the four units in, n = 0, . . . , 3. ]]
Now N(α) = M precisely if

2r · 11s+t · 132u · 19v+w = 29 · 115 · 132 · 19 ,

i.e., precisely if r = 9, s + t = 5, u = 1 and v + w = 1 (r, s, t, u, w > 0).
Hence we get 1 · 6 · 1 · 2 · 2 = 24 possibilities, where the last ·2 comes from
the number of units in O2.

(ii) How many of these solutions are in positive integers?
To each solution (a, b) there correspond four solutions (±a,±b) in (i), where
all four are different since a = 0 and b = 0 cannot occur for a2 + 2b2 = M
with M as above. Hence the solutions come in packets of four, and we get
24/4 = 6 solutions in positive integers.
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(iii) Note that there would be no solutions for M = · · · · 13odd · . . . , since then
u above would have had to be a half-integer. . .

We have seen above that the decomposition behaviour of a prime p in a quadratic
field Q(

√
d) depends on whether d is a square modulo p or not, and more precisely

the case when d is a square mod p is further subdivided into d being 0 modulo p
or not. It is convenient to introduce the following concept:

Definition 4.8. The Legendre symbol
(n
p

)
of an integer n with respect to a

prime p is defined as

(n
p

)
=


1 if n (mod p) is a square, p 6 | n,
0 if p|n,
−1 if n (mod p) is not a square.

An important property of the Legendre symbol is its multiplicativity:(m
p

)(n
p

)
=
(m
p

)
, m, n ∈ Z .

[[ Note that (Z/pZ)∗ consists of p−1
2 squares mod p and p−1

2 squares mod p, and
“square·square = non-square·non-square = square” . ]]

Using this notion, we can rewrite our criterion to distinguish the three possible
cases how a prime in Z decomposes in a quadratic field.

Theorem 4.9. Suppose Od is a UFD and p an odd prime integer. Then

(i) if
(
d
p

)
= −1, then p is also prime in Od, and we call p inert in Od;

(ii) if
(
d
p

)
= 1, then p = ±αpαp, αp 6∼ αp, is a prime decomposition of p, and

p splits in Od;
(iii) if

(
d
p

)
= 0, then p = ±αpαp, αp ∼ αp is a prime decomposition of p, and

p is ramified in Od.

Proof. Claim: If p is not prime in Od, then d is a square mod p.
Proof of claim: Since Od is a UFD, p is divisible by a prime αp = 1

2 (r + s
√
d)

with r, s in Z. Then, by the lemma,

p = ±αpαp = ±1
4

(r2 − ds2) , i.e., 4p = ±(r2 − ds2) . (∗)

But p 6 | s [[ otherwise p|r2 hence p|r hence p2|(r2−ds2) = ±4p, p odd, contradiction ]] ,
hence has an inverse t mod p. Now (*) implies r2 ≡ ds2 (mod p), hence d = (rt)2

(mod p), which proves the claim.
The logical negation of the claim gives

(i) If
(
d
p

)
= −1, i.e., d is not a square mod p, then p must be prime.

Converse claim: if d is a square mod p, then p is not prime in Od.
Proof of “converse claim”: Suppose d ≡ x2 (mod p), for some x ∈ Z.

Then p|(d − x2) = (
√
d − x)(

√
d + x), but

√
d±x
p /∈ Od (as p 6= 2), so p is

not prime in Od. This proves the “converse claim”.
Hence for

(
d
p

)
6= −1, (i.e., for d a square mod p) we have by the lemma

p = ±αpαp.
(ii) Note that α + pp ∼ αp implies d ≡ 0 (mod p). [[ Since then p|αpαp, p|α2

p,
p|αp2, and hence p|(αp−αp)2 = αp− 2αpαp +αp

2, hence p|d by the above,
as we had seen that p 6 | s. ]]

Negation again gives
(
d
p

)
= 1, whence αp 6∼ αp.
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(iii) Conversely, if d ≡ 0(p) [[ i.e.,
(
d
p

)
= 0, then p|d|ds2 = (αp − αp)2, and so

αp|p|(αp − αp)2, hence since αp is prime also αp|(αp − αp) and then also
αp|αp. Similarly αp|αp, so αp ∼ αp. �

What happens to the even prime?

Theorem 4.10. Suppose Od is a UFD. Then
(i) if d ≡ 5 (mod 8), then 2 is prime in Od (and 2 is inert);

(ii) if d ≡ 1 (mod 8), then 2 = ±α2α2, α2 6∼ α2, is a prime decomposition in
Od (and 2 is split);

(iii) if d ≡ 2, 3 (mod 4), then 2 = ±α2α2, α2 ∼ α2, is a prime decomposition
in Od (and 2 is ramified).

Proof. Claim: If 2 is not prime in Od. then d ≡ 1 (mod 8) or d ≡ 2, 3(4).
[[ Proof of Claim: Since Od is a UFD, 2 is divisible by a prime α2 = 1

2 (r+ s
√
d),

say, with r, s ∈ Z. Then, by the lemma,

2 = ±α2α2 = ±1
4

(r2 − s2d) , i.e. r2 − s2d = ±8 .

Case r ≡ s ≡ 1(2) then implies r2 ≡ s2 ≡ 1(8), and so 1 − d ≡ 0(8). Case
r ≡ s ≡ 0(2) implies a = r

2 , b = s
2 ∈ Z and

a2 − db2 = ±2 ,

which cannot hold for d ≡ 1(4). ]]
Therefore we get (i) by “negation”:
(i) if d ≡ 5(8) then 2 must be prime in Od.
Now for the other two cases
(ii) Suppose d ≡ 1(8), then 2|d−1

4 =
(

1−
√
d

2

)
·
(

1+
√
d

2

)
, but 2 does not divide

any of the factors [[ 1±
√
d

4 /∈ Od ]] , hence 2 is not prime and so

2 = ±α2α2 , and again r2 − s2d = ±8 for α2 =
r + s

√
d

2
.

From the proof of the Claim above, we must have r ≡ s ≡ 1(2), as d ≡ 1(8), hence
in particular d ≡ 1(4). Therefore α2 6∼ α2 [[ otherwise 2|(α2 − α2)2 = s2d and 2|d,
a contradiction ]] .

(iii) Suppose d ≡ 2 or 3(4). Then Od = Z[
√
d].

2 is not prime, since 2|d(d − 1) = (d −
√
d)(d +

√
d) and d±

√
d

2 /∈ Z[
√
d], hence

2 = ±α2α2, where α2 = a+ b
√
d (a, b ∈ Z).

But then α2|2 and, since (α2 − α2)2 = 4b2d, also 2|(α2 − α2)2. Putting this
together gives

α2|(α2 − α2)2 ,

but α2 is prime, sp we also get

α2|(α2 − α2) .

Hence α2|α2 and similarly α2|α2, so we get α2 ∼ α2.
Conclusion: for d ≡ 2, 3(4) we have 2 = unit · α2

2. �

We can rephrase the above in terms of factorisations of ideals as follows: if Od
is a UFD, we get 

(
d
p

)
= −1 ⇒ (p) is prime(

d
p

)
= 1 ⇒ (p) = (αp)(αp)(

d
p

)
= 0 ⇒ (p) = (αp)2.
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We will see later, that we get a similar statement for anyOd, except the fact that the
prime ideals into which (p) factors, need not be principal: i.e., one has (p) = ℘1 ·℘1

(with two prime ideals ℘i).
Again, we get a glimpse of how ideals make up for the lack of unique factorization.

4.1. Quadratic residues∗. Note:
(a
p

)
only depends on the residue class (or

coset) mod p, i.e., (a
p

)
=
(a′
p

)
if a ≡ a′(p) .

Recall: For an odd prime p, the group (Z/pZ)∗ is cyclic of order p − 1 (in
particular even). Let g be a generator of this cyclic group, then g2, g4, . . . , gp−1 = 1
are the non-zero squares in Z/pZ, while g1, g3, . . . , gp−2 (all the odd powers) are
the non-squares in Z/pZ.

Example: Consider the case p = 7: the group (Z/7Z)∗ has generator g = 3, since
32 = 2, 33 = 6, 34 = 4, 35 = 5, 36 = 1. (We could also take g = 5(= 3−1).) The
squares mod 7 therefore are 2, 4, 1, the non-squares are 3, 6, 5.

Proposition 4.11. (Euler’s criterion) For an odd prime p and a not divisible by
p, we have (a

p

)
≡ a

p−1
2 (mod p) .

Here is a second way (given by Gauss) to describe
(a
p

)
: as a preparatory step,

represent the cosets (mod p) as numbers in the interval
[
− p−1

2 , p−1
2

]
, and denote

“negatives” and “positives” by

N =
{
− p− 1

2
,−p− 3

2
, . . . ,−1

}
and P =

{
1, 2, . . . ,

p− 1
2
}
,

respectively. Then we have

Proposition 4.12. (Gauss’s criterion) For an odd prime p and a not divisible by
p, we have (a

p

)
= (−1)m , where m = #(a · P ∩N) .

Example: Is 5 a quadratic residue mod 17? We have N = {−8,−7, . . . ,−1},
P = {1, 2, . . . , 8}, and for 5P = {5, 10, 15, 3, 8, 13, 1, 6} the numbers 10, 15 and 13
are not in P , so m = 3 in this case, giving( 5

17

)
= (−1)3 = −1 .

We will only need to find a good expression for the parity of m in the above
Gauss criterion.

Proposition 4.13. Let p be an odd prime and a an odd number not divisible by p.
Denoting by m the exponent in the above Gauss criterion, we have

m ≡

p−1
2∑

k=1

bka
p
c (mod 2) .

