SUMMARY OF PART I: RINGS, FIELDS AND IDEALS

1. Basics on Rings and Fields

Definition 1.1. A ring is a (non-empty) set with two operations:

$$
\begin{array}{rll}
R \times R & \rightarrow R & \\
(a, b) & \mapsto a+b & \text { (addition) } \\
(a, b) & \mapsto a \cdot b & \text { (multiplication) }
\end{array}
$$

such that the following holds:
(i) With respect to addition, R is an abelian group (i.e., there is an identity, an inverse; associativity and commutativity holds);
(ii) $a \cdot(b \cdot c)=(a \cdot b) \cdot c \quad$ associativity for multiplication;
(iii) $a \cdot(b+c)=(a \cdot b)+(a \cdot c),(a+b) \cdot=(a \cdot c)+(b \cdot c) \quad$ distributivity.

Note: • R is necessarily non-empty (due to (i): a group has $\geqslant 1$ elements).

- denote (as usual) $(a \cdot b)+c$ by $a \cdot b+c$ ("multiplication comes first");
- denote $a \cdot b$ by $a b$.

Definition 1.2. Let R be a ring.
(1) If R has an element $\mathbb{1}_{R}$ such that $a \cdot \mathbb{1}_{R}=\mathbb{1}_{R} \cdot a=a$ for all $a \in R$, then $\mathbb{1}_{R}$ is called a (multiplicative) identity for R.
(2) If $a b=b a \forall a, b \in R$, then R is called commutative.

Example 1.3: (1) $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ are rings (in fact, commutative, with identity).
(2) For $n \geqslant 2, \mathbb{Z}_{n}$ is not only a group, but moreover it can be given the structure of a commutative ring with identity (we denote as usual $\bar{a}=a+n \mathbb{Z}$ for $a \in \mathbb{Z}$).
For any $a, b \in \mathbb{Z}$, the addition is defined by $\bar{a}+\bar{b}=\overline{a+b}$ and the multiplication is defined by $\bar{a} \cdot \bar{b}=\overline{a b}$.
(3) With our definition, $R=\{0\}$ can be viewed as a ring (with the obvious operations $0+0=0,0 \cdot 0=0$); in fact, it is not only commutative but has a (strange) identity: the zero element.
(4) Matrix rings.
(5) Polynomial rings: let R be a ring and x a variable. Then $R[x]$ becomes a ring, the polynomial ring in one variable with coefficients in R.
Proposition 1.4. Let R be a ring, and let $a, b \in R$. Then
(i) $-(-a)=a$;
(ii) $0_{R} \cdot a=0_{R}=a \cdot 0_{R}$;
(iii) $a \cdot(-b)=(-a) \cdot b=-a \cdot b ; \quad(-a) \cdot(-b)=a b$;
(iv) suppose R contains an identity $\mathbb{1}_{R}$, then

$$
\left(-\mathbb{1}_{R}\right) \cdot a=a \cdot\left(-\mathbb{1}_{R}\right)=-a .
$$

Definition 1.5. A subring of a ring R is a subset $S \subset R$ which is a ring with the induced addition and multiplication of R, i.e.
(i) $0_{R} \in S$ (in particular $S \neq \emptyset$);
(ii) $a, b \in S$ implies $a-{ }_{R} b \in S \quad$ (here $a-{ }_{R} b:=a+{ }_{R}(-b)$);
(iii) $a, b \in S$ implies $a \cdot{ }_{R} b \in S$.

Note: Conditions (i)+(ii) amount to imposing that $(S,+)$ is a subgroup of the abelian group $(R,+)$.
Examples 1.6: 1) For any $n \in \mathbb{N}$, the set $n \mathbb{Z}=\{n k \mid k \in \mathbb{Z}\}$, together with the inherited addition and multiplication, becomes a subring of \mathbb{Z}; it is commutative, and it does not have an identity if $n>1$.
2) $\mathbb{Z}[x]$ is a subring of $\mathbb{Q}[x]$.
3) $\mathbb{R}[x]_{1}:=\{a+b x \mid a, b \in \mathbb{R}\}$ is not a subring of $\mathbb{R}[x]$.
4) $Z[i]:=\{a+b i \mid a, b \in \mathbb{Z}\}$ (with $i^{2}=-1$), the Gaussian integers, form a subring of the very special ring \mathbb{C} of complex numbers (in fact, this is a very special ring, called a field (see below)).

