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Regulators via iterated integrals
(numerical computations)

Herbert Gangl

1. Motivation

Polylogarithms are known to give regulator values of elements in algebraic K-
groups of number fields. In the case of the dilogarithm, Bloch found a criterion
for elements in the free abelian group Z[F ] for a number field F to produce such
elements (cf. [3]), and for higher order polylogarithms an analogous criterion was
proposed by Zagier which gave rise to his polylogarithm conjecture [15]. Beilinson
and Deligne (cf. e.g. [1]), reinterpreted that criterion in terms of extension classes
of mixed Tate motives over F , and realizations of the latter, given in terms of
polylogarithms, provide real mixed Hodge–Tate structures; in a preprint [2] that
unfortunately never made it into print they gave a proof of that reinterpretation,
and a corresponding K-theoretic statement was independently shown by de Jeu
(cf. [10]). As a consequence, given a natural number n, there are criteria for a
formal linear combination

∑
i λi[zi] in Z[F ] which guarantee that an appropriate

single-valued version of the n-logarithm function (e.g. the function Pn in [15]) maps
the image of

∑
i λi[σzi] under a given embedding σ : F ↪→ C to the regulator value

of a suitable extension class.
Since polylogarithms can be expressed as iterated integrals, using a single

1-form of the kind dt
t−1 as well as further 1-forms of the type dt

t only, one can
ask whether more general iterated integrals also produce—possibly new—extension
classes. Promising candidates are iterated integrals where we allow at least two
1-forms of the kind dt

t−1 .
In his work on mixed Hodge structures and iterated integrals [13], Wojtkowiak

generalizes the setup of the paper by Beilinson and Deligne [1] on the motivic
interpretation of Zagier’s conjecture to arbitrary iterated integrals involving only
1-forms with a linear form in the denominator. In this more general framework
there arise new conditions on linear combinations in Z[F ] (for a number field F ) to
represent an extension class in the category MTM/F of mixed Tate motives over
a field F (for the setting, see e.g. [7]), which then give rise to extensions of mixed
Hodge-Tate structures after applying the associated iterated integral.

The aim of this note is to give examples representing such classes and having
non-vanishing regulator values. For this we provide elements which satisfy the con-
ditions mentioned above and evaluate them via some single-valued version for the
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associated iterated integrals. Finally we compare the result with the corresponding
value of the Dedekind zeta function of F (the latter is motivated by Borel’s theorem
on regulators for the algebraicK-groups of F , combined with Zagier’s polylogarithm
conjecture). The output confirms numerically what the theory predicts, namely for
the functions we consider (iterated integrals of type

∫
dt
t−1 ◦

dt
t ◦ ... ◦

dt
t ◦

dt
t−1 of

weight ≤ 5) we encounter the same regulator values (rationally) as for the classical
polylogarithms, although for the most interesting case which we have investigated
(the one of depth 5) the corresponding function is not expressible (cf. [13], §10.3)
in terms of classical polylogarithms.

We want to emphasize that the tremendously useful software package GP-PARI
[9] played an integral part for the experiments in this note.

2. Conditions to produce regulator values

2.1. Conditions from Zagier’s polylogarithm conjecture. Let F be a
number field, with r1 real and 2r2 complex embeddings. Due to a famous result of
A. Borel [4], we know that, using a suitable regulator map, its higher K-groups of
odd order K2n−1F (n ≥ 2) can be mapped isomorphically, up to torsion, to a lattice
of rank r2 or r1 + r2, depending on whether n is even or odd; we will refer to such
a lattice as a “higher regulator lattice”. Bloch (unconditionally in the case of the
dilogarithm, [3]) and Zagier (conjecturally for the higher cases, [15]) gave conditions
for an element ξ =

∑
i λi[zi] in Z[F ] to provide explicit entries in such a “higher

regulator lattice” for F , at least up to a rational multiple. If those conditions are
satisfied then any such entry takes the form Ln,σ(ξ) :=

∑
i λiLn(σ zi) for some

embedding σ : F ↪→ C, where Ln(z) denotes a single-valued cousin (e.g. one can
take the functions denoted by D̃n(z) or Pn(z) in [15]) of the classical n-logarithm
Lin(z) =

∑
r≥1 z

r/rn, analytically continued to C \ {0, 1} via an iterated integral

of the form −
∫ z

0

dt

t− 1
◦ dt
t
◦ · · · ◦ dt

t︸ ︷︷ ︸
n−1 factors

.

For the dilogarithm the corresponding condition can be described using the
second exterior power

∧2
F× of the multiplicative group F× of F : the condition

for ξ alluded to above is simply to lie in ker(β2) where the map β2 : Z[F ]→
∧2

F×

is given on generators as [z] 7→ z ∧ (1− z) (and [0], [1] are mapped to 0).
For the higher polylogarithms Zagier gave a similar “main condition”, i.e. a

good combination has to lie in ker(βn), with βn : Z[F ]→
⊗n−2

F×⊗
∧2

F× which
is defined on generators as [z] 7→ z⊗(n−2)⊗z∧(1−z) for n ≥ 2 (due to the symmetry
of the situation we can replace

⊗n−2 by Symn−2).
In addition to that main condition, though, he had to impose further “side

conditions”, coming from homomorphisms αi : F× → Z (i ∈ I for some index
set I) and more generally from