Proof. Multiplying bkap c+
{
ka
p

}
= ka

p by p gives

ka = pbka
p
c+ p

{ka
p

}
︸ ︷︷ ︸
=:Rk

.
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Note that 0 < Rk < p.
Now

p−1
2∑

k=1

ka−

p−1
2∑

k=1

pbka
p
c =

p−1
2∑

k=1

Rk =
m′∑
j=1

πj︸︷︷︸
∈P

+
m∑
k=1

νk︸︷︷︸
∈N

,

where m+m′ = p−1
2 . On the other hand,

p−1
2∑

k=1

k =
m′∑
j=1

πj︸︷︷︸
∈[1, p−1

2 ]

+
m∑
k=1

p− νk︸ ︷︷ ︸
∈[ p−1

2 ,p−1]

= mp+
∑

πj −
∑

νk .

If we add the above two equations mod 2, we are left with

mp ≡ p

p−1
2∑

k=1

bka
p
c ,

and we can cancel the odd factor p on both sides. �

Theorem 4.14. (Quadratic Reciprocity Law) Let p and q be odd primes, p 6= q.
Then (p

q

)(q
p

)
= (−1)

p−1
2 ·

q−1
2 .

Proof. Using the Gauss criterion, we write(q
p

)
= (−1)m , where m =

p−1
2∑

k=1

bkq
p
c ,

(p
q

)
= (−1)n , where n =

q−1
2∑
`=1

bkp
q
c .

Now the crucial idea is to interpret each term of the sums as points of a lattice
along a certain interval:

Altogether we get(p
q

)(q
p

)
= (−1)m+n = (−1)#lattice points in rectangle = (−1)

p−1
2 ·

q−1
2 . �
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Epiphany term

We have seen that it can be very hard to find solutions (in Z or in Q) to diophan-
tine equations. When we were able to solve them, it typically involved intricate
divisibility properties, and in fact the interrelationship of such divisibilities. As a
prominent example, Fermat’s method of infinite descent comes to mind.

By extending Z to somewhat larger rings (i.e., number rings), we obtain a bit
more “wiggle room” for refined divisibility arguments, e.g., for proving impossibility
(in case there is no solution), for counting numbers of solutions (in case there are
finitely many), and sometimes even parametrizing the solutions (in case there are
infinitely many) and finding structure (e.g. of a group) among them.

We encountered obstacles in those larger rings: we often run into non-UFDs
whose building blocks (=irreducibles) need no longer be prime. As a remedy, we
saw “ideal numbers” appear, whose properties then were captured by the notion
of an ideal; in the context of ideals, the building blocks (=the prime ideals) will
indeed have the property of being prime, and the factorization into these will turn
out to be essentially unique.

So far, we have made the passage to quadratic extensions Z → Od (= Z[
√
d]

or, if d ≡ 1(4), = Z[ 1+
√
d

2 ]), and under which a prime ideal (p)Z = pZ goes into
(p)Od and factor in Od in three possible ways: either it stays prime or it ramifies
into the square ℘2 of a prime ideal ℘ in Od or it splits into a prime ideal ℘ and its
“conjugate” ℘.

Although this indicates that we have made progress in understanding how to
work in Od, we still haven’t yet established the “full arithmetic” in those rings:
ideals “ignore” units, e.g. (ux)R = (x)R for u ∈ R∗ in a ring R. Hence we need to
treat them separately.

[[ Note that once prime ideals + units are understood, we are closer to this “full
arithmetic”, but we will still be missing an important point: a measure for the
ambiguity in a non-UFD, which is reflected by a group that is concocted from
ideals (or more precisely classes of ideals, modulo principal ideals). ]]

Our next goal is therefore to understand the units in Od.

5. Units in Quadratic fields

The general assumption for this section is the following: unless mentioned other-
wise, let d ∈ Z\{0}, d not a square, K = Q(

√
d). We will consider either S = Z[

√
d]

(for any such d) or possibly S = Z[ 1+
√
d

2 ] (only in the case d ≡ 1(4)).
Note that we do not suppose d to be squarefree!
We recapitulate our state of knowledge about the units in S, first in the imaginary

quadratic case.

Theorem 5.1. (i) S∗ = {α ∈ S | N(α) = ±1}.
(ii) (a) For d < −1 get

Z[
√
d]∗ = {±1} .

(b) Z[
√
−1]∗ = {±1,±i}.

(iii) (a) For d ≡ 1 (mod 4), d < −3, get

Z[
1 +
√
d

2
]∗ = {±1} .

(b) Z[ 1+
√
−3

2 ]∗ = {±1,±ω,±ω2}, ω = 1+
√
−3

2 .

Proof. Items (i), (ii) have been dealt with earlier.
(iii) If α ∈ Z[ 1+

√
d

2 ], then α = r+s
√
d

2 with r ≡ s (mod 2).
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(a) We have d ≡ 1 (mod 4), d 6 −7.
Furthermore, α ∈ O∗d ⇔ αα = +1, i.e. r2 + s2|d| = 4.
But |d| > 7 then implies s = 0, hence r = ±2, so α = ±1.

(b) α ∈ O∗−3 ⇔ r2 + s2 · 3 = 4, hence (s = 0 and r = ±2), i.e. α = ±1, or else
(s = ±1 and r = ±1), i.e. α = ±1±

√
−3

2 . �

Notation: If d > 1 and α = a+ b
√
d, put α̃ := a− b

√
d.

Also note that we write
√
d for the positive root of x2 − d (this agrees with the

usual conventions in analysis, say) and often think of it as embedded in R. With
this identification we can (and will) use the ordering in R.
But note that algebraically we cannot favour any of the two roots (cf. Galois theory).

Main Theorem 5.1. (the real quadratic case) Let d > 1. Then
(i) S has a least unit u > 1.

(ii) S∗ = {±ur | r ∈ Z} = 〈u,−1〉.

Examples:
(i) d = 3: u = 2 +

√
3.

(ii) d = 94: u = 2143295 + 221064
√

94 (it is indeed the smallest unit > 1 in
this case!).

Definition 5.2. A unit u as in the main theorem is called the fundamental unit
of S. If furthermore S = Od, then is it also called the fundamental unit of the
field Q(

√
d).

Strategy of proof: units in S give better “approximations” to
√
d than the average

element in S; we will find a unit > 1 using a set of “positive elements with small
conjugates”.

Preconsideration: Given n ∈ Z>0, denote by m the nearest integer to n
√
d, such

that |m− n
√
d| < 1

2 . Then

|
√
d− m

n
| < 1

2n
, (7)

so m
n is the best approximation with denominator n.
But now take a unit α = a + b

√
d ∈ S∗ with a, b > 0. [[ One of the four units

{±α,±α̃} has both coefficients > 0. ]]
Then

|b
√
d− a| = |α̃| = 1

|α|
=

1
α
<

1
b
√
d
. as α = a+ b

√
d > b

√
d)

Hence
|
√
d− a

b
| < 1

b2
√
d
.

This is a far better (quadratic rather than linear) approximation than (7).
Now define the set of “positive elements in S with small conjugates” as

A = {α = a+ b
√
d | a, b ∈ Z>0 and |α̃| < 1

b
} .

[[ Note that ≈ 1
4 of all units lie in here. ]]

Lemma 5.3. |A| =∞.

Proof. Suppose |A| were finite, then we could choose n ∈ Z>0 such that
1
n
< |α̃| ∀α ∈ A . (8)

We prepare for applying the pigeonhole principle.



38 HERBERT GANGL

• Consider the n + 1 multiples r
√
d (r = 0, . . . , n) and take their fractional

parts λr := r
√
d− br

√
dc ∈ [0, 1).

• Divide [0, 1) into n subintervals [ in ,
i+1
n ) of length 1

n .
By the pigeonhole principle, there are two of the λr, say λs and λt (s < t), in one
subinterval, i.e. ∣∣∣s√d− bs√dc − t√d+ bt

√
dc
∣∣∣ = |λs − λt| <

1
n
.

Put a := bt
√
dc − bs

√
dc and b := t− s, so that |a− b

√
d| < 1

n .
Furthermore, a > 0, b > 0 [[ t > s and

√
d > 1 ]] and also b 6 n [[ s, t ∈ {0, . . . , n} ]] .

From this we deduce that α := a+ b
√
d lies in A, since

|α̃| = |a− b
√
d| < 1

n
6

1
b
.

But this contradicts our assumption (8). �

We cannot claim that all elements in A are units, but at least we can bound
their norm:

Lemma 5.4. If α ∈ A, then |N(α)| < 1 + 2
√
d.

[[ Pf: α = a+ b
√
d implies α̃ = a− b

√
d hence α̃ = (α− b

√
d)− b

√
d = α−2b

√
d and,

since α ∈ A, also |α̃| < 1
b . Hence |N(α)| = |αα̃| = α · |α̃| < (2b

√
d+ 1

b ) 1
b 6 2

√
d+1 . ]]

The idea is now to use that there must be two elements of the same norm in A,
hence whose quotient is of norm ±1. But we still need to ensure that this quotient
will be an algebraic integer rather than just an algebraic number. For this we break
up the set A into finitely many appropriately chosen subsets and form that quotient
in a given such subset.

Lemma 5.5. There are two elements α = a+b
√
d, α′ = a′+b′

√
d in A with α > α′

and |N(α)| = |N(α′)| =: n and such that

a ≡ a′ (mod n) , b ≡ b′ (mod n) .

Proof. As foreshadowed in the above remark, we partition A into classes (r, s,
n ∈ Z)

An,r,s := {a ∈ A | |N(α)| = n, a ≡ r(n), b ≡ s(n)}.
By the previous lemma, there are only finitely many non-empty such classes, as
these sets are empty except possibly for 1 6 n 6 1 + 2

√
d and 0 6 r, s < n.

By the pigeonhole principle, we obtain that at least one of the An,r,s has at least
two (in fact infinitely many) different elements α, α′ of A. �

From this lemma we can concoct a unit by dividing two such elements.

Theorem 5.6. There is a unit in Z[d]∗ such that u > 1.