Definition 1.7. Let R and S be rings. A homomorphism of rings from R to S is a map $\varphi: R \rightarrow S$ satisfying
(i) for any $a, b \in R$ we have $\varphi\left(a+_{R} b\right)=\varphi(a)+{ }_{S} \varphi(b)$;
(ii) for any $a, b \in R$ we have $\varphi\left(a \cdot{ }_{R} b\right)=\varphi(a) \cdot S \varphi(b)$;

Examples 1.8: For $n \geqslant 2$ we know that the reduction map

$$
\begin{aligned}
\varphi: \mathbb{Z} & \rightarrow \mathbb{Z}_{n} \\
a & \mapsto \bar{a}:=\{a+k n \mid k \in \mathbb{Z}\}
\end{aligned}
$$

is a homomorphism of groups. It is in fact even a homomorphism of rings, since we also have

$$
\varphi(a \cdot \mathbb{Z} b)=\overline{a \cdot b}=\bar{a} \cdot \bar{b}=\varphi(a) \cdot \mathbb{Z}_{n} \varphi(b) .
$$

Note: Some authors require, in case both R and S have an identity, that a ring homomorphism $\varphi: R \rightarrow S$ respect the identity, i.e., $\varphi\left(\mathbb{1}_{R}\right)=\mathbb{1}_{S}$. This is not guaranteed, as the following example shows: $\varphi: \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{6}$, sending $\overline{1}$ to $\overline{3}$ (and $\overline{0}$ necessarily to $\overline{0})$.

Definition 1.9. Let R and S be rings. $A \operatorname{map} \varphi: R \rightarrow S$ is a homomorphism of rings if it satisfies (i) and (ii), where
(i) $\varphi(a+b)=\varphi(a)+\varphi(b)$ for all $a, b \in R$;
(ii) $\varphi(a \cdot b)=\varphi(a) \cdot \varphi(b)$ for all $a, b \in R$.

Examples 1.10: 1) The following map is a homomorphism of rings

$$
\begin{aligned}
& \varphi: \mathbb{Z}[i] \rightarrow \mathbb{Z}_{2} \\
& a+i b \mapsto \\
& a+b
\end{aligned}
$$

2) "Specialisation homomorphism": let S be a commutative ring, R a subring of S (necessarily commutative). For any $a \in S$ the map $\varphi_{a}: R[x] \rightarrow S$, sending $f(x)$ to $f(a)$, is a homomorphism of rings.
3) In particular, $\varphi: \mathbb{Z}[x] \rightarrow \mathbb{C}$, sending $f(x)$ to $f(i)$, is a homomorphism of rings. (This is far from being surjective; but it is also not injective: take $f(x)=x^{2}+1$.)
4) Let $\varphi: R \rightarrow S$ and $\varphi: S \rightarrow T$ be ring homomorphisms. Then the composition of the two, $\psi \circ \phi: R \rightarrow T$ (note the order), is again a ring homomorphism.

Definition 1.11. (i) A homomorphism of rings $\varphi: R \rightarrow S$ is called an isomorphism if φ is both injective and surjective (as a map between sets).
(ii) The kernel and the image of a homomorphism of rings $\varphi: R \rightarrow S$ are defined by $\operatorname{ker}(\varphi)=\left\{a \in R \mid \varphi(a)=0_{S}\right\} \subset R$ and $\operatorname{im}(\varphi)=\{\varphi(a) \mid a \in$ $R\} \subset S$.
Example 1.12: (Example 1.9 revisited) The homomorphism of rings $\varphi: \mathbb{Z}[i] \rightarrow \mathbb{Z}_{2}$, $\varphi(a+i b)=\overline{a+b}$, is surjective $(\varphi(0)=\overline{0}$ and $\varphi(1)=\overline{1})$, but not injective: we compute the obstruction to being injective.

$$
\begin{aligned}
\operatorname{ker}(\varphi) & =\left\{a+i b \in \mathbb{Z}[i] \mid \overline{a+b}=\overline{0} \text { in } \mathbb{Z}_{2}\right\} \\
& =\{a+i b \in \mathbb{Z}[i] \mid a+b=2 k \text { for some } k \text { in } \mathbb{Z}\} \\
& \subset\{2 k-b+i b \mid b, k \text { in } \mathbb{Z}\} \\
& =\{((-1-i) k+b)(-1+i) \mid b, k \text { in } \mathbb{Z}\} \quad \text { [use } 2=(-1-i)(-1+i)] \\
& \subset\{\gamma(-1+i) \mid \gamma \text { in } \mathbb{Z}[i]\} .
\end{aligned}
$$