⊗j
F× to

⊗j−1
F× (1 ≤ j ≤ n − 2) by apply-

ing these αi to any one of the tensor factors on the left (we interpret
⊗0

F×

on the right as Z). By composing several of the αi, one can map
⊗n−2

F× to⊗k−2
F× for any k = 2, . . . , n− 1, and it turns out that the resulting (composed)

induced homomorphisms αi1 ◦ · · · ◦αin−k
: Z[F ] −→ Z[F ] sending a generator [z] to

αi1(z) · · ·αin−k
(z) [z], map elements from ker(βn) to ker(βk) for the corresponding

k. Now the side conditions alluded to above amount to imposing that the image
of ξ under any of those homomorphisms for any k = 2, . . . , n − 1 is not only in
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ker(βk), but moreover lies in a certain subgroup of “universal” elements coming
from functional equations for Lk (some single-valued version of the k-logarithm as
above). For many examples illustrating the above process we refer to [15] and [6].

The condition for an element ξ ∈ ker(βn) to be a consequence of functional
equations for the n-logarithm is very difficult to analyze (already for the simplest
case of the dilogarithm there is no algorithm known for that). For this reason, Zagier
has given a slightly different—and conjecturally equivalent—formulation where the
above “lies in a certain subgroup of universal elements” is replaced by “vanishes
under Lk,σ for all embeddings σ”. This provides an effective check for conjectural
triviality of Bloch elements.

Then one builds an inductive procedure: first we take linear combinations in
ker(βn) whose images in ker(β2) under any composition of n−2 homomorphisms αi
as above vanish (numerically) when evaluated by the dilogarithm, then restrict to
those linear combinations among them all of whose homomorphic images in ker(β3)
vanish (numerically) under the trilogarithm, and work our way up successively to
k = n − 1. Zagier’s conjecture then implies that a combination ξ satisfying all
those inductive conditions should map, up to multiplying by a rational number, to
a vector (Ln,σ)σ inside the corresponding higher regulator lattice of F (cf. [15]).

In the framework of the paper by Beilinson and Deligne, the above conditions
on ξ (in the non-numerical formulation) imply that it represents an extension class
of mixed Tate motives in Ext1

MTM/F (Q(0),Q(n)).

2.2. The conditions in the case Λ10001(z). In [13], Wojtkowiak has sug-
gested a way to generalize the picture by invoking iterated integrals different from
the ones for polylogarithms as candidates for regulator functions. We treat in this
note (a single-valued version of) iterated integrals of the form

Λε1,...,εn
(z) =

∫ z

0

dt

t− ε1
◦ dt

t− ε2
◦ · · · ◦ dt

t− εn
,

where εj ∈ {0, 1} (j = 1, . . . , n), and in particular the case where n = 5 and
(ε1, . . . , ε5) = (1, 0, 0, 0, 1). The case ε0 needs to be treated separately, cf. §3.2
below.

In this case, the “side conditions” on the corresponding linear combinations
(in analogy to the above set-up) are somewhat more complicated, as there are now
more different types of homomorphism for an element in the kernel ker(β̃n) where

β̃n : Z[F ] −→
⊗

n−2F× ⊗
∧

2 F×

is given on generators (z 6= 0, 1) as

[z] 7→ (1− z)⊗ z⊗(n−3) ⊗
(
z ∧ (1− z)

)
.

As usual, [0] and [1] are mapped to 0.
An example of a new type of homomorphism that we encounter here is obtained

if we factor through (from tensors to antisymmetric tensors in the first two factors)∧
2 F× ⊗

⊗
n−4F× ⊗

∧
2 F× ,

where ξ ∈ ker(β̃n) is mapped to an element in ker(β2) ⊗ (F×)⊗(n−4) ⊗ ker(β2),
which in turn is mapped homomorphically to R, using the following function L2 ⊗
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log | · |⊗(n−4) ⊗ L2 (more precisely, we first need to apply individual embeddings
F ↪→ C for each tensor factor).

For the case in question the conditions for a ξ =
∑
λi[zi] ∈ Z[F ] to provide

a regulator value of an extension class in Ext1
MTM/F (Q(0),Q(5)) via the single-

valued version D10001(z) (defined in §3 below) attached to Λ10001(z) are given by
Wojtkowiak ([13], in §10.3). We try to formulate his result in down-to-earth terms:

Proposition 2.1. Let F be a number field and let
∑
λi[zi] ∈ Z[F ] satisfy the

following conditions (M), (X1-3), (Y1-2):

(M) The main condition is∑
i λi (1− zi) ∧ zi ⊗ zi ⊗ zi ⊗ (1− zi) = 0 in

∧
2F× ⊗

(
F×
)⊗3

,

(X) Conditions of the first kind. For any embedding σ : F ↪→ C we have

1)
∑
i λi L2(σzi)⊗ zi ⊗ zi ⊗ (1− zi) = 0 in C⊗

(
F×
)⊗3

,

2)
∑
i λi L3(σzi)⊗ zi ⊗ (1− zi) = 0 in C⊗

(
F×
)⊗2

,
3)

∑
i λi L4(σzi)⊗ (1− zi) = 0 in C⊗ F× .

(Y) Conditions of the second kind. For any embeddings σ, σ′ : F ↪→ C we have

1)
∑
i λi
(
zi ⊗ L2(σzi)L2(σ′zi)

)
= 0 in F× ⊗ R .