Proof. We take α = a+ b
√
d, α′ = a′ + b′

√
d as in Lemma 5.5, with α > α′, say.

Then we put u := α
α′ ∈ Q(

√
d).

Clearly u > 1 by our assumption α > α′.
Furthermore, u ∈ Z[

√
d]: here we use the congruences a ≡ a′(n) and b ≡ b′(n),

which guarantee that γ := 1
n (α− α′) = a−a′

n + b−b′
n

√
d lies in Z[

√
d].

Hence the proof is complete after realising that

u =
α

α′
=
α′ + nγ

α′
= 1 +

n

α′
γ = 1 + (±α̃′)γ ∈ Z[

√
d] ,

where the last equality stems from n = N(α′) = ±α′α̃′. �

Before proving the main theorem, we give a convenient way to rephrase the
“positivity condition” a > 0, b > 0 in the definition of A.
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Lemma 5.7. Let α = a+ b
√
d ∈ Q(

√
d). Then

α >
√
|N(α)| ⇔ a > 0, b > 0 .

Proof. Note that a =
α+ α′

2
, b =

α− α′

2
√
d

.

“⇒ ”: Suppose that α >
√
|N(α)|, so in particular α > 0.

Then α2 = |N(α)| = |αα′| = α|α′| ⇒ α > |α̃′| = ±α̃, hence α ± α′ > 0 and so
a > 0, b > 0.
“ ⇐ ”: Suppose that a > 0, b > 0. Then α = a + b

√
d > |a − b

√
d| = |α̃| and so

α2 > α|α̃| = |N(α)|. �

We are now ready to prove our Main Theorem 5.1.

Proof. (i) From the above, we get a unit v > 1 in S.
Now form

Uv = {α ∈ S∗|1 < α 6 v} .
Clearly Uv 6= ∅, as v ∈ Uv.
Moreover, any α ∈ Uv satisfies α >

√
|N(α)|(= 1). But then α = a+b

√
d

2 (note that
S here can stand for Z[

√
d] and Z[ 1+

√
d

2 ]) satisfies a > 0, b > 0 by the above lemma.
Furthermore, we know from α 6 v and a, b > 0 that a

2 , b
2 < v.

Hence #Uv 6 (2v)2 <∞.
Therefore there exists a least element u in (the finite set) Uv, and hence also a least
element > 1 in S∗.
Conclusion: this latter element is the fundamental unit in S.

(ii) Clearly S∗ ⊃ {±um | m ∈ Z}, since u ∈ S∗ and the norm is multiplicative.
Now we show the other inclusion by reducing any unit x in S to one of the above
form. First we can assume, up to replacing x by its negative, that x > 0. Next
there is a (unique!) r ∈ Z such that ur 6 x < ur+1. (Explicitly, we can write
r =

⌊
log x
log u

⌋
.)

Therefore we can write 1 6 xu−r < u and the unit xu−r must be = 1, since u is
the fundamental unit, i.e. x = ur.
Conclusion: S∗ = {±um | m ∈ Z} . �

Examples: We will verify below the following examples:
(1) For d = 2, a rather obvious unit is 1+

√
2 (its norm is −1). Indeed, it turns

out to be the fundamental unit in Z[
√

2], hence

Z[
√

2]∗ = {±(1 +
√

2)m | m ∈ Z} .
(2) For d = 5, a unit (of infinite order) is u5 = 2 +

√
5, which is a fundamental

unit in Z[
√

5], but not a fundamental unit in O5 = Z[ 1+
√

5
2 ]; for the latter

one, we have

Z[
1 +
√

5
2

]∗ = {±
(1 +

√
5

2
)m | m ∈ Z} ,

and u5 = ( 1+
√

5
2

)3.

These two examples arise very easily, once we have established the following

Theorem 5.8. Let d > 1, d not a square.
(1) If S = Z[

√
d] and a > 0, b > 0 be a solution of

a2 − db2 = ±1

with b least possible. Then a+ b
√
d is a fundamental unit of S.
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(2) If S = Z[ 1+
√
d

2 ], and in particular d ≡ 1 (mod 4), then we have the follow-
ing cases:
(a) For S = Z[ 1+

√
5

2 ], the fundamental unit is 1+
√

5
2 .

(b) For S = Z[ 1+
√
d

2 ], with d > 5, the fundamental unit is s+t
√
d

2 where
s2 − t2d = ±4 with s, t > 0 and t least possible.

Proof. We only prove part (ii), as part (i) is rather similar (and easier).
(a) Let d = 5 and u = 1+

√
5

2 , which is a unit such that u > 1.
By our previous lemma [[α = a+ b

√
5 >

√
|N(α)| ⇔ a, b > 0 ]] we have, for any unit

w = s+t
√

5
2 with w > 1 that s, t > 0.

But then also s+
√

5 > 1 +
√

5 hence w > u.
We conclude that u is the least unit > 1, i.e., u is the fundamental unit of S.
(b) Let d 6= 5 and m+n

√
d

2 =: v, the fundamental unit in S. By definition v > 1 and
hence (again by the previous lemma) m,n > 0.
We now compare this to the unit as in the statement, i.e. w := s+t

√
d

2 with s, t > 0
and t least possible.
• First we need to verify that w ∈ S∗ [[ it is in S since s2−dt2 = ±4 implies s ≡ t(2),
and the equality moreover implies that w is a unit ]] .
• Furthermore, w > 1 [[ again, we can invoke the lemma ]] .
• Clearly m2 − n2d = ±4 (as v is a unit), so by our choice of w we have n > t.
By assumption v is the fundamental unit, and so w > v, more precisely w = vr for
some r > 0. To show: r = 1.
We now use positivity of each term in the following (binomial) expansion:

s+ t
√
d

2
=
(m+ n

√
d

2

)r
=
mr +

(
r
1

)
mr−1n

√
d+ . . .

2r

and compare the coefficients of
√
d on both sides to get

t

2
=
rmr−1n+ . . .

2r
>
rmr−1n

2r
⇒ 2r−1t > rmr−1n > rmr−1t ,

and so r = 1 (in which case we are done) or m = 1, implying ±4 = m2 − n2d =
1 − n2d which is only possible (still assuming d, n positive) for n = 1 and d = 5,
contradicting our choice of d.
Conclusion: r = 1, from which we deduce w = v. �

Examples: Now the above examples are easily verified:
(1) For d = 2, the smallest possible s, t > 0 (i.e. s = t = 1) already give a unit

which by the Theorem must be a fundamental unit in Z[
√

2].
(2) For d = 5, the solution a = 2, b = 1 of a2 − 5b2 = −1 has the smallest

possible b and hence gives a fundamental unit for Z[
√

5].
The case Z[ 1+

√
5

2 ] is treated in the Theorem. Note that both u = 1+
√

5
2 and

u2 = 3+
√

5
2 have the smallest possible least coefficient for

√
5 which is why

we had to differentiate between the cases in the proof.
(3) For d = 11 we find the following table:

for successive b we solve for a2 − 11b2 = ±1 and obtain
b 1 2 3

11b2 − 1 10 43 98
11b2 + 1 12 45 100

and the latter entry 100 is indeed a square (note that not both 11b2±1 can
be squares), so the smallest b to give a solution is b = 3, accompanied by
a =
√

100 = 10.
Conclusion: the fundamental unit in Z[

√
11] is 10 + 3

√
11.
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We can now apply our new insight to solve—in fact completely—many more
Diophantine equations than before, most prominently

Pell’s equation (for d > 1 not a square): x2 − y2d = ±1 .

Examples.

(1) For d = 2 we consider S = Z[
√

2] with fraction field Q(
√

2), and with
fundamental unit u = 1 +

√
2, of norm −1.

A solution of the equation

x2 − 2y2 = 1

corresponds to N(x + y
√

2) = +1, and hence to all even powers of u, and
we can conclude that the possibilities are precisely given by the norms of
±u2n, for n ∈ Z.

Moreover, we can reconstruct from u the coefficients x and y, since we
have

x+ y
√

2 = ±u2n ,

x− y
√

2 = ±ũ2n ,

from which we get x and y from u2n and its conjugate via

x = ±
(u2n + ũ2n

2

)
, y = ±

(u2n − ũ2n

2
√

2

)
,

so we find, using u2 = 3 + 2
√

2, that

x = ± (3 + 2
√

2)n + (3− 2
√

2)n

2
, y = ± (3 + 2

√
2)n − (3− 2

√
2)n

2
√

2
.

(2) In a similar way, since the fundamental unit 2 +
√

5 in Z[
√

5] has norm −1
we can “parametrise” the solutions to Pell’s equation for d = 5 by invoking
u2 = 9 + 4

√
5 as

x = ± (9 + 4
√

5)n + (9− 4
√

5)n

2
, y = ± (9 + 4

√
5)n − (9− 4

√
5)n

2
√

5
.

(3) A slightly more subtle case arises when d is not squarefree.
For d = 75, say, the quotient field of S = Z[

√
75] is Q(

√
75) = Q(

√
3), but

S ( Z[
√

3] = O3.
The fundamental unit in S is of course also a unit in Z[

√
3] and must be

a power of the fundamental unit u = 2 +
√

3 of the latter ring (both are
positive).
In fact, the third power of u is v := u3 = 26 + 15

√
3 = 26 + 3

√
75 ∈ S.

Hence the solutions of x2 − 75y2 = 1 are given by

x = ±v
n + ṽn

2
, y = ±v

n − ṽn

2
√

75
.

We can in fact combine the method with a previous one to treat even more equa-
tions.