The reverse inclusion $\{\gamma(-1+i) \mid \gamma \in \mathbb{Z}[i]\} \subset \operatorname{ker}(\varphi)$ also holds:

$$
\varphi(\gamma(-1+i))=\varphi(\gamma) \varphi(-1+i)=\varphi(\gamma) \cdot \overline{0}=\overline{0} \quad \forall \gamma \in \mathbb{Z}[i]
$$

Proposition 1.13. A ring homomorphism $\varphi: R \rightarrow S$ is injective $\Leftrightarrow \operatorname{ker}(\varphi)=$ $\left\{0_{R}\right\}$.
Definition 1.14. Let R be a ring.
(i) R is called an integral domain if R is commutative, has an identity $\mathbb{1}_{R} \neq$ 0_{R} and if for all $a, b \in R$ one has

$$
a b=0_{R} \Rightarrow a=0_{R} \text { or } b=0_{R}
$$

(ii) R is called a field if R is commutative, has an identity $\mathbb{1}_{R} \neq 0_{R}$, and if each $a \in R-\left\{0_{R}\right\}$ has a multiplicative inverse, i.e.

$$
\forall a \in R-\left\{0_{R}\right\} \exists b \in R \quad \text { such that } a b=\mathbb{1}_{R}=b a .
$$

Proposition 1.15. (i) A field is in particular an integral domain.
(ii) "Cancellation": let R be an integral domain, let $a, b, c \in R$ with $a b=a c$ and $a \neq 0_{R}$. Then $b=c$. [In words: A non-zero a can be cancelled.]
Examples 1.16: 1) \mathbb{Z} is an integral domain, but no field.
2) $\mathbb{Z}[i]\left(i^{2}=-1\right)$ is an integral domain (no field): it is a subring of \mathbb{C} (which is commutative), so it inherits commutativity; furthermore, $\mathbb{1}_{\mathbb{Z}[i]}=1+0 \cdot i \neq$ $0+0 \cdot i=0_{\mathbb{Z}[i]} ;$ finally $a b=0$ implies either $a=0$ or $b=0$.
3) The polynomial rings $\mathbb{Z}[x]$ and $\mathbb{Q}[x]$ are both integral domains, but no fields.
4) $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ are fields.
5) \mathbb{Z}_{n} is a field if (and only if) n is a prime number.

Remark 1.17: In a field F, we can perform "division by a " for any non-zero $a \in F$. Also we can do linear algebra for vector spaces over F : all the familiar notions like dimension, basis, linear (in-)dependence, determinants or invertibility of a matrix make sense.
Example 1.18: In $M_{2}(\mathbb{R})$, the matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ has an inverse if and only if its determinant $a d-b c$ is non-zero, in which case its inverse has the form $\frac{1}{a d-b c}\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)$.

Definition 1.19. Let R be a ring with identity $1 \neq 0$. Then $R^{*}=\{a \in R \mid \exists b \in$ R such that $a b=b a=1\}$ is called the set of units of R.
Notation. For $a \in R^{*}$, the (unique!) element $b \in R$ such that $a b=b a=1$ is denoted by a^{-1}.

Examples 1.20: 1) $\mathbb{Z}^{*}=\{-1,1\}$. [Note that this is different from $\mathbb{Z}-\{0\}$.]
2) $\mathbb{Z}[i]^{*}=\{ \pm 1, \pm i\}$.
3) Let $n \geqslant 2$ be an integer. then $\mathbb{Z}_{n}^{*}=\left\{\bar{a} \in \mathbb{Z}_{n} \mid \operatorname{gcd}(a, n)=1\right\}$.
4) Let F be a field. Then $F^{*}=F-\{0\}$.
5) For a field F, the units in $M_{n}(F)$ (the ring of $(n \times n)$-matrices with coefficients in F) are the elements with non-zero determinant.