2)
∑
i λi L3(σzi)L2(σ′zi) = 0 .

Then the combination
∑
λi[zi] gives an extension of Q by (2πi)5Q in the category

of mixed Tate motives over F .

We can view Proposition 2.1 as a generalization of Zagier’s criteria (for elements
in Z[F ] representing elements in the algebraic K-theory of F which are mapped to
a lattice under an appropriate single-valued polylogarithm function). In the spirit
of Zagier’s conjecture we now expect that the vectors (

∑
iD10001(σ zi))σ generate a

full lattice in Rr1+r2 when applied to elements satisfying the six criteria from that
proposition.

Moreover, combining the above with Borel’s Theorems (cf. [4]) we expect that
the covolume of the (conjecturally) ensuing lattice is rationally, up to well-known
factors, given by ζF (5).

Conjecture 2.2. Let F be a number field of discriminant dF . Then there
are elements in Z[F ], satisfying conditions (M), (X1–3) and (Y1–2) whose images
under D10001 generate a lattice of full rank in Rr1+r2 , of covolume a rational number
times |dF |9/2π−5r2ζF (5).

The conditions above, with the exception of (Y2), can be rephrased in terms of
homomorphisms, e.g. for (X1):

∑
i λi L2(σzi)α(zi)α′(zi)α′′(1 − zi) = 0 for all

homomorphisms α, α′, α′′ : F× → Z. Note that for simplicity we ignore torsion in
F× here (our computer program does in fact treat it, but in most of our example it
is 2-torsion only, anyway). We will use the statement in this form for the descrip-
tion of the verification in §4 and in our examples in §5 below.
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3. One-valued functions attached to Λ10...01(z)

3.1. The symbolic part of the calculation. In the notation of [13], the
single-valued functions D10r1(z) associated to Λ10r1(z) are obtained using the Drin-
feld associator Λ→

01
(z) :=

∑
w cw(z)w where w runs through all the words on the

alphabet {X,Y }, and cw(z) is the corresponding iterated integral
∫ z

0
over the com-

position of 1-forms of type dt
t in place of X and dt

t−1 in place of Y . More precisely,
D10r1(z) is obtained as the coefficient of Y XrY in a power series associated to a
particular automorphism of a certain Lie algebra

(
this Lie algebra, denoted L(V )

in [13], §8.0, with V = P1
Q \ {0, 1,∞}, is obtained as a quotient of (a comple-

tion of) the free Lie algebra on two generators, and the automorphism mentioned
arises from left multiplication by the above Λ→

01
(z), denoted LΛ→

01
(z) in loc.cit., as

1
2 log(LΛ→

01
(z) ◦

=

L
−1

Λ→
01

(z))
)
; for details and notation, we refer to [13].

Specifically, D10001(z) is also denoted Df5(z,
→
01) in [13] §10.3. For symbolic

manipulations (which were performed in Mathematica) we can restrict ourselves to
consider only the terms where at most two Y ’s and three X’s appear.
Eventually, by taking appropriate real part < or imaginary part = and interpreting
Λ0(z) as log(z), one finds the following one-valued function for Λ101(z):

D101(z) = <Λ101(z) + =Λ1(z)=Λ01(z) − <Λ10(z)<Λ1(z)
− =Λ1(z)=Λ0(z)<Λ1(z) + 1

3<Λ1(z)<Λ0(z)<Λ1(z) .

Similarly, the one for Λ1001(z) is given by:

D1001(z) = =Λ1001(z) − =Λ1(z)<Λ001(z) − <Λ10(z)=Λ01(z)−=Λ100(z)<Λ1(z)

−=Λ1(z)=Λ0(z)=Λ01(z) +
1
3
<Λ1(z)<Λ0(z)=Λ01(z)

+
1
3
=Λ10(z)<Λ0(z)<Λ1(z) + <Λ10(z)=Λ0(z)<Λ1(z)

− 1
3
<Λ1(z)=Λ0(z)<Λ0(z)<Λ1(z) +

1
6
=Λ1(z)<Λ0(z)<Λ0(z)<Λ1(z)

+
1
2
=Λ1(z)=Λ0(z)=Λ0(z)<Λ1(z) .

In fact, this function turns out to be identically zero (as had been predicted by
Wojtkowiak).

In the above notation we have already tried to indicate some combinatorial
structure of the terms involved. For any r = 1, . . . , n we partition the string
1 0n−2 1 := 1 0 · · · 0︸ ︷︷ ︸

n−2

1 into r substrings B1, . . . , Br, which will be referred to as

blocks, and we attach to each block Bj either the imaginary part or the real part
of the associated functions ΛBj

(z). The blocks are separated by vertical bars, so
e.g. the partition 1 0|0|1 has three blocks 1 0, 0 and 1. We introduce the following
shorthand: we write B and B for i ·=ΛB(z) and <ΛB(z), respectively, and separate
blocks by a |.

Then e.g. the function D101(z) above is represented as

[101] − [1
∣∣01] − [10

∣∣1] + [1
∣∣0∣∣1] +

1
3

[1
∣∣0∣∣1] .