Examples:

(1) Find the solutions (x, y) ∈ Z2 to
(i) x2 − 14y2 = 5 ,
(ii) x2 − 14y2 = −5 .
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In order to treat those cases, we will need to invoke prime factorisation for
the right hand side. So we first need to know that Z[

√
14] is a UFD–which

is indeed the case, so let us assume it for now.
Then we determine the fundamental unit which is u = 15 + 4

√
14, of norm

+1.
(i) the prime factorisation of 5 in Z[

√
14] is given by 5 = −ββ̃, where

β = 3 +
√

14, so any α with N(α) = +5 (those correspond bijectively
to the solutions of (i)) is associate to either β or β̃ (here we use unique
factorisation), i.e. α = ±urβ or α = ±urβ̃.
But since all units have positive norm and β has a negative norm,
there cannot be any such α (of norm 5).
Conclusion: (i) has no solution (in integers).

(ii) On the other hand, we can indeed solve N(α) = −5, e.g. with α = β as
above. Moreover, since the norm of all units are +1, we get N(±urβ) =
−5 for any r ∈ Z; similarly for β̃. So the general solution of (ii) is given
by using a similar “trick” as above to express the coefficients in terms
of umβ and its conjugate via

x = ±u
mβ + ũmβ̃

2
, y = ±u

mβ − ũmβ̃
2
√

14
, m ∈ Z ,

so e.g. x = ± 1
2

(
(15 + 4

√
14)m(3 +

√
14) + (15 − 4

√
14)m(3 −

√
14)
)
,

and a similar expression for y.
(2) Find all integer solutions of

x2 − 126y2 = −5 .

Now Z[
√

126] is not a UFD, but the slightly larger ring Z[
√

14] is, as we
have used above: the non-squarefree number 126 satisfies 126 = 32 · 14.
So we rewrite the equation as

x2 − 14(3y)2 = −5 , (9)

and we can reduce the problem to the previous one (i.e. to solutions (a, b)
of a2 − 14b2 = −5), with the extra condition that 3 | b.
We can rephrase the latter: any such solution (a, b) corresponds to an
α = a+ b

√
14 such that α ≡ a (mod 3Z[

√
14]).

So we work “modulo 3”, keeping in mind that this means we can add any
3x′ + 3y′

√
14 with x′, y′ ∈ Z.

In particular, we get, with u = 15 + 4
√

14, as determined above,

u±1 ≡ 15± 4
√

14 ≡ ±
√

14 (mod 3) ,

u±m ≡ (±
√

14)m (mod 3) .

Moreover, we have

β = 3 +
√

14 ≡
√

14 (mod 3) .

The upshot now is that we get a solution (a, b) of (9) precisely if α =
a+ b

√
14 is congruent to an integer modulo 3Z[

√
14]. Using the above, we

find
α = ±umβ ≡

√
14
m+1

(mod 3) ,

which is an integer exactly if m is odd.
Conclusion: the set of solutions of (9) is given by

x = ±u
2k−1β + ũ2k−1β̃

2
, y = ±u

2k−1β − ũ2k−1β̃

3 · 2
√

14
.
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As an example, take k = 1 and compute
x = 1

2

(
(15 + 4

√
14) · (3 +

√
14) + (15− 4

√
14) · (3−

√
14)
)

= 101,
y = 1

6
√

14

(
(15 + 4

√
14) · (3 +

√
14)− (15− 4

√
14) · (3−

√
14)
)

= 9,
for which we verify

1012 − 126 · 92 = −5 .

Similarly, k = 2 gives
x = 1

2

(
(15 + 4

√
14)3 · (3 +

√
14) + (15− 4

√
14)3 · (3−

√
14)
)

= 90709,
y = 1

6
√

14

(
(15 + 4

√
14)3 · (3 +

√
14)− (15− 4

√
14)3 · (3−

√
14)
)

= 8081,
and indeed

907092 − 126 · 80812 = −5 .

In contrast to the above examples, we get only finitely many examples for equations
of the form

x2 + dy2 = M , d > 0 a non-square ,

which can be viewed as a “norm equation” in the imaginary quadratic field Q(
√
d)

where we only have finitely many units. (Another way to quickly see finiteness is
by realising that both terms on the left are positive, so both a and b are bounded
by
√
|M |.)

In such a situation, we can actually often give the number of solutions (and also
parametrise them), as in the Example following Lemma 4.7 treated above in the
text (but not yet in the course).

Examples:
(i) How many solutions in integers a, b are there to

a2 + 2b2 = M , where M = 29 · 115 · 132 · 19 ? (10)

Recognize the left hand side as the “norm form” on the UFD O2 = Z[
√
−2]:

α = a+ b
√
−2 has norm N(α) = a2 + 2b2.

So try to find α such that αα̃ = M .
Possible prime factors for α must also occur in M , where M is viewed

as a number in O2. Hence we check the prime factorizations of 2, 11, 13
and 19 in O2:
• 2 = −(

√
−2)2 is ramified;

• 11 = (3 +
√
−2)(3 −

√
−2) is split (the two factors are not associate

since the only units in O2 are ±1);
• 13 = 13 is prime in O2;
• 19 = (1 + 3

√
−2)(1− 3

√
−2) is also split.

Altogether: every prime in O2 dividing α is associated to
√
−2, 3 ±

√
−2,

13 or 1± 3
√
−2, and so α has the prime power decomposition

α = unit× (
√
−2)r(3 +

√
−2)s(3−

√
−2)t13u(1 + 3

√
−2)v(1− 3

√
−2)w . (11)

This decomposition is unique, as O2 is a UFD. The factor “unit” here rep-
resents ±1. [[ Note that for other number rings there may be more choices,
e.g. for O−1 “unit” would represent the four units in, n = 0, . . . , 3, and for
real-quadratic number rings it would represent infinitely many. ]]

Now N(α) = M precisely if

2r · 11s+t · 132u · 19v+w = 29 · 115 · 132 · 19 ,

i.e., precisely if r = 9, s + t = 5, u = 1 and v + w = 1 (r, s, t, u, w > 0).
Hence we get 1 · 6 · 1 · 2 · 2 = 24 possibilities, where the last ·2 comes from
the number of units in O2.
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(ii) How many of these solutions are in positive integers?
To each solution (a, b) there correspond four solutions (±a,±b) in (i),

which are different since a = 0 or b = 0 cannot occur for a2 +2b2 = M with
M as above (some exponents in (10) are odd). Hence the solutions come
in packets of four, and we get 24/4 = 6 solutions in positive integers.

(iii) Note that there would be no solutions for M = · · · · 13odd · . . . , since then
u above would have to be a half-integer. . .

Challenge: Show that there are infinitely many integer solutions (x, y) to

2x(x+ 1) = y(y + 1) .

6. Fractional ideals

As foreshadowed in the motivation, we want to understand the “ambiguities” of
decomposition into irreducibles in number fields. One part of this is to understand
the units which we have studied up to now—at least for quadratic fields. A second
kind of ambiguity can be captured using ideals for which we will encounter a unique
factorisation into prime ideals.
In order to formulate the latter we enlarge the set of non-zero ideals in a number ring
to a set with group structure (where the group operation is given via multiplication
of ideals). We already know how to multiply ideals, but we don’t know yet how to
take inverses—this is our next goal.

For K = Q(
√
d) and a rational prime p, we recall the following situation: in about

“half” the cases the prime splits, i.e. the principal ideal (p)Od) decomposes into a
product of two prime ideals, (p)Od = pp̃, where p 6∼ p̃.
Now suppose we define

q :=
1
p
p̃ =

1
p
{α | α ∈ p̃} = {α

p
| α ∈ p̃} ,

then ideal multiplication would give

pq = {
∑
finite

aibi | ai ∈ p, bi ∈ q}

= {1
p

∑
finite

aibi | ai ∈ p, bi ∈ p̃} .

In particular, we would have 1 ∈ pq [[ as p ∈ pp̃ = (p) ]] , and so Od = (1)Od ⊂ pq.
What is more, since pp̃ = (p) consists of all the multiples of p (in Od), we find
pq ⊂ Od = (1)Od .
Combining the two statements above, we get pq = (1)Od .
Therefore q plays the role of an inverse of p with respect to ideal multiplication,
and this motivates to define inverses of ideals as follows.

General assumption for this chapter: Let K be a number field, with ring of
integers R = OK .

Definition 6.1. (1) A fractional ideal of R is a subset of K (!) of the
following form:

λI = {λα | α ∈ I} ⊂ K ,

where I is a non-zero ideal in OK and λ ∈ K∗.
(2) A fractional ideal a is called invertible if there is a fractional ideal b of R

such that
a · b = (1)R .
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Notation: We denote J (R) := {fractional ideals of R}.

So our goal can be rephrased as showing that each fractional ideal is invertible,
which in turn shows that J (R) is a group—in fact an abelian one.

To invoke some kind of analogue, recall that the positive integers do not form a
group under multiplication (only a “semi-group”, also called a “monoid”), but that
the positive rational numbers do, and we can embed the former into the latter (by
allowing denominators).

Definition 6.2. A fractional ideal of R of the form λR, where λ ∈ K∗, is called a
principal fractional ideal, denoted

(λ)R ⊂ K .

Notation: We denote P(R) := {principal fractional ideals of R}.

This group P(R) turns out to be a subgroup of J (R); note that the two sets coincide
for a PID (by definition).

Now fractional ideals behave pretty much like the “usual” (also called integral)
ideals in R.

Proposition 6.3. Let a, b ∈ J (R) and α, β, γ, δ ∈ K∗. Then
(1) If a ⊂ R, then it is in fact an ideal in R (i.e. an integral ideal).
(2) αa = (α)Ra.
(3) a + b, a ∩ b and a · b are fractional ideals.
(4) Associativity and distributivity still hold, e.g. a(b + b′) = ab + ab′.
(5) In terms of generators of ideals, we have

(α)R · (β)R = (αβ)R,
(α, β)R · (γ, δ)R = (αγ, αδ, βγ, βδ)R .