Definition 1.21. Let R be a commutative ring with identity $1 \neq 0$. Then a divides b, denoted $a \mid b$, if and only if $\exists c \in R: a c=b$.
Example 1.22: In $\mathbb{Z}[i]$ we want to find all elements dividing a given $\gamma \in \mathbb{Z}[i]$. Important tool: the norm $\operatorname{map} N: \mathbb{Z}[i] \rightarrow \mathbb{Z}$, sending $a+b i$ to $a^{2}+b^{2}$. It is multiplicative (i.e. $N(\alpha \beta)=N(\alpha) N(\beta))$ and it transfers divisibility in $\mathbb{Z}[i]$ into divisibility in \mathbb{Z} :

$$
(\alpha \mid \gamma \text { in } \mathbb{Z}[i]) \Rightarrow(N(\alpha) \mid N(\gamma) \text { in } \mathbb{Z})
$$

[The reverse direction does not hold in general!]
In this way, the problem is reduced to two simpler problems: 1) to check divisibility in \mathbb{Z} (there are only few candidates α left for which $N(\alpha)$ divides the integer $N(\gamma)$), and 2) to test these candidates one by one whether they indeed can be multiplied by a number in $\mathbb{Z}[i]$ to give that integer $N(\gamma)$.
Note: Divisibility is not changed when we multiply by units: let ε be a unit in the commutative ring R, and $\alpha, \beta \in R$. Then

$$
\alpha|\beta \Leftrightarrow \varepsilon \alpha| \beta \Leftrightarrow \alpha \mid \varepsilon \beta \text {. }
$$

2. Polynomial Rings over a field

For a field F and a variable x, the elements of $F[x]$ have the form $a_{n} x^{n}+$ $a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}$ (for some $n \in \mathbb{N} \cup\{0\}$) and $a_{i} \in F, i=0, \ldots, n$.
Definition 2.1. The degree $\operatorname{deg}(f(x))$ of a non-zero polynomial $f(x)=a_{n} x^{n}+$ $\ldots+a_{0} \in F[x]$ with $a_{n} \neq 0$ is defined as n, the largest index j such that $a_{j} \neq 0$. We call a_{n} the leading coefficient of $f(x)$, and we call $f(x)$ monic if its leading coefficient if equal to 1 .

For $f(x)=0$, we put $\operatorname{deg}(f(x))=-\infty$.
Proposition 2.2. Let F be a field. Then $F[x]$ is an integral domain, and $\operatorname{deg}(f(x) g(x))=$ $\operatorname{deg}(f(x))+\operatorname{deg}(g(x))$.

Proposition 2.3. (Division algorithm)
Let F be a field and $f(x), g(x) \in F[x]$ with $f(x) \neq 0$.
Then there are unique elements $q(x)$ and $r(x)$ in $F[x]$ with $\operatorname{deg}(r(x))<\operatorname{deg}(f(x))$ and $g(x)=q(x) f(x)+r(x)$.
Example 2.4: For $f(x)=x^{3}+x+1$ and $g(x)=x^{5}+2 x^{4}+x^{2}+3$ in $\mathbb{Q}[x]$, we get from dividing $g(x)$ by $f(x)$:

$$
g(x)=\left(x^{2}+2 x-1\right) f(x)-2 x^{2}-x+4,
$$

with $q(x)=x^{2}+2 x-1$ and $r(x)=-2 x^{2}-x+4$ of degree $2(<\operatorname{deg}(g(x))=3)$.

Definition 2.5. Let R be a commutative ring and $f(x) \in R[x]$. An element $a \in R$ is called a root of $f(x)$ if $f(a)=0$.
Example 2.6: In $R=\mathbb{Z}_{6}, f(x)=x^{2}+\overline{3} x+\overline{2}$ has 4 roots: $\overline{1}, \overline{2}, \overline{4}$ and $\overline{5}$. (We can write $f(x)=(x+\overline{1})(x+\overline{2})=(x-\overline{1})(x-\overline{2})$.)
Proposition 2.7. Let F be a field, $f(x) \in F[x]$ and $a \in F$.
Then a is a root of $f(x) \Leftrightarrow x-a$ divides $f(x)$ in $F[x]$.
Example 2.8: $\quad 1$) One of the roots of $x^{3}-\overline{1}$ in \mathbb{Z}_{5} is $\overline{1}$. Dividing it by $x-\overline{1}$ gives $x^{3}-\overline{1}=(x-\overline{1})\left(x^{2}+x+\overline{1}\right)$. Since the second factor has no roots in \mathbb{Z}_{5} (e.g., by trial and error), $\overline{1}$ is a so-called simple root of $x^{3}-\overline{1}$ in \mathbb{Z}_{5}.
2) One of the roots of $x^{3}-\overline{1}$ in \mathbb{Z}_{3} is also $\overline{1}$, but here we find $x^{3}-\overline{1}=$ $(x-\overline{1})(x-\overline{1})(x-\overline{1})$ in $\mathbb{Z}_{3}[x]$, and $\overline{1}$ is a multiple (more precisely, a 3-fold) root of $x^{3}-\overline{1}$ in \mathbb{Z}_{3}.
Corollary 2.9. If F is a field and $f(x) \in F[x]$ is of degree $n \geqslant 1$, then $f(x)$ has at most n roots in F.