6 HERBERT GANGL

So a priori we find 2r terms for each partition, many of which come with a zero
coefficient, though. We find in particular:

• the coefficient of any partition containing blocks of the form 0k with k > 1
vanishes;

• if the number of “imaginary” blocks of a given partition and n have the
same parity then the term has zero coefficient;

• if the final block in a partition does not have the form 02k+11 or 02k1
for some k ≥ 0 (in the shorthand defined above), then the corresponding
term has coefficient zero.

Proposition 3.1. In the above shorthand, the function D10001(z) is written as

[10001] − [1
∣∣0001] − [10

∣∣001] − [100
∣∣01] − [1000

∣∣1]

+[1
∣∣0∣∣001] + 1

3 [1
∣∣0∣∣001] + 1

3 [10
∣∣0∣∣01] + [10

∣∣0∣∣01] + [100
∣∣0∣∣1] + 1

3 [100
∣∣0∣∣1]

− 1
3 [1
∣∣0∣∣0∣∣01] + 1

6 [1
∣∣0∣∣0∣∣01] − 1

2 [1
∣∣0∣∣0∣∣01]

− 1
3 [10

∣∣0∣∣0∣∣1] − 1
2 [10

∣∣0∣∣0∣∣1] + 1
6 [10

∣∣0∣∣0∣∣1]

+ 1
6 [1
∣∣0∣∣0∣∣0∣∣1] − 1

6 [1
∣∣0∣∣0∣∣0∣∣1] + 1

6 [1
∣∣0∣∣0∣∣0∣∣1] − 7

90 [1
∣∣0∣∣0∣∣0∣∣1] .

More generally, we expect the following single-valued functions as the respective
coefficient of Y Xn−2Y in the above power series (we have checked this symbolically
up to n = 12):

iεD10n−21(z) = <nΛ10n−21(z)−

−
∑
r,s≥0

∑
1≤b≤n−1

(−1)r
αs
r!

[
<r+b+1−n(1 0n−r−s−b−1)| 0| . . . |0︸ ︷︷ ︸

r

| 0| . . . |0︸ ︷︷ ︸
s

|<b
(
0b−11

)]
with αs denoting the coefficient of xs in the power series x

sinh(x) +
(

x
sinh(x)

)′ =
1− 1

3x−
1
6x

2 + 7
90x

3 + 7
360x

4− 31
2520x

5± . . . , and where <j = < or = i=, depending
on whether j is odd or even, and ε = 0 or 1 depending on whether n is odd or even
(and the first block requires n > r + s+ b, of course).

Remark 3.2. Somewhat different candidates for single-valued versions of the
above functions (and many more) have in the meantime been given by F. Brown in
[5].

3.2. The computational aspect of Λ10001. Note that Λε1...εr
(z) (εi ∈ {0, 1},

for z 6= 0) does not converge if ε1 = 0. Therefore, in order to arrive at some com-
putable (i.e. programmable) object, we treat Λ0...0(z) as 1

k! logk(z) and produce
the functions Λ0...01 from (the convergent) Λ10...0 via shuffle relations (“shuffle reg-
ularization”), and the latter ones are (up to sign) standard polylogarithms. At
least inside the unit circle one has a rapidly convergent power series for computing
Λ10...01, while outside the unit circle it can be given using an inversion relation. For
the latter functions, such inversion relations have been provided by Wojtkowiak (cf.
[13], §9 and [14], §10 (3)).
The main problems of evaluating the function arise close to the unit circle itself.
A procedure given by Cohen, Lewin and Zagier [6] in the case of classical polylog-
arithms can be adapted to our situation, though: develop Λ10...01(ex) in a power
series in x, of which most of the coefficients are expressed in terms of ζ-values (pos-
sibly evaluated at negative integers). The resulting expansion turns out to converge
reasonably fast for an annulus 1/ρ < |x| < ρ for ρ = 3, say.
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4. Description of the successive steps in the program

Let F be a number field of discriminant dF and choose a set S of primes in Q.
We take a system F of fundamental S-units in F , i.e. a basis F0 for the S-units in
F×/tors, together with a root ζ of 1 generating the torsion in F×, as provided by
GP/PARI [9]. Note that for simplicity we ignore this torsion in the following (the
actual program actually does respect the torsion, typically resulting in multiplying
any linear combination by a factor of the order of ζ), hence we can disregard ζ
for the following. Any S-unit has a unique representation in terms of F . For
each element fν ∈ F0 we get a natural homomorphism αν : 〈F〉 → Z picking the
exponent of fν .

Moreover, we number the embeddings by first listing the pairs of complex
conjugate embeddings σ1, σ1, . . . , σr2 , σr2 and then appending successively the r1

real embeddings. For the conditions involving L2 or L4 we only need to consider
σ1, . . . , σr2 , while for conditions involving L3 we invoke both real and complex em-
beddings σ1, . . . , σr1+r2 (i.e. for each pair of complex embeddings we choose one).

4.1. Strategy for invoking the conditions. Initialize the procedure by
searching for “many” exceptional S-units zν (ν ∈ V, an index set of size N := |V|),
i.e. S-units zν ∈ F× such that 1− zν is also an S-unit.