Proof. The proof is essentially a verification—we treat only parts (i) and (iii), the
remaining parts use similar ideas.
(i) For a we can find a λ ∈ K∗ such that a = λI, and so for ai ∈ a (i = 1, 2) we
find bi such that ai = λbi. But then also

a1 + a2 = λ(b1 + b2) ∈ λI = a , rai = rλbi ∈ λI = a .

(iii) We can assume a and b non-zero, and then write a = λI, b = µI ′ for some
ideals I, J ⊂ R and some numbers λ, µ ∈ K∗.
Then we can find `, m ∈ N such that `λ ∈ R, mµ ∈ R.
Putting n = lcm(`,m), we find

na =
n

`︸︷︷︸
∈Z

· `λ︸︷︷︸
∈R

I︸︷︷︸
⊂R

⊂ R ,

and similarly nb ⊂ R, and so by (i) both are ideals in R. Thus

a + b =
1
n

(na + nb) , a · b =
1
n2

(na · nb) ,

and the ideals (na + nb) and (na · nb) are indeed ideals in R (similar for ∩). �

It will be very useful to attach a numerical invariant for any such ideal, its “ideal
norm”, which e.g. enters in the definition of the inverse of an ideal. We will be
mainly interested in the case for quadratic fields, in which case the definition
can—and will—be given in a rather explicit, albeit somewhat ad hoc, form.
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6.1. The ideal norm in quadratic fields. The ideal norm will help us in defining
an appropriate inverse of an ideal (inside the fractional ideals).

Assumption: For the rest of this subsection we will focus on quadratic fields only.

In any quadratic field Q(
√
d), the conjugation map α 7→ α̃ is determined by sending√

d 7→ −
√
d which determines a field automorphism. We can extend it to ideals.

Lemma 6.4. For any subset I ⊂ K, put Ĩ := {α̃ | α ∈ I} ⊂ K. Then

(1) R̃ = R.
(2) I ∈ J (R)⇒ Ĩ ∈ J (R).

(3) (̃α, β)R = (α̃, β̃)R.
(4) For subgroups I, J < K, have Ĩ · J = Ĩ · J̃ .

Definition 6.5. For a non-zero integral ideal I ⊂ Od, we define the ideal norm
N(I) of I as the smallest positive integer of I · Ĩ.

Note that any non-zero integral ideal indeed contains a non-zero element and
hence also an integer N(α), and in particular a positive one |N(α)|.

Remark 6.6. A more general definition of the ideal norm of (0) 6= I ⊂ S in the
case of a number ring S is to take the quotient ring S/I which is finite, and to
define the ideal norm as the order of this quotient.

Lemma 6.7. The least positive integer in (m)R, for m ∈ Z>0, is m itself.

[[ Suppose n ∈ Z>0 lies in (m)R. Then m divides n in R, i.e. n = λm, λ ∈ R;
but λ = m

n is also in Q, hence in Q ∩R = Z. ]]

We now observe that any ideal in R can be generated by at most two elements (this
is a fact that holds in more generality for any number ring).

Lemma 6.8. An (integral) ideal I in R can be generated by two elements in R.
More precisely, there exist γ, δ ∈ R such that

I = 〈γ, δ〉gp︸ ︷︷ ︸
=Zγ+Zδ

= (γ, δ)︸ ︷︷ ︸
=Rγ+Rδ

.

Proof. We know that R = Z[θ] where θ =
√
d or = 1+

√
d

2 .
Therefore, as an abelian group, we get (R,+) = (Z + Zθ,+), which is torsion-free.
Hence any ideal I, viewed as an additive subgroup, is torsion-free of order 6 2.
[[ Cf. proof of fundamental theorem of finitely generated abelian groups: can in-
tersect I ∩ Z which is a subgroup of Z, hence of the form mZ for some m > 0,
and choose an element v = a+ bθ in I such that b is least positive (if this doesn’t
exist, then I = mZ, a torsion-free group, and we are done); then I is isomorphic to
mZ⊕ 〈v〉 ∼= Z⊕ Z, using the usual criterion for direct products of groups, say. ]]
In particular, we can write I = 〈γ, δ〉gp (= Zγ + Zδ) for some γ, δ ∈ R (not neces-
sarily different). And so clearly I = Zγ + Zδ ⊂ Rγ +Rδ.
On the other hand, since γ, δ ∈ I, we also get the other inclusion I ⊃ Rγ+Rδ. �

An important very useful tool is the following “Hurwitz lemma”.

Theorem 6.9. For an ideal I ⊂ R, choose α, β ∈ R such that I = (α, β)R. Then

(1) N(I) = gcd(αα̃, ββ̃, α̃β + αβ̃).
(2) I · Ĩ =

(
N(I)

)
R

.
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Proof. If we put m := gcd(αα̃, ββ̃, α̃β + αβ̃), then we first realise that m | α̃β:
we get the integer polynomial(

x− α̃β

m

)(
x− αβ̃

m

)
= x2 − x

( α̃β + αβ̃

m

)
︸ ︷︷ ︸

∈Z

+
αα̃

m︸︷︷︸
∈Z

ββ̃

m︸︷︷︸
∈Z

∈ Z[x]

and since it is monic, we find that γ := eαβ
m ∈ K is an algebraic integer, hence in R.

This allows to successively reduce the number of generators in I · Ĩ:

I · Ĩ = (α, β)R(α̃, β̃)R = (αα̃, αβ̃, βα̃, ββ̃)R = (αα̃, ββ̃, α̃β + αβ̃︸ ︷︷ ︸
gcd=m

, α̃β)R

= (m, α̃β)R = (m)R .

By Lemma 6.7, m is the smallest positive integer in (m)R, so m = N(I). �

Part (ii) of the Hurwitz lemma suggests to define the inverse of any non-zero ideal

I in R as

I−1 :=
1

N(I)
Ĩ .

Examples: For K = Q(
√
−11), we consider the ideal I = (5 + 7

√
−11, 13 −

10
√
−11)R, where R = O−11 = Z

[
1+
√
−11

2

]
.

Its norm is obtained as follows:

N(I) = gcd(αα̃, αβ̃, α̃β + αβ̃)

= gcd(25 + 11 · 49, 169 + 11 · 100,−705 + 14
√
−11− 705− 14

√
−11)

= gcd(564, 1269,−1410)
= 141 .

Hence N(I) = 141 and (N(I)) = (141) = I · Ĩ, so (1) = I · 1
141 Ĩ, and the inverse of

I is I−1 = 1
141 Ĩ.

Corollary 6.10. Any non-zero integral ideal I ⊂ R is invertible. More precisely,
its inverse is given by the fractional ideal

I−1 =
1

N(I)
· Ĩ .

[[ We verify that I · Ĩ−1 = 1
N(I) · I · Ĩ = 1

N(I)

(
N(I)

)
= (1). ]]

Corollary 6.11. J (R) is a group.

Proof. Take any fractional ideal a, necessarily of the form λI for some integral
ideal I and λ ∈ K∗.
Define b = 1

λ ·
1

N(I) · Ĩ. Then we claim that b is an inverse to a:

a · b = λI · 1
λ

1
N(I)

I · Ĩ =
1

N(I)
I · Ĩ =

1
N(I)

(
N(I)

)
= (1) . �

We see furthermore that P(R) is a subgroup of J (R), i.e., it is also closed under
taking inverses: for γ ∈ K∗ we have

(γ) · (γ−1) = (1) = R ,

hence the principal ideal (γ−1) is the inverse of (γ).
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Example We give an example of the inverse of a non-principal ideal.
The ring R = Z[

√
−6] is not a principal ideal domain (PID), and the ideals

p5 = (5, 1 + 3
√
−6)R , p̃5 = (5, 1− 3

√
−6)R

are both non-principal.
We have seen earlier that p5p̃5 = (5)R, hence q := 1

5 p̃5 = R + 1−3
√
−6

5 R can be
viewed as an inverse of p5.

We will often make use of the very convenient properties of the ideal norm that it
is multiplicative and that it respects inclusion:

Corollary 6.12. Let I, J ⊂ R = Od be (integral) ideals. Then we have
(i) N(I · J) = N(I)N(J).

(ii) If I ⊃ J then N(I) | N(J).
(iii) If I ⊃ J and N(I) = N(J), then I = J .

Proof. (i) We have the following equalities:(
N(I · J)

)
= IJ · ĨJ = IJ · Ĩ J̃ = IĨ · JJ̃
=

(
N(I)

)(
N(J)

)
=
(
N(I)N(J)

)
.

Now the least positive integer of the principal ideal on the left is N(IJ), while the
one on the right is N(I)N(J), which proves (i).
(ii) From I ⊃ J , we also get Ĩ ⊃ J̃ , and hence IĨ︸︷︷︸(

N(I)
) ⊃ JJ̃︸︷︷︸(

N(J)
), and so N(J) lies in

(
N(I)

)
which implies that N(I) | N(J).

(iii) Put m = N(I) = N(J), then 1
mIĨ = (1) and so

J =
1
m
IĨJ ⊃ 1

m
IJ̃J = I . �

Example. Consider for R = Z[
√

14] the ideals I1 = (5), I2 = (−2 +
√

14)R and
I3 = (5,−2+

√
14). They have norms 52 (smallest positive element in (5 · 5̃) = (25),

10 (smallest positive element in
(
(−2 +

√
14) · (−2 +

√
14)
)

= (−10) and 5 (use
Hurwitz lemma), respectively.
Note that divisibilities are respected: I1 and I2 clearly are contained in I3, and
N(I3) divides the norm of the other two ideals.

Remark 6.13. The ideal norm of a principal ideal is closely related to the norm
of its generator. For α ∈ R \ {0} we get

N
(
(α)R

)
= N

(
(α, 0)R

)
= gcd(αα̃, α · 0, 0 · α, 0 · 0)

= |αα̃| = |N(α)| .