Examples 2.10: 1) (Cf. Example 2.8) $x^{3}-\overline{1}$ has only one root in \mathbb{Z}_{5}.
2) $x^{2}-2$ in $\mathbb{Q}[x]$ has no roots in $\mathbb{Q}(\pm \sqrt{2} \notin \mathbb{Q})$.
3) $x^{2}-2$ in $\mathbb{R}[x]$ has two roots $(\pm \sqrt{2} \in \mathbb{R})$.
4) (Cf. Example 2.6) $x^{2}+\overline{3} x+\overline{2}$ in $\mathbb{Z}_{6}[x]$ has four roots (no counterexample to 2.9 since \mathbb{Z}_{6} is not a field).
5) $x^{2}+\overline{3} x+\overline{2}$ in $\mathbb{Z}_{5}[x]$ has only two roots $(\overline{3}, \overline{4})$ (as it should by 2.9 since \mathbb{Z}_{5} is a field).

Definition 2.11. Let F be a field, $f(x), g(x) \in F[x]$. Then $d(x) \in F[x]$ is called a greatest common divisor of $f(x)$ and $g(x)$ if
(i) $d(x) \mid f(x)$ and $d(x) \mid g(x)$ and
(ii) any $e(x) \in F[x]$ which divides both $f(x)$ and $g(x)$ also divides $d(x)$.

Example 2.12: Let $f(x)=x^{3}+x^{2}+\overline{2} x+\overline{2}, g(x)=x^{3}+\overline{2} x^{2}+x+\overline{2}$ in $\mathbb{Z}_{3}[x]$. We perform division with remainder:

$$
\begin{align*}
g(x) & =\overline{1} \cdot f(x)+\left(x^{2}+\overline{2} x\right) \\
f(x) & =(x+\overline{2}) \cdot\left(x^{2}+\overline{2} x\right)+(x+\overline{2}) \tag{1}\\
(x+\overline{2}) & =x(x+\overline{2})+0
\end{align*}
$$

Therefore we have $\operatorname{gcd}(f(x), g(x))=x+\overline{2}$. (It is already monic.)
Theorem 2.13. Let F be a field and $f(x), g(x) \in F[x]$. Then there exists a gcd $d(x)$ of $f(x)$ and $g(x)$. It is unique up to multiplication by elements in F^{*}.

If $f(x)$ and $g(x)$ are not both 0 , then we can compute a gcd of $f(x)$ and $g(x)$ using the Euclidean algorithm. We can find, using iterated substitution, $A(x)$ and $B(x)$ in $F[x]$ such that $d(x)=A(x) f(x)+B(x) g(x)$.
Example 2.14: (Example 2.12 cont'd) We have seen that $x+\overline{2}$ is a gcd of $f(x)=$ $x^{3}+x^{2}+\overline{2} x+\overline{2}$ and $g(x)=x^{3}+\overline{2} x^{2}+x+\overline{2}$ in $\mathbb{Z}_{3}[x]$. Using the second and the first line in (1), we find
$x+\overline{2}=f(x)-(x+\overline{2})\left(x^{2}+\overline{2} x\right)=f(x)-(x+\overline{2})(g(x)-f(x))=x f(x)-(x+\overline{2}) g(x)$.
Definition 2.15. Let F be a field. Then $f(x)$ in $F[x]$ is called irreducible if

1) $\operatorname{deg}(f(x)) \geqslant 1$ (i.e., $f(x) \neq 1$ and $f(x)$ is not a unit).
2) If $f(x)=g(x) \cdot h(x)$ with $g(x)$ and $h(x)$ in $F[x]$, then $f(x)$ or $g(x)$ is in F^{*} (i.e., $g(x)$ or $h(x)$ has degree 0).
Otherwise $f(x)$ is called reducible.
$f(x)$ is called prime if, for any $g(x), h(x) \in F[x]$,

$$
f(x) \mid g(x) h(x) \Rightarrow(f(x) \mid g(x) \text { or } f(x) \mid h(x)) .
$$