(M) For any ν ∈ V, represent zν and 1 − zν in terms of F , and associate to
it the vector of integer entries arising from the different choices for the
homomorphisms α∗ : 〈F〉 → Z as above:

(1) αi(zν)αj(zν)αk(1− zν)
[
αl(zν)αm(1− zν)− αl(1− zν)αm(zν)

]
,

1 ≤ i ≤ j ≤ s, 1 ≤ k ≤ s, 1 ≤ l < m ≤ s. This provides a row mν of some
integer matrix M0 and the main obstruction (M) for giving an element∑
ν λν [zν ] as in Proposition 2.1 is that the corresponding vector (λν)ν has

to lie in the kernel of M0. Find the (integer) kernel I0 of M0, these form
the first conditions on the linear combination of the rows (corresponding
to the conditions on the zν).

(X1): Invoke further conditions using dilogarithmic conditions by computing the
matrix M2 of size N ×

(
s+1

2

)(
s
2

)
s

(2) (M2)ν,ι =
(
αi(zν)αj(zν)αk(1− zν)L2(σ`zν)

)
ν,ι
,

1 ≤ i ≤ j ≤ s, 1 ≤ k ≤ s, ` = 1, . . . , r2, where σ` : F ↪→ C. Numerically,
the columns of the matrix I0 ·M t

2 span a lattice, of covolume a rational
number times |dF |3/2π−2(r1+r2)ζF (2), and we compute its integer kernel
K0. Then I1 := K0 · I0 will annihilate both M0 and M2.

(Y1): Then take the “products of dilogs”

(3) (M2,2)ν,k =
(
αi(zν)L2(σ`zν)L2(σmzν)

)
ν,k
,

1 ≤ i ≤ s, 1 ≤ ` ≤ m ≤ r2, into a matrix M2,2 (the index k runs
through the

(
r1+r2

2

)
pairs (`,m)). Similarly, I1 ·M2,2 gives rise (numeri-

cally) to a lattice, more specifically of covolume a rational number times(
|dF |3/2π−2(r1+r2)ζF (2)

)2, and we can find its (integer) kernel K1. We
define I2 := K1 · I1, which annihilates M0, M2 and M2,2.
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(X2): The next step consists in taking the trilogarithmic conditions

(4) (M3)ν,` =
(
αi(zν)αj(1− zν)L3(σ`zν)

)
ν,`
,

1 ≤ i, j ≤ s, this time ` = 1, . . . , r1 + r2, generating a matrix M3, and we
find the kernel K2 of the matrix I2 ·M3

(
whose rows give rise to a lattice

of covolume a rational number times |dF |5/2π−3r2ζF (3)
)

and then form
I3 := K2 · I2, which annihilates M0, M2, M2,2 and M3.

(Y2): Compute further the expressions

(5) (M3,2)ν,k =
(
L2(σ`zν)L3(σmzν)

)
ν,k
,

1 ≤ ` ≤ r2, 1 ≤ m ≤ r1 + r2 (the index k runs through the r1r2 pairs
(`,m)). The resulting matrix M3,2 should give an integer kernel K3 for
the lattice generated by the columns of I3 ·M3,2. The matrix I4 := K3 · I3
annihilates M0, M2, M2,2, M3 and M3,2.

(X3): As a final preliminary step, consider the expressions in

(6) (M4)ν,` =
(
αi(zν)L4(σlzν)

)
ν,`
,

1 ≤ i ≤ s, 1 ≤ l ≤ r2, into a matrix M4 and compute the integral kernel
K4 of I4 ·M4 and put I5 := K4 · I4 which annihilates all of the above as
well as M4.

(D1031) Now everything is in place to apply the function D10001, namely we con-
sider

(M5)ν,` =
(
D10001(σ`zν)

)
ν,`

1 ≤ ` ≤ r1 + r2, the entries of which form the matrix M5.

ζF (5) We finally find that the columns of R5 := I5 ·M5 generate (numerically)
a lattice; moreover, we can determine its covolume and check whether it
is a rational number (of small height) times

|dF |9/2

π5r2
· ζF (5) .

In our examples, the corresponding ratio indeed looks rational, at least
within the (40-digit) precision typically used.

5. A detailed example for a cubic field

Let F = Q(θ) with θ3− θ− 1 = 0 ( dF = −23, signature [r1, r2] = [1, 1]). Then
θ is a generator for the group of units modulo torsion; the latter is generated by
−1 and will be ignored in the following. We put F0 = {θ} and F = 〈θ〉 .

Notation: In the following we indicate by .= an “approximate equality”, i.e. an
equality which holds up to a given precision. Typically the computer performed
the calculations up to 100 digits precision, except for the calculations for D10001

where we typically used 40 digits.
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0. Finding sufficiently many S-units. The exceptional S-units zν that the
computer found are the following twelve ones:

(zν)ν=1,...,12 =
(
− θ2 + 2, −θ + 1, θ2 − θ, −θ2 + θ + 1, θ2 − 1,

−θ2 + 1, θ, −θ, θ2, θ + 1, −θ2 − θ, θ2 + θ + 1
)
.

We encounter the very special case (cf. Lewin’s ladders as explained in
[15], §9C) that there is essentially only one homomorphism 〈F〉 → Z
involved, namely the one with respect to the fundamental unit θ. The
respective exponents are given as(

α(zν)
)
ν

= (−5,−4,−3,−2,−1,−1, 1, 1, 2, 3, 4, 5) and(
α(1− zν)

)
ν

= (−1, 1,−2,−3,−5, 2,−4, 3,−1, 1, 5, 4).