Example. In the above example, we had I2 = (−2 +
√

14)R with N(−2 +
√

14) =
−10 and the ideal norm N

(
(2 +

√
10)R

)
is 10.

We can extend the definition of ideal norm also to fractional ideals. By extending
the multiplicativity property of the norm, we must have that the inverse I−1 of the
integral ideal I has the inverse norm of I, a number in Q∗.

Definition 6.14. The norm of a fractional ideal λI with I ⊂ R and λ ∈ K∗ is
given by

N(λI) = |N(λ)| ·N(I) .
[[ This is indeed well-defined due to multiplicativity of the norm. ]]
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6.2. Uniqueness of factorisation into prime ideals for a general number
field. We indicate now a proof of the uniqueness of factorisation of an ideal into
prime ideals in general, postponing a proof of the following three properties (which
we know to be true for quadratic fields).

Assumptions (i)–(iii):
(i) maximal ideals are invertible;

(ii) there is a multiplicative map N : {non-zero ideals} → Z>0 which respects
strict inclusions;

(iii) every ideal is finitely generated as an abelian group.
Note that we can immediately get from (i) that any product of maximal ideals is

invertible.

Lemma 6.15. Let I, J be ideals such that I is invertible and I ⊃ J . Then
(1) I−1J is an (integral) ideal in R, and hence I | J .
(2) I−1J ⊃ J , furthermore I−1J 6= J ⇔ I 6= R.

Proof. Put I ′ := I−1J .
(1) From I ⊃ J we get I−1J ⊂ I−1I = R, and so we have for the integral(!) ideal
I ′ that I | I · I ′ = I(I−1J) = J .
(2) From R ⊃ I we get I ′ ⊃ I ′ · I = J .
Moreover, suppose equality, i.e., (I ′ =)I−1J = J , then we have αJ ⊂ J for any
α ∈ I−1. But we have seen that any integral ideal in R is finitely generated,
in particular for J , and then αJ ⊂ J implies that α is an algebraic integer (cf.
characterisation of an algebraic integer last term, Theorem 3.52, (iv)).
Hence we can indeed conclude that α ∈ R for any α ∈ I−1, i.e. I−1 ⊂ R and
R = I · I−1 ⊂ I ·R ⊂ I. Hence R = I, which proves “⇒”.
The other direction is easy (check it!). �

This allows us now to decompose all proper ideals (i.e., not zero, not the full ideal)
in terms of the maximal ideals in R.

Theorem 6.16. Any non-trivial ideal J ⊂ R is a product of > 1 maximal ideals.

Proof. Suppose we had a counterexample J (i.e. an ideal which is not a product
of maximal ideals). Then we choose one with minimal ideal norm N(J) [[ this is
possible since we know that all non-trivial ideals, i.e. ideals different from (0)R and
(1)R = R itself, have positive norm ]] .
Note that J cannot itself be a maximal ideal.
Hence we can sandwich an ideal I between J and R, i.e. J ( I ( R, and by the
above Corollary 6.12 we get N(I) < N(J).
Moreover, we again invoke Corollary 6.12 to get N(I−1J) < N(J), since I−1 ⊃ R
implies I−1J ⊃ J .
But by the minimality of (the ideal norm of) J we get that both I and I−1J can be
written as a product of maximal ideals, and so can J = I · I−1J , a contradiction.
�

Corollary 6.17. (1) All non-zero ideals in R are invertible.
(2) J (R) is a group.

As a way to remember how inclusion of ideals is related to divisibility, think what
Julius Caesar allegedly said w.r.t. the countries conquered by the Roman Empire:
“To divide is to contain”.
For I, J ideals in R, we have indeed I | J ⇔ I ⊃ J . . .
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We now show that for any number ring the notions of irreducible, prime and max-
imal ideal are essentially interchangeable, the only exception being (0) which is
prime but not maximal.

Proposition 6.18. Let p be a proper ideal in the number ring R (i.e. p 6= (0),
p 6= R). The following are equivalent:

(i) p is irreducible;
(ii) p is maximal ideal;
(iii) p is prime ideal;
(iv) p is a prime object, i.e. p | IJ ⇒ p | I or p | J .

Proof. (i) ⇒ (ii): A non-maximal ideal, by the theorem above, is a product of > 2
maximal ideals, hence cannot be irreducible.
(ii)⇒ (iii): Clear. [[ Pass to the quotient R/p, and use that a field is also an integral
domain. ]]
(iii)⇒ (iv): The defining property of a prime ideal (i.e. p ⊃ IJ ⇒ p ⊃ I or p ⊃ J)
translates, using “Caesar’s maxim”, into the defining property of a prime object (i.e.
p | IJ ⇒ p | I or p | J).
(iv)⇒ (i): We show the contrapositive: suppose p is not irreducible, hence p = a ·b
for some proper ideals a, b, hence in particular p | a ·b and so, by the “prime object
property”, also p | a or p | b; we can assume the first one, and then a = p · q for
some q ⊂ R, hence p = a · b = p · qb which necessitates qb = R.
But since both are integral ideals in R, the latter equality can only hold when
q = b = R.
Conclusion: p is irreducible. �

Corollary 6.19. Any ideal in R has a unique factorisation into prime ideals (up
to ordering).

Proof. (i) Existence: clear by combining the previous theorem with the proposition.
(ii) Uniqueness: if an ideal I has two factorisations into prime ideals

I = p1 · · · pr = q1 · · · qs; (12)

then we need to show that r = s and pi = qi (*), up to possible renumbering.
Suppose that there is a counterexample to this uniqueness; then there is one such
with smallest r, r 6 s and pj , qj violating (*).
The idea is now to construct a smaller counterexample.
We can assume r > 0 [[ otherwise the left hand side equals R, hence also the right
hand side, and s = 0 ]] .
As pr is prime, it divides one of the factors on the right, say qs. But pr | qs means
that both ideals have to agree (they are both maximal). Hence if we now multiply
both sides by q−1

s (which exists by assumption), we obtain a counterexample with
fewer factors violating (*).
Conclusion: there can be no counterexample to uniqueness. �

6.3. Ideal factorisations in quadratic fields. We now return to the case of
quadratic fields to see very explicit decompositions into prime ideals.
Our general assumption is now K = Q(

√
d), with d squarefree(!) different from

0 and 1, and R = Od.
Seen earlier: how prime ideals (p)Z get decomposed after passage Z → R, where
(p)Z 7→ (p)R, at least if R is a UFD (which is actually rather rare).

Clearly any ideal I of prime norm p is maximal [[ an ideal J between I and R would
have to have a norm which divides p but can neither be 1, otherwise J would equal
R, nor p, otherwise J would have to be equal to I, as it contains it ]] .
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We had earlier treated the example p5 = (5, 1 + 3
√
−6) in Z[

√
−6].

Its norm is 5 and hence is maximal.

Theorem 6.20. Let p be a maximal ideal, then
(i) There is a unique prime p ∈ Z such that p | (p)R.

(ii) Either N(p) = p2 and p = (p)R
or N(p) = p and pp̃ = (p)R.

Proof. By the Hurwitz lemma, we know that N(p) ∈ p; factoring N(p) in Z gives
that p divides one of its prime factors by the prime property; denote this by p, then
p ⊃ (p)R. [[ Clearly there are not two primes in the maximal ideal p, otherwise it
would contain 1 as well. ]]
(ii) From (i) we deduce

N(p) | N((p)R) = |NK(p)| = p2 .

Hence we have two possibilities: 1) N(p) = p2 and hence p = (p)R [[ inclusion of
ideals of the same norm ]]
or 2) N(p) = p and then pp̃ = (N(p)) = (p)R. �

Our next task is to find explicit generators for each such maximal ideal, depending
on d. We will distinguish the cases of p odd and p even.

Proposition 6.21. For an odd prime p, suppose
(
d

p

)
6= −1, i.e. d ≡ x2 (mod p)

for some x ∈ Z.
Then we have (p)p = ppp̃p, where pp = (p, x−

√
d).

Furthermore, pp = p̃p ⇔ p | d.

Proof. 1) Case p | d, then also p | x and

pp = (p, x−
√
d) = (p,

√
d) = p̃p .

2) Case p - d, then p - x and

N(pp) = gcd(p2, x2 − d, 2xp) = p .

In this case, we cannot have pp = p̃p [[ otherwise 2x = (x+
√
d)+(x−

√
d) ∈ pp ]] and

1 = gcd(2x, p) ∈ pp which contradicts the assumption that p is maximal (and hence
not = R). �

The story for even primes:

Theorem 6.22. For p = 2, we get
(i) If d ≡ 2 (mod 4), then put p2 = (2,

√
d), giving (2)R = p2

2.
(ii) If d ≡ 3 (mod 4), then put p2 = (2, 1 +

√
d), giving (2)R = p2

2.
(iii) If d ≡ 1 (mod )8, then put p2 = (2, 1+

√
d

2 ), giving (2)R = p2p̃2 6= p2
2.

(iv) If d ≡ 5 (mod 8), then (2)R is prime.

Proof. (i) N(p2) = gcd(4,−d, 2
√̃
d+ 2̃

√
d) = 2; p̃2 = p2.

(ii) N(p2) = gcd(4, 1− d, 2) = 2; hence p̃2 = (2, 1−
√
d) = (2,−1−

√
d) = p2.

(iii) N(p2) = gcd(4, 1−d
4 , 2) = 2; this time p̃2 6= p2 [[ otherwise 1 = 1+

√
−d

2 + 1−
√
d

2 ∈
p2 ]] .
(iv) If (2)R is non-prime, hence non-maximal [[ previous proposition ]] , then p2 ) (2)R
with 2 generators, i.e. p2 = (α, β), not both of which are divisible by 2.
Can assume 2 - α = r+s

√
d

2 , say, with r, s ∈ Z.
By the Hurwitz lemma, 2 | gcd(αα̃, αβ̃, α̃β, ββ̃), hence in particular 2 | αα̃ =
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r2−ds2
4 , i.e., r2 ≡ ds2 (mod 8). Since d is odd, we must have r ≡ s (mod 2).