Example 2.16: Checking irreducibility for general polynomials of small degree:

- $\operatorname{deg}(f(x))=1$. Then $f(x)$ is irreducible.
- $\operatorname{deg}(f(x))=2$. Suppose $f(x)=g(x) h(x)$ in $F[x]$, then $2=\operatorname{deg}(f(x))=$ $\operatorname{deg}(g(x))+\operatorname{deg}(h(x))=0+2$ or $=1+1$ or $=2+0$. Therefore $f(x)$ is reducible if and only if the second case $1+1$ can occur, i.e., if and only if $f(x)$ can be written as a product of two polynomials of degree 1, i.e., if and only if $f(x)$ has a root in F.
- $\operatorname{deg}(f(x))=3$. Suppose $f(x)=g(x) h(x)$ in $F[x]$, then $3=\operatorname{deg}(f(x))=$ $\operatorname{deg}(g(x))+\operatorname{deg}(h(x))=0+3$ or $=1+2$ or $2+1$ or $=3+0$. Therefore $f(x)$ is reducible if and only if one of the two cases $1+2$ or $2+1$ can occur, i.e., if and only if $f(x)$ is divisible by a polynomial of degree 1, i.e., if and only if $f(x)$ has a root in F.
- $\operatorname{deg}(f(x))=4 . f(x)$ is reducible if and only if one of the three cases $1+3$, $2+2$ or $3+1$ can occur, i.e., if and only if $f(x)$ has a root in F or $f(x)$ is a product of two quadratic factors.
Examples 2.17: Checking irreducibility for specific polynomials of small degree:

1) $x^{2}+1$ is irreducible in $\mathbb{R}[x]$, since $\operatorname{deg}\left(x^{2}+1\right)=2$ and it has no roots in \mathbb{R}.
2) $x^{2}+1$ is reducible in $\mathbb{C}[x]$, since it has roots in \mathbb{C} (in fact, $\pm i$).
3) $x^{2}-2$ is irreducible in $\mathbb{Q}[x]$, since it is of degree 2 and has no roots in \mathbb{Q}.
4) $x^{2}-2$ is reducible in $\mathbb{R}[x]$, since it has roots in \mathbb{R} (in fact, $\pm \sqrt{2}$).
5) $x^{3}-2 x+2$ has odd degree and must therefore have a root in \mathbb{R}. Therefore it is reducible in $\mathbb{R}[x]$.
6) $x^{3}-2 x+2$ is irreducible in $\mathbb{Q}[x]$ since it has degree 3 and no root in \mathbb{Q}.
7) $x^{4}+2 x^{2}+1$ has no roots in \mathbb{R}, but it is nevertheless reducible in $\mathbb{R}[x]$ since it factors as $\left(x^{2}+1\right)^{2}$.

Proposition 2.18. Let $f(x)=a_{n} x^{n}+\ldots+a_{0}$ be in $\mathbb{Z}[x]$ of degree $n \geqslant 1$. If $b / c \in \mathbb{Q}$ is a root of $f(x)$ such that $\operatorname{gcd}(b, c)=1$, then necessarily $c \mid a_{n}$ and $b \mid a_{0}$. In particular, if $a_{n}= \pm 1$, then all the roots of $f(x)$ in \mathbb{Q} must in fact belong to \mathbb{Z}.
Example 2.19: The roots of $f(x)=x^{2}-2 x+2$ in \mathbb{Q}, if they exist, must lie in $\{ \pm 1, \pm 2\}$. Substituting shows that none of them is a root. Therefore $f(x)$ has no root in \mathbb{Q} (and since it is furthermore of degree $\leqslant 3$, it is irreducible in $\mathbb{Q}[x]$).

Proposition 2.20. Let F be a field and $f(x) \in F[x]$ be irreducible. Then $f(x)$ is prime.