(M) This condition (the only one which is purely algebraic, as it does not
involve any polylogarithms) is trivially satisfied, since F has rank 1, hence
I0 is the 12× 12 identity matrix.

(X2) Dilogarithm conditions. The dilogarithm values are (only the non-real
embedding σ2 for each zν has to be considered since r2 = 1, so we suppress
it from the notation)

M2 :=
(
α(1− zν)α(zν)α(zν)L2(zν)

)
ν

.=

.=



−11.78384203
−7.541658902
16.96873253
−11.31248835
2.356768406
1.885414725
−1.885414725
−2.828122088
3.770829451
8.484366265
37.70829451
−47.13536814



.= 1.885414725



−6.250000000
−4.000000000
9.000000000
−6.000000000
1.250000000
1.000000000
−1.000000000
−1.500000000
2.000000000
4.500000000
20.00000000
−25.00000000


and the covolume c2

.= 1.885414725/4 .= 0.4713536814 of the associated lat-
tice is found to be1

c2
.=

3
8
|dF |3/2

π2(r1+r2)
ζF (2) .

We can find the integer kernel K0 of M2 and put I1 = K0 · I0 = K0.
The latter is given in terms of the transpose of the following matrix It1
the entries of which are very close (within the given precision) to integers,
therefore we round them off and are left with

1Note that we tend to display several zeros after the decimal point, which is more of a psy-
chological feature (it reflects somewhat the satisfaction of the programmer verifying that numbers

match in a computer calculation).
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It1 =



0 0 0 −1 0 0 0 0 0 −1 0
0 0 1 0 −1 1 1 0 0 0 1
0 0 0 0 0 1 0 1 0 0 −1
0 0 −1 1 0 1 0 1 −1 1 1
0 0 0 −1 0 0 0 0 0 1 0
1 −1 0 1 0 1 0 −1 0 0 −1
1 1 0 0 −1 0 −1 0 0 0 0
0 0 0 0 0 0 1 0 1 1 0
0 1 −1 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 1 0 −1 0 0
0 0 0 0 1 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0 0



.

Then I1 ·M2
.= 0.

(Y1) Products of dilogarithms. After those preparations, we can expect con-
dition (Y1) to give us a lattice from the matrix with entries products of
dilogarithms

M2,2 :=
(
α(zν)L2(zν)L2(zν)

)
ν

.=

.=



−1.110871464
−0.8886971718
−2.666091515
−1.777394343
−0.2221742929
−0.8886971718
0.2221742929
0.8886971718
1.777394343
2.666091515
0.8886971718
1.110871464



.= − 0.2221742929



5.000000000
4.000000000
12.00000000
8.000000000
1.000000000
4.000000000
−1.000000000
−4.000000000
−8.000000000
−12.00000000
−4.000000000
−5.000000000


with the covolume c2,2

.= 0.2221742929 being equal to c22.

Note that I1 ·M2,2 6= 0, which shows that both conditions (X2) and
(Y1) are needed. Instead, I1 ·M2,2 gives an 11× 1-matrix with commen-
surable entries (obvious since M2,2 already does), and one can give an
integer kernel K1 of it and multiply the result by I1. Call the resulting
matrix I2 = K1 · I1; it annihilates both M2 and M2,2. Its transpose is
given by
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It2 =



0 0 −3 0 0 0 0 0 −3 0
0 3 0 −3 3 3 0 0 0 3
0 0 0 0 3 0 3 0 0 −3
0 −3 3 0 3 0 3 −3 3 3
0 0 −3 0 0 0 0 0 3 0
10 −4 −3 12 −25 11 −27 0 0 5
16 −4 −6 9 −28 8 −24 0 0 8
0 0 0 0 0 3 0 3 3 0
3 −3 0 0 0 0 −3 0 0 0
0 0 0 0 0 3 0 −3 0 0
0 0 0 3 0 0 0 0 0 3
0 0 0 3 0 0 0 0 0 0



.

(X2) Trilogarithmic conditions. The next step is to satisfy condition (X2). To
this end, we compute the vector of trilogarithms multiplied by the corre-
sponding homomorphisms (this time there are r1 + r2 = 2 embeddings σi
of F into C to consider, which is reflected in the notation):

M3 =
(
α(1− zν)α(zν)L3(σ` zν)

)
ν,`

.=



4.034886241 4.677163445
3.081869446 −3.987905178
6.013387652 2.498989698
6.553788692 0.2649913900
5.827735082 −3.651760402
1.784944975 −1.482786776
−4.662188065 2.921408322
−2.677417462 2.224180165
−2.184596230 −0.08833046334
3.006693826 1.249494849
−15.40934723 19.93952589
16.13954496 18.70865378



.

We find numerically that the rows of I2 ·M3 generate a lattice:
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I2 ·M3
.=



−21.09978266 10.54989133
2.549001106 −6.082728165
4.230598524 −5.120441520
−9.198456008 45.46916271
44.28825961 −16.13384529
−2.476557456 1.839307179
35.98477232 −7.173874034
−12.23789998 0.7096939263
5.669220069 −5.839752292
−21.24466996 19.03673330


.

