Review 1: The Box Integral

Let $x_{1}, x_{2}, x_{3}, x_{4}$ be four points in \mathbb{R}^{4}. Then

$$
\int \frac{d^{4} x}{\left(x-x_{1}\right)^{2}\left(x-x_{2}\right)^{2}\left(x-x_{3}\right)^{2}\left(x-x_{4}\right)^{2}}=\frac{2 \pi^{2}}{\sqrt{|\operatorname{det} Q|}} \operatorname{vol}(Q)
$$

Review 1: The Box Integral

Let $x_{1}, x_{2}, x_{3}, x_{4}$ be four points in \mathbb{R}^{4}. Then

$$
\begin{gathered}
\int \frac{d^{4} x}{\left(x-x_{1}\right)^{2}\left(x-x_{2}\right)^{2}\left(x-x_{3}\right)^{2}\left(x-x_{4}\right)^{2}}=\frac{2 \pi^{2}}{\sqrt{|\operatorname{det} Q|}} \operatorname{vol}(Q) \\
Q_{i j}=\frac{1}{2}\left(x_{i}-x_{j}\right)^{2} \\
u=\frac{\left(x_{1}-x_{3}\right)^{2}\left(x_{2}-x_{4}\right)^{2}}{\left(x_{1}-x_{4}\right)^{2}\left(x_{2}-x_{3}\right)^{2}} \quad v=\frac{\left(x_{1}-x_{2}\right)^{2}\left(x_{3}-x_{4}\right)^{2}}{\left(x_{1}-x_{4}\right)^{2}\left(x_{2}-x_{3}\right)^{2}} \\
z \bar{z}=u \quad(1-z)(1-\bar{z})=v \\
2 \operatorname{vol}(Q)=\mathrm{Li}_{2}\left(\frac{z}{\bar{z}}\right)-\mathrm{Li}_{2}\left(\frac{1-z}{1-\bar{z}}\right)+\mathrm{Li}_{2}\left(\frac{1-1 / z}{1-1 / \bar{z}}\right)-(z \leftrightarrow \bar{z})
\end{gathered}
$$

Review 1: The Box Integral

Let $x_{1}, x_{2}, x_{3}, x_{4}$ be four points in \mathbb{R}^{4}. Then

$$
\begin{gathered}
\int \frac{d^{4} x}{\left(x-x_{1}\right)^{2}\left(x-x_{2}\right)^{2}\left(x-x_{3}\right)^{2}\left(x-x_{4}\right)^{2}}=\frac{2 \pi^{2}}{\sqrt{|\operatorname{det} Q|}} \operatorname{vol}(Q) \\
Q_{i j}=\frac{1}{2}\left(x_{i}-x_{j}\right)^{2} \\
u=\frac{\left(x_{1}-x_{3}\right)^{2}\left(x_{2}-x_{4}\right)^{2}}{\left(x_{1}-x_{4}\right)^{2}\left(x_{2}-x_{3}\right)^{2}} \quad v=\frac{\left(x_{1}-x_{2}\right)^{2}\left(x_{3}-x_{4}\right)^{2}}{\left(x_{1}-x_{4}\right)^{2}\left(x_{2}-x_{3}\right)^{2}} \\
z \bar{z}=u \quad(1-z)(1-\bar{z})=v \\
2 \operatorname{vol}(Q)=\operatorname{Li}_{2}\left(\frac{z}{\bar{z}}\right)-\mathrm{Li}_{2}\left(\frac{1-z}{1-\bar{z}}\right)+\mathrm{Li}_{2}\left(\frac{1-1 / z}{1-1 / \bar{z}}\right)-(z \leftrightarrow \bar{z})
\end{gathered}
$$

Caution: in contrast to what follows shortly, in this example the x_{i} are generic; I am NOT imposing that $\left(x_{i}-x_{i+1}\right)^{2}=0$.

Review 1: The Box Integral

Let $x_{1}, x_{2}, x_{3}, x_{4}$ be four points in \mathbb{R}^{4}. Then

$$
\begin{gathered}
\int \frac{d^{4} x}{\left(x-x_{1}\right)^{2}\left(x-x_{2}\right)^{2}\left(x-x_{3}\right)^{2}\left(x-x_{4}\right)^{2}}=\frac{2 \pi^{2}}{\sqrt{|\operatorname{det} Q|}} \operatorname{vol}(Q) \\
2 \operatorname{vol}(Q)=\mathrm{Li}_{2}\left(\frac{z}{\bar{z}}\right)-\mathrm{Li}_{2}\left(\frac{1-z}{1-\bar{z}}\right)+\mathrm{Li}_{2}\left(\frac{1-1 / z}{1-1 / \bar{z}}\right)-(z \leftrightarrow \bar{z})
\end{gathered}
$$

$\operatorname{vol}(Q)$ is the volume of the ideal hyperbolic tetrahedron with
dihedral angles

$$
\cos \left(\angle H_{i} H_{j}\right)=\frac{Q_{i j}^{-1}}{\sqrt{Q_{i j}^{-1} Q_{j j}^{-1}}}
$$

Review 2: The Configuration Space for SYM Theory

n-particle scattering amplitudes in "maximally supersymmetric Yang-Mills theory" are naturally functions of n ordered points in \mathbb{P}^{3}, modulo the action of $P G L_{4}$. This is the space called Y_{n-5}^{4} by Hain and MacPherson.

Review 2: The Configuration Space for SYM Theory

n-particle scattering amplitudes in "maximally supersymmetric Yang-Mills theory" are naturally functions of n ordered points in \mathbb{P}^{3}, modulo the action of $P G L_{4}$. This is the space called Y_{n-5}^{4} by Hain and MacPherson.

Since no cross-ratios exist for $n<6$ the simplest non-trivial amplitude involves $n=6$ particles, and is a function of the three independent cross-ratios

$$
\begin{equation*}
u_{1}=\frac{\left(x_{1}-x_{3}\right)^{2}\left(x_{4}-x_{6}\right)^{2}}{\left(x_{3}-x_{6}\right)^{2}\left(x_{4}-x_{1}\right)^{2}} \quad u_{2}, u_{3}=\text { cycle } \tag{1}
\end{equation*}
$$

$\left(\right.$ Here $\left.\left(x_{i}-x_{i+1}\right)^{2}=0!\right)$

Review 2: The Configuration Space for SYM Theory

n-particle scattering amplitudes in "maximally supersymmetric Yang-Mills theory" are naturally functions of n ordered points in \mathbb{P}^{3}, modulo the action of $P G L_{4}$. This is the space called Y_{n-5}^{4} by Hain and MacPherson.

Since no cross-ratios exist for $n<6$ the simplest non-trivial amplitude involves $n=6$ particles, and is a function of the three independent cross-ratios

$$
\begin{equation*}
u_{1}=\frac{\left(x_{1}-x_{3}\right)^{2}\left(x_{4}-x_{6}\right)^{2}}{\left(x_{3}-x_{6}\right)^{2}\left(x_{4}-x_{1}\right)^{2}} \quad u_{2}, u_{3}=\text { cycle } \tag{1}
\end{equation*}
$$

$\left(\right.$ Here $\left.\left(x_{i}-x_{i+1}\right)^{2}=0!\right)$
An analytic result for a two-loop 6-particle amplitude was posted on arxiv on 27 November 2009 by Del Duca, Duhr and Smirnov. Their result is expressed as a long linear combination of Goncharov polylogarithms of uniform transcendentality weight 4 .