Theorem 2.21. Let F be a field, and let $f(x)$ be in $F[x]$ of degree at least 1. Then

- (Existence) $f(x)=g_{1}(x) \cdots \cdots g_{s}(x)$ for some $g_{j}(x)$ which are irreducible in $F[x]$;
- (Uniqueness) if $f(x)=h_{1}(x) \cdots \cdot h_{t}(x)$ for some $h_{j}(x)$ which are irreducible in $F[x]$, then necessarily $s=t$ and-after renumbering the $h_{j}(x)$ if necessary-we have $g_{j}(x)=c_{j} \cdot h_{j}(x)$ for some $c_{j} \in F^{*}$.

Examples 2.22: 1) Let $F=\mathbb{Q}$ and $f(x)=3 x^{3}+x^{2}+6 x+2=\left(x+\frac{1}{3}\right)\left(3 x^{2}+6\right)$. The linear (i.e., of degree 1) factor $x+\frac{1}{3}$ is irreducible; but also the second factor $3 x^{2}+6$ is irreducible as it has degree 2 and has no root in \mathbb{Q}. We have also other decompositions, like $f(x)=(3 x+1)\left(x^{2}+2\right)$, whose factors can be written according to the theorem as $c_{1}\left(x+\frac{1}{3}\right)$ and $c_{2}\left(3 x^{2}+6\right)$ for some $c_{j} \in \mathbb{Q}^{*}$ (in fact, we find $c_{1}=3$ and $c_{2}=\frac{1}{3}$).
2) Let $f(x)=x^{4}+x^{3}+2 x^{2}+4 x+2 \in \mathbb{Q}[x]$. Candidate roots are $\pm 1, \pm 2$. A quick check shows that -1 is indeed a root, and $f(x)=(x+1)\left(x^{3}+2 x+2\right)$. The second factor is irreducible since it is of degree $\leqslant 3$ and has no root in \mathbb{Q}. (The first factor is irreducible, since it is of degree 1.)
3) Let $f(x)=x^{4}-4$ in $\mathbb{Q}[x]$. Then candidate roots are $\pm 1, \pm 2, \pm 4$. A quick check shows that none of them are roots. We cannot yet conclude irreducibility, though, since there is still the possibility that $f(x)$ decomposes into two (necessarily irreducible) quadratic factors-and this indeed holds: $f(x)=\left(x^{2}+2\right)\left(x^{2}-2\right)$.
4) Let $f(x)=x^{3}-\overline{1}$ in $\mathbb{Z}_{5}[x]$. One checks that $\overline{1}$ is a root, and that the second factor in the decomposition $x^{3}-\overline{1}=(x-\overline{1})\left(x^{2}+x+\overline{1}\right)$ is also irreducible (it has no root in \mathbb{Z}_{5} and is of degree $\leqslant 3$).
Remark 2.23: Let F be a field. If $f(x) \in F[x]$ is of degree at least one, then we could also write $f(x)=c \cdot g_{1}(x) \cdots \cdots g_{k}(x)$ with $c \in F^{*}$ the leading coefficient of $f(x)$, and where all $g_{j}(x)$ are monic and irreducible in $F[x]$.

This decomposition is unique, up to permutation of the $g_{j}(x)$.
Lemma 2.24. Let $f(x)$ be in $\mathbb{Z}[x], n \geqslant 2$ an integer. Then reducing the coefficients modulo n, i.e., the map

$$
\begin{aligned}
\varphi_{n}: \mathbb{Z}[x] & \rightarrow \mathbb{Z}_{n}[x] \\
f(x)=a_{m} x^{m}+\ldots+a_{0} & \mapsto \bar{f}(x):=\overline{a_{m}} x^{m}+\ldots+\overline{a_{0}}
\end{aligned}
$$

is a ring homomorphism.
Theorem 2.25. (Gauss lemma) Let $f(x) \in \mathbb{Z}[x]$ have degree $\geqslant 1$. Suppose $f(x)=$ $g(x) h(x)$ with $g(x), h(x) \in \mathbb{Q}[x]$.

Then already $f(x)=\widetilde{g}(x) \widetilde{h}(x)$ with $\widetilde{g}(x), \widetilde{h}(x) \in \mathbb{Z}[x]$ and $\operatorname{deg}(\widetilde{g}(x))=\operatorname{deg}(g(x))$, $\operatorname{deg}(\widetilde{h}(x))=\operatorname{deg}(h(x))$. More precisely, there exists an $a \in \mathbb{Q}^{*}$ such that $a \cdot g(x) \in$ $\mathbb{Z}[x]$ and $a^{-1} \cdot h(x) \in \mathbb{Z}[x]$.