The lattice property becomes more apparent if we multiply by the in-
verse matrix of the first 2× 2-submatrix of the above and multiply by the
common denominator 88, the result being:



88.00000000 −7.673865541E − 104
0.E − 124 88.00000000
−11.00000000 55.00000000
−52.00000000 −748.0000000
−198.0000000 −110.0000000
9.000000000 −11.00000000
−174.0000000 −198.0000000
63.00000000 99.00000000
−17.00000000 55.00000000
70.00000000 −154.0000000


.

The determinant c3 of the above 2×2-submatrix is .= 101.452557625925282
and it is expressed in terms of Dedekind zeta values via

c3
.=

11
9
· |dF |

5/2

π3r2
ζF (3) .

Again, we can find some matrix K2 which represents the integer kernel
of the above, and I3 = K2 · I2 annihilates M2, M2,2 and M3, where its
transpose has the form
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It3 =



2 0 1 3 0 −1 0 −3
−1 5 −1 −2 3 0 0 −3
0 −1 2 0 −2 2 1 0
−3 −1 −2 −4 5 2 0 3
−2 0 3 1 0 −3 0 −1
−7 3 −2 7 −10 3 −2 −7
−8 0 4 4 −7 4 −4 −4
−2 2 2 0 0 0 4 0
−1 −3 1 −1 −1 4 2 −2
−2 2 −1 1 0 1 −2 −1
0 1 −1 −1 2 −1 0 0
0 0 0 0 −1 0 0 0



.

(Y2) Products of dilogarithm and trilogarithm. I3 does not annihilate the ex-
pressions arising from condition (Y2) which are displayed in the next
equation

M3,2 =
(
L2(σ1 zν)L3(σ` zν)

)
ν,`

.=



0.3803716968 0.4409196416
0.3631626273 −0.4699284467
−0.9448108025 −0.3926359979

1.029717475 0.04163488907
−0.5493848770 0.3442541418
−0.8413403851 0.6989170060
0.5493848770 −0.3442541418
0.8413403851 −0.6989170060
−1.029717475 −0.04163488907
0.9448108025 0.3926359979
−0.3631626273 0.4699284467
−0.3803716968 −0.4409196416



(note that for L2 we only use the first embedding) but it gives a lattice
generated by the rows of

I3 ·M3,2
.=



−2.641083126 −0.9458342228
5.505177483 0.08038099116
−1.628466720 −4.001815185
−5.607617226 5.920075319
13.37917049 −3.573318541
−1.699781839 −1.699781839
−2.043364556 −4.077663240
6.214401668 −3.957091754


,
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the span of which can be recognized with the naked eye using the same
procedure as above (this time we multiply by 26):



26.00000000 0.E − 124
−2.479835810E − 105 26.00000000

114.0000000 47.00000000
−172.0000000 −109.0000000
108.0000000 115.0000000
48.00000000 15.00000000
116.0000000 46.00000000
116.0000000 85.00000000


.

We take the integer kernel K4 of I3 ·M3,2 and keep I4 = K3 · I3 which
annihilates all the above (M0, M2, M2,2, M3) as well as M3,2. We give its
transpose as

It4 =



−202 422 −216 −122 −232 −310
−147 321 −389 −27 −114 −387

99 −109 63 67 72 85
337 −729 569 211 394 511
306 −318 216 18 232 206
605 −695 151 369 622 375
1016 −1272 682 488 824 824
186 −126 −14 66 244 62
281 −525 427 197 306 319
108 −100 −14 92 88 36
−73 83 −63 −41 −46 −85

0 0 −26 0 0 0



.

This time the covolume c2,3
.= 0.1921035533 of I3 ·M3,2 is a rational mul-

tiple of c22 · c3. (From the conjectural framework, we expect this covolume
to be a rational number times cr1+r2

2 cr23 .)

(X3) Tetralogarithmic conditions. Continuing in this way, we determine the
tetralogarithmic expressions
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M4 =
(
α(zν)L4(zν)

)
ν

.=



−0.3814538586
−0.3456381997

1.759643788
−2.947003507
2.965401097
1.431744064
−2.372320878
−2.147616097
0.9823345025
0.8798218942
1.728190998
−1.525815434



.

Multiplying I4 by M4, we obtain a single column

I4 ·M4
.=


−57.01118640
99.01942902
−67.01314893
−37.00726135
−58.01138266
−71.01393394


.= 1.0001962525


−57.00000000
99.00000000
−67.00000000
−37.00000000
−58.00000000
−71.00000000

.

The covolume c4
.= 1.0001962525 is found to be

c4
.=

135
832
· |dF |

7/2

π4(r1+r2)
· ζF (4) .

The corresponding kernel I5 (simultaneously satisfying all the conditions
(X1-3) and (Y1-2)) can be written as the transpose of

It5 =



−1 −8 5 0 −3
7 5 14 0 −28
2 −1 0 0 −4
−7 −2 1 1 12
−3 0 −9 −16 −9
20 16 6 −16 −50
7 2 −7 −16 −39
10 8 2 −16 −22
−5 −7 8 1 0
5 2 3 0 −13
−1 1 2 0 0
1 2 −1 0 −1



.

(D1031) In the last step we compute the values under the “exotic Bloch-Wigner
function” D10001 as given above, and arrive at
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M5 :=
(
D10001(σ` zν)

)
ν,`

.=



0.3798787865 4.822987148
0.3906525699 4.688219297
0.8300465454 3.469259751
1.231915999 2.696057038
1.859803935 1.458356504
0.8801812017 3.243252430
4.330778718 1.182477899
1.346885380 2.427729773
4.871430134 1.713967038
5.141619571 1.645178851
2.153722031 1.301307423
5.247265750 1.073768725



.