We now derive a contradiction for the cases r even and r odd separately:
if r is odd, then we have odd2 ≡ d · odd2 (mod 8), which contradicts odd2 ≡ 1
(mod 8).
If r is even, then (r′)2 ≡ (s′)2 (mod 2) with r′ = r/2, s′ = s/2, and so r′ ≡ s′

(mod 2).
Hence 2 | 2 · r

′+s′
√
d

2 = r′ + s′
√
d = α. Contradiction. �

The story for odd primes:

Theorem 6.23. For p an odd prime, we get
(i) If d ≡ 0 (mod p), then put pp = (p,

√
d), giving (p)R = p2

p.
(ii) If d ≡ m2 6≡ 0 (mod p), then put pp = (p,m−

√
d), giving (p)R = ppp̃p 6=

p2
p.

(iii) If d 6≡ � (mod p), then (p)R is prime ideal.

Proof. (i) and (ii) from Proposition 6.21
(iii) Similar to (iv) in the Theorem above, (p)R non-prime must be contained in a
maximal ideal pp with two generators α, β, not both of which are divisible by p,
except this time from p - α = r+s

√
d

2 we get r2 ≡ s2d (mod 4p).
Now s must be invertible modulo p [[ otherwise p | s, whence p | r and p | α ]] .
Hence d ≡ (rs−1)2, a square. �

Typical problems associated to this: to show that certain rings have non-principal
ideals of prescribed norm.

Examples.
Problem 1: Show that Z[

√
−26] has non-principal ideals of norm 30.

Solution: Consider K = Q(
√
−26), then OK = Z[

√
−26]. Hence the ideal factor-

ization theorems apply.
Claim (i): OK has 4 ideals of norm 30 = 2 · 3 · 5.
We check the decomposition/factorization of (2), (3), and (5).
p = 2: −26 ≡ 2 (mod 4), so (2)R = p2

2, where p2 = (2,
√
−26)R.

p = 3: −26 ≡ 12 (mod 3), so (3)R = p3p̃3, where p3 = (3, 1−
√
−26)R.

p = 5: −26 ≡ 22 (mod 5), so (5)R = p5p̃5, where p5 = (5, 2−
√
−26)R.

Note N(pp) = p in each case p = 2, 3, 5.
Suppose I is an ideal of norm 30, then

I | (30)R = (2)R(3)R(5)R = p2
2p3p̃3p5p̃5 .

Now use unique factorization into prime ideals to get

I = pr2p
s
3p̃
t
3p
u
5 p̃v5 , 0 6 r 6 2 , 0 6 s, t, u, v 6 1 .

Taking norms, we find

2 · 3 · 5 = N(I) = 2r3s+t5u+v .

Comparing exponents on both sides gives

r = 1, s+ t = 1, u+ v = 1, s, t, u, v > 0

and hence 1 · 2 · 2 = 4 different ideals of norm 30. Explicitly, we find

p2p3p5, p2p̃3p5, p2p3p̃5, p2p̃3p̃5 .

Claim (ii): Z[
√
−26] has only 2 principal ideals of norm 30.

Suppose the ideal I of norm 30 is principal, i.e. I = (γ) for some γ = a+b
√
−26 ∈ R,

a, b ∈ Z.
Then 30 = N(I) = NK(γ) = a2 + 26b2, whence a = ±2, b = ±1. But these only
give two different ideals [[ γ and −γ give the same ideal ]] .
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Problem 2: Show that p = (10, 5 +
√

10)R is not a principal ideal in R = Z[
√

10].
Solution: Consider K = Q(

√
10), where OK = Z[

√
10] = R.

Check that its norm satisfies N(p) = gcd(102, 25 − 10, 2 · 10 · 5) = 5. [[ Hurwitz
lemma, as usual. ]]
Suppose p is principal, i.e. p = (γ)R for some γ = a + b

√
10, a, b ∈ Z. Then

|NK(γ)| = N
(
(γ)R

)
= 5 and a2 − 10b2 = 5 (*).

Consider this modulo 8 (using that the squares mod 8 are 0, 1 and 4).
Obviously, a is odd, hence a2 ≡ 1 (mod 8), and so (*) gives

1− 2b2 ≡ 5 (mod 8) , hence − 2b2 ≡ 4 (mod 8) ,

which is not possible.
Conclusion: p cannot be principal.

Problem 3: Factorise the principal ideal I = 57(8− 11
√
−10)R of R = Z[

√
−10] =

O−10, and determine which of its prime factors are principal.
Solution: Put α = 8− 11

√
−10. Its norm in K = Q(

√
−10) is given as

N(α) = 64 + 1210 = 2 · 72 · 13 .

Decomposing the relevant principal ideals (p)R (p = 2, 7, 13) gives
for (2)R: −10 ≡ 2 (mod 4), hence (2) = p2

2, where p2 = (2,
√
−10) which is of norm

2 and the only prime ideal above 2;
for (7)R: −10 ≡ 22 (mod 7), hence (7) = p7p̃7, where p7 = (7, 2−

√
−10) which is

of norm 7;
for (13)R: −10 ≡ 42 (mod 1)3, hence (13) = p13p̃13, where p13 = (13, 4 −

√
−10)

which is of norm 13.

First we get a bound on the exponent of prime factors in (α)R:

(α)R | (αα̃)R =
(
N(α)

)
R

= (2)R(7)2
R(13)R = p2

2p
2
7p̃

2
7p13p̃13 . (∗∗)

We get more precise information from taking norms:

N
(
(α)R

)
= NK(α) = 2 · 72 · 13 .

This can only be achieved for a factorisation in (∗∗) if

(α)R = p2p
a
7 p̃2−a

7 pb13p
1−b
13

for some 0 6 a 6 2 and 0 6 b 6 1.

In order to check which of those prime ideals can occur in a factorisation of (α), we
check for each one whether α actually lies in that ideal; so e.g. we find that α ∈ p7,
which is generated by 7 and 2−

√
−10:

α = 8− 11
√
−10 = 11(2−

√
−10)− 14 ∈ p7 ;

and so p7 ⊃ (α)R, i.e. p7 | (α)R [[ think Caesar ]] and so a = {1, 2}.
But we cannot have p̃7, as otherwise (7)R = p7p̃7 | (α)R and so 7 | α, which is
obviously not the case. We conclude that a = 2.
In a similar way, we find that α ∈ p̃13, giving b = 0.
Conclusion: (α)R = p2p

2
7p̃13.

Now in order to factorise I = (57α)R, we still need to decompose 57 = 3 · 19,
and in a similar vein we find

−10 ≡ 2 6≡ � (mod 3)⇒ 3 is inert, i.e. (3)R is a prime ideal ;

−10 ≡ 32 (mod 19)⇒ 19 is split, i.e. (19)R = p19p̃19 ,

where p19 = (19, 3−
√
−10)R . Altogether we find

I = (3)Rp2p
2
7p̃13p19p̃19 .
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6.4. The ideal class group. Let K = Q(θ), |K : Q| = n, R = OK with our
running assumptions [[ (1) a maximal ideal is invertible, (2) ∃ a norm function for
ideals, (3) ideals are finitely generated as abelian groups. ]]
Seen, as a consequence: J (R) is an abelian group.

Now for principal ideals one can often use very similar arguments as for elements,
so in this sense we will consider those as “understood”, giving rise to the subgroup
P(R).

Definition: Two ideals I, J ⊂ R are considered equivalent, denoted I ∼ J , if
∃λ ∈ K∗ such that I = (λ)RJ .

Note: (1) In particular, all principal ideals are considered equivalent; in fact they
are equivalent to R itself:

(λ)R = λ(1)R , i.e. (λ)R ∼ (1)R = R .

(2) In other words, we have

I ∼ J ⇔ I ∈ J · P(R)⇔ I · P(R) = J · P(R) .

In particular I ∼ R⇔ I ∈ P(R) .

Definition 6.24. (1) The quotient group

C`(R) = J (R)
/
P(R)

is called the (ideal) class group of R (or also of K, where R = OK).
(2) The order of C`(R) is denoted by

h = hR = hK

(in particular have another variant h√d for K = Q(
√
d), called the class

number of R (or also of K).
(3) For an ideal I ∈ J (R), denote by

[I] := I · P(R)

its class in C`(R).

We have the following simple consequences of the definition:

Proposition 6.25. Let I, J ∈ J (R). Then denote the identity in the class group
by e = eC`(R). We have

(1)
[I] = e⇔ I ∈ P(R)⇔ I is principal.

(2)

[I] = [J ]⇔ I ∼ J ⇔ I = (λ)RJ for some λ ∈ K∗

⇔ (α)RI = (β)RJ for some α, β ∈ R \ {0}.

(3)

[I] · [J ] = I · P(R) · J · P(R)
= I · J · P(R) = [I · J ]

(4)
[I]−1 = [I−1] .

(5)
[I]m = e ⇔ Im is principal.
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In order to get an upper bound on the class number, it will be helpful to find
relations among ideal classes, e.g. by factorising principal ideals:

(α) = pq ⇒ [p] = [q]−1 , as e = [(α)] = [pq] = [p][q] .

Proposition: If K = Q(
√
d), then we get

(i) [Ĩ] = [I]−1 ,
(ii) IJ̃ principal ⇔ [I] = [J ].

Problem: For R = OK = Z[
√
−29] (i.e. K = Q(

√
−29)),

(a) show that R contains ideals p2, p3, p5 of norm 2, 3, and 5, respectively, and
that [p2], [p3] and [p5] have order 2, 6 and 3, respectively, in C`(R).
(b) Show that R has an ideal of norm 11 whose order in C`(R) is of order 6.

Solution: We use a previous theorem to decompose primes in R:
−29 ≡ 3 (mod 4), hence (2) = p2

2, where p2 = (2,
√
−29);

−29 ≡ 12 (mod 4), hence (3) = p3p̃3, where p3 = (3, 1−
√
−29);

−29 ≡ 12 (mod 4), hence (5) = p5p̃5, where p5 = (5, 1−
√
−29).

Question: are there any principal ideals of norm 2, 3 or 5?
Answer: No. [[ a2 + 29b2 is never 2, 3 or 5 (for a, b ∈ Z). ]]
Hence we get [p2] 6= e, [p3] 6= e, [p5] 6= e, and the same is then of course true for
[p̃3] and [p̃5].

But we can say more: the precise orders can be obtained as follows:
• p2: as [p2]2 = [p2

2] = [(2)] = e, it is clear that the class [p2] has precisely order 2.
• p5: Instead of tediously multiplying out pj5 and checking that p2

5 is non-principal,
while p3

5 is principal, we can use relations among the ideal classes to determine their
respective orders.

Main idea: decompose principal ideals whose norm involve only the primes we
consider (here 2, 3, 5).
For example, we find that β = 3 + 2

√
−19 has norm 53, hence (β) = pa5 p̃3−a

5 for
some 0 6 a 6 3. In the class group, this implies

e = [(β)] = [p5]a[p̃5]3−a .

But we have β ∈ p5 [[ as β = 5 − 2(1 −
√
−29) ]] and β /∈ p̃5 [[ otherwise also β̃ ∈ p5

and 1 = β + β̃ − 5 ∈ p5 ]] . Hence (β)R = p3
5 and so [e] = [p5]3, so that the order

of [p5] divides 3; as we have checked that p5 is not principal, we can conclude that
[p5] has precise order 3.
• p3: Consider γ = 1 +

√
−29 of norm 30 = 2 · 3 · 5, to get

(γ) = p2p
a
3 p̃1−a

3 pb5p̃
1−b
5 .

But we easily see that γ ∈ p̃3 and γ ∈ p̃5, so we must have

(γ) = p2p̃3p̃5 ,

giving the class group relation e = [p2][p̃3][p̃5], hence [p3] = [p2][p̃5], and by elemen-
tary properties in groups we get that the order of [p3] equals lcm(2, 3) = 6.

(b) is now easy, provided we can relate some prime p11 of norm 11 to some prime
of norm 3, say p3, in the class group, e.g. if p11 · p3 or p11 · p̃3 is principal.
Its norm would be 33, and a principal ideal of this norm would have a generator
α ∈ OK such that NK(α) = 33; and indeed, α = 2 +

√
−29 (∈ p3) does it. �
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6.5. Finiteness of the class group. One of our goals is to show that hK is finite
for any number field K.
The main idea, due to Minkowski, is to list prime ideals by norm size, say, and then
to show that primes of norm beyond a certain bound (the Minkowski bound)
do not contribute anything new to the class group (i.e. there is always a relation
expressing their classes in terms of a given finite set of classes), so one reduces
everything to a finite set of prime ideals.

An important ingredient is the insight that the ideal norm of any ideal I and
the “best possible” norm NK(α) of an element α ∈ I are not too far apart (we will
make this statement more precise below).

In order to formulate the Minkowski bound, we will need to introduce the notion
of a discriminant of a number field; we will first give a quick definition which works
for most number fields that we are working with, so that we can immediately give
examples, and we will give a more general definition later.

Definition 6.26. (i) A monic polynomial f(x) ∈ C[x] of degree n > 0 with
roots θ1, . . . , θn has a factorization f(x) =

∏n
j=1(x − θj), and we define

the discriminant of f(x) as

discr(f) =
∏

16i<j6n

(θi − θj)2 .

In particular, the discriminant “detects” multiple roots, i.e.

discr(f) = 0 ⇔ f has a multiple root .

(ii) The discriminant ∆K of a number field K = Q(θ) with OK = Z[θ]
for some θ ∈ K can be given as the discriminant of the minimal polynomial
pθ(x) of θ over Q.

Caveat: The above definition (ii) is not always applicable: there is not always a
θ ∈ K such that OK = Z[θ]!

Example: K = Q(θ) with θ a root of x3 − 10 has no such description.

On the positive side, though, for quadratic fields (ii) always applies, and we get:

∆Q(
√
d) =

{
4d if d ≡ 2, 3 (mod 4) ,
d if d ≡ 1 (mod 4).

For d ≡ 2, 3 (mod 4) we get the minimum polynomial

p√d(x) = (x−
√
d)(x+

√
d) ,

so the discriminant of Q(
√
d) is discr(p√d(x)) = (

√
d− (−

√
d))2 = 4d.

For d ≡ 1 (mod 4), we find the minimal polynomial of θ = 1+
√
d

2 as

pθ(x) = (x− 1 +
√
d

2
)(x+

1 +
√
d

2
) ,

which implies that the discriminant equals d.

Now we can formulate the Minkowski bound:

Definition 6.27. Let K = Q(θ) be a number field of degree n = |K : Q| = s + 2t
where s = #{real roots of pθ(x)} and t = #{pairs of complex conjugate roots of pθ(x)}.
The Minkowski bound for K is the number

BK :=
( 4
π

)t n!
nn

√
|∆K | .
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We have the following extremely useful result by Minkowski stating roughly that
all the ideals in R can be uniformly approximated by their respective elements:

Theorem 6.28. For any number field K and any integral ideal J ⊂ OK , J 6= (0),
there is a non-zero α ∈ J such that

|NK(α)|
N(J)

6 BK .

Corollary 6.29. For each ideal class c in C`(OK) we can find a representative I
which is an integral ideal in R and satisfies

N(I) 6 BK .

Proof. We can choose, up to multiplying by a principal ideal, an integral ideal J
in the inverse ideal class c−1, i.e. c−1 = [J ].
By the theorem above, we can choose α ∈ J \ {0} such that |NK(α)| 6 N(J) ·BK .
Clearly, J ⊃ (α), hence (α) = J · I for some integral ideal I ⊂ R.
This ideal I satisfies the requirements in the Corollary:
(i) I ∈ c; [[ we have [I] = [αJ−1] = [J−1] = [J ]−1 = (c−1)−1 = c . ]]
(ii) N(I) 6 Bk
[[N(I)N(J) = N((α)R) = NK(α) 6 BK ·N(J), from which we conclude N(I) 6 BK
as N(J) 6= 0. ]] �

Example: The class number of R = Z
[

1+
√

19
2

]
is 1.

In particular, we can conclude that R is a PID.
[[ Note that one can show (e.g. Stewart–Tall, Thm 4.18) that R is not a Euclidean
ring. ]]

The Minkowski bound gives, using that t = 1, n = 2 and ∆Q(
√
−19). Hence

BQ(
√
−19) =

( 4
π

) 2!
22

√
| − 19 =

2
π

√
19 < 3 .

Therefore we can conclude that all ideal classes have a representative of norm
6 2.
Moreover, there are no ideals of norm 2 in this number ring: as −19 ≡ 5 (mod 8),
we know that 2 is inert in O−19, and so its norm is equal to 4.
So we can strengthen our result by stating that all ideal classes have a representative
of norm 1; but an ideal of norm 1 is the full ring O−19, and its ideal class is the
identity in C`(O−19).
Conclusion: the ideal class group has only a single element, hence h√−19 = 1.

Note: For any number ring there is only a finite number of ideals of norm below
a given bound.
[[ It suffices to show that there are only finitely many ideals of a given norm m, say.
If I is an ideal with N(I) = m, then I |

(
N(I)

)
and we can decompose into prime

ideals as (M) = p1 . . . pr; hence I =
∏r
j=1 p

εj
j with εj ∈ {0, 1}, of which we get 6 2r

possibilities. �

Corollary 6.30. C`(OK) is finite for any number field K [[ with our running
assumptions ]] .

Proof. We only need to combine the Minkowski bound with the proposition. �

What is more: we can use the Minkowski bound and a similar reasoning as before
to get the fulll structure of the class group.

Example: Consider R = Z[
√
−14], the ring of integers in K = Q(

√
−14); find the

structure of C`(R).
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Since n = 2, t = 1, and ∆K = 4 · −14 = −56.
This produces the Minkowski bound

BK =
( 4
π

)1 2!
22

√
56 =

2
π

2
√

14 =
4
π

√
14 < 5 .

So we only need to check all ideals of norm 6 4:
norm 2: p2 = (2,

√
−14)R (−14 ≡ 2 (mod 4)), ramified;

norm 3: p3 = (3, 1−
√
−14)R (−14 ≡ 12 (mod 3)), split;

norm 4: p2
2 = (2)R.

Hence the class group, as a set, is {e, [p2], [p3], [p̃3]}, since we can drop [p2
2] = [(2)] =

e.
This already give us a good upper bound on the class number: h√−14 6 4.
In a second step, we try to eliminate principal ideals: but none of the ideals p2, p3

and p̃3 is principal [[ we cannot solve a2 + 14b2 = 2or3 in integers ]] .
Moreover, we cannot solve a2 + 14b2 = 6 either, and hence neither one of the two
ideals p2p3 and p2p̃3 of norm 6 can be principal.
This implies that [p2]−1 6= [p3] and we get a lower bound on h: indeed h > 3.

Similarly [p2]−1 6= [p̃3].
Finally we check that the square of p3 is not principal: its norm is 9, but the

only solution in integers of a2 + 14b2 = 9 is via a = ±3, b = 0, so as principal ideals
we would need to have p2

3 = (3) which is not true as p3 6= p̃3.
Hence we find [p3] 6= [p̃3] [[ multiply both sides by [p3] ]] and hence h > 4.
Conclusion: h = 4 and C`(R) = {e, [p2], [p3], [p̃3]} is cyclic with generator [p3], say.