The product of I5 and M5 yields the matrix

I5 ·M5
.=


55.64437827 108.5338106
17.97137546 44.41609166
22.97809554 115.5346022
−128.5790416 −128.5790416
−331.9825665 −424.5390732


which can be decomposed as

.=


38.00000000 0.00000000
0.00000000 38.00000000
−77.00000000 287.0000000
−248.0000000 496.0000000
−519.0000000 905.0000000


(

1.464325743 2.856152912
0.4729309331 1.168844517

)
.

ζF (5): The special value. We can compute the covolume R10001(F ) of I5 ·M5

as
R10001(F ) .= 13.71063010

(which is 38 times 0.3608060553, the latter number being the determinant
of the 2×2-matrix on the right). Guided by Borel’s theorems, we compare
this number R10001(F ) with the special value

ζF (5) .= 1.00041799247384495

and we observe (denoting dF the discriminant of F and r2 the number of
complex embeddings which are in our case −23 and 1, respectively):

Experimental Evidence: For the field F of degree 3 over Q and of
discriminant dF = −23, the five columns (aj,ν)ν , 1 ≤ j ≤ 5, of It5 give rise
to non-trivial extension classes

∑12
ν=1 aj,ν [zν ] in Ext1

MTM/F (Q(0),Q(5)),
and moreover their images under (D10001,σ)σ generate a lattice of (full)
rank 2 and of covolume R10001(F ) with

|dF |9/2

π5r2
· ζF (5) .= 320 ·R10001(F ) .
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5.1. Remarks.

(1) The example above is one of the simplest cases that worked, i.e. that
gave a non-zero regulator. Usually the number of zν which are needed to
achieve such a non-zero regulator is considerably larger, and more often
than not the program does not find sufficiently many of them.

(2) The procedure of taking the kernel rationally is numerically highly unsta-
ble, and since we want to be able to recognize a lattice, it is crucial that we
find generators of the kernels which form a Z-basis for the lattice (or which
are at least not far away from this property, i.e. the denominator should
be bounded). The problem is that, for the matrix entries we encounter, it
may take very long to find such a Z-basis already for, say, a lattice given
by a matrix of size 300×600. The number of conditions grows very fast
with the order of S and it is typically impractical to include more than 3
or 4 primes into S.

(3) One can view the above weight 5 function as a multiple polylogarithm
as introduced by Goncharov (see e.g. [8]), but specialized to one variable
only (then also called “generalized polylogarithm” in the literature), and
those multiple polylogarithms in turn have appeared early as “hyperloga-
rithms”, in particular in work of Lappo-Danilevsky [11]. In this setting the
function above is denoted Li4,1(1, z), and it might be tempting to think of
the resulting special value not as a Dedekind zeta value ζF (5) but as a kind
of “multiple Dedekind zeta value” ζF (4, 1) (for some candidates see Wojt-
kowiak’s original article [13]) which then would seem, modulo the prod-
uct ζF (2)ζF (3), to be a rational multiple of the former, similar to what is
known to be true for F = Q where one has ζ(4, 1) = 5ζ(5)−ζ(2)ζ(3). Alas,
we were unable to give a sensible evaluation of such a multiple Dedekind
zeta value which might have corroborated such a statement.

6. Further results

6.1. Totally real fields. The simplest cases to consider seem to be the ones
which are totally real, as the conditions involving dilogarithms and tetralogarithms
all are trivially satisfied, since the function L2n(z) vanishes on the real line. Nev-
ertheless, they turn out to be hard, due to complexity reasons (the integer kernels
involved tend to have large coefficients).

6.1.1. The case F = Q. In the case of the rational numbers we also find a
non-trivial result; using the set S = 〈2, 3, 5〉 , we find 98 exceptional S-units, and
a similar calculation as above, but where we only need to satisfy conditions (M),
followed by (X2) which produces a (numerical) lattice of covolume ζ(3)/96, gives us
a lattice generated by the image under D10001 of 50 linear combinations in Z[F ], of
covolume 1

480ζ(5) (and we get the same lattice if we add the prime 7 to S, yielding
178 exceptional S–units and 87 generators of the lattice).

6.2. Other number fields. We have obtained similar results for number
fields of degree ≤ 6, typically we were lucky to find a full regulator lattice for
some small discriminants. We list signatures and corresponding discriminants for
which we have obtained a (conjectural) lattice of full rank r1 + r2:
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signature discriminants
[2, 0] 5, 8, 13
[0, 1] −3, −7, −8, −15, −20
[1, 1] −31, −44, −59, −76, −83, −104, −108, −116, −139, −152
[3, 0] 49, 148, 229
[2, 1] −275, −283, −331, −400, −448
[4, 0] 725, 1125
[0, 3] −9747 .

Moreover, if we divide the covolume of the (conjectural) lattice of D10001–values
by |dF |9/2π−5r2ζF (5), the result in each case is numerically close to a rational
number of small height.

For many other number fields, the height (or complexity) of the rational num-
bers in the inductive steps explodes quickly and gets out of control.
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