Examples 2.26: 1) The quadratic polynomial $f(x)=2 x^{2}+7 x+3$ which can be decomposed over \mathbb{Q} as $\left(x+\frac{1}{2}\right)(2 x+6)$ has a decomposition in $\mathbb{Z}[x]$ given by $f(x)=(2 x+1)(x+3)$.
2) Factorize $x^{4}+4$ in $\mathbb{Q}[x]$. It has no roots in \mathbb{Q}, so either it is irreducible or it factorises as a product of two quadratics (without roots in \mathbb{Q}).

Make the "Ansatz" $x^{4}+4=\left(A x^{2}+B x+C\right)\left(D x^{2}+E x+F\right)$ with $A, B, \ldots, F \in \mathbb{Q}$. By the Gauss lemma, we can find a factorisation of the same type with $A, B, \ldots, F \in \mathbb{Z}$.

Multiplying out and comparing coefficients of the different monomials $x^{r}(r=0, \ldots, 4)$ gives us conditions on the integers A, \ldots, F. A short calculation then gives indeed a factorization

$$
x^{4}+4=\left(x^{2}+2 x+2\right)\left(x^{2}-2 x+2\right) .
$$

Proposition 2.27. (Criterion for irreducibility in $\mathbb{Z}[x]$)
Let $f(x) \in \mathbb{Z}[x]$ be non-constant. Let p be a prime number such that $\bar{f}(x) \in \mathbb{Z}_{p}[x]$ has the same degree as $f(x)$.

If $\bar{f}(x)$ is irreducible in $\mathbb{Z}_{p}[x]$ then $f(x)$ is irreducible in $\mathbb{Q}[x]$.
Examples 2.28: 1) $f(x)=3 x^{2}+7 x+13$. Take $p=2: \bar{f}(x)=x^{2}+x+\overline{1} \in$ $\mathbb{Z}_{2}[x]$. The latter is irreducible in $\mathbb{Z}_{2}[x]$ as it has degree 2 and neither $\overline{0}$ nor $\overline{1}$ are roots. Furthermore $\operatorname{deg}(f(x))=\operatorname{deg}(\bar{f}(x))=2$.

Therefore $f(x)$ is irreducible in $\mathbb{Q}[x]$.
2) $f(x)=3 x^{2}+2 x$, take $p=3$. Then $\bar{f}(x)=\overline{2} x$ is irreducible in $\mathbb{Z}_{3}[x]$, as it has degree 1. But $f(x)=x(3 x+2)$ is not irreducible. [Note that $\operatorname{deg}(\bar{f}(x))<\operatorname{deg}(f(x))$.
Proposition 2.29. (Eisenstein's [irreducibility] criterion)
Let $f(x)=a_{n} x^{n}+\ldots+a_{0} \in \mathbb{Z}[x], a_{n} \neq 0, n \geq 1$. If there is a prime $p \in \mathbb{Z}$ with

$$
p\left|a_{0}, p\right| a_{1}, \ldots, p \mid a_{n-1}, \text { but } p \nmid a_{n} \text { and } p^{2} X a_{0},
$$

then $f(x)$ is irreducible in $\mathbb{Q}[x]$.
Examples 2.30: 1) $f(x)=x^{n}-2$, for $n \in \mathbb{N}$, is irreducible in $\mathbb{Q}[x]$, by Eisenstein's criterion for $p=2$.
2) Let p be prime. Then $f(x)=x^{p-1}+x^{p-2}+\ldots+x+1$ is irreducible in $\mathbb{Q}[x]$. [Use: $f(x)$ irreducible $\Leftrightarrow f(x+1)$ irreducible; then, writing $f(x)=\frac{x^{p}-1}{x-1}$ gives

$$
\begin{aligned}
f(x+1) & =\frac{(x+1)^{p}-1}{(x+1)-1}=\frac{\left(x^{p}+\binom{p}{1} x^{p-1}+\ldots+\binom{p}{p-1} x+1\right)-1}{x} \\
& =x^{p-1}+\binom{p}{1} x^{p-2}+\ldots+\binom{p}{p-1} .
\end{aligned}
$$

Now apply Eisenstein's criterion for the prime p.]

3. Ideals and Quotient Rings

Definition 3.1. Let R be a ring. A subset I in R is called an ideal if the following three conditions hold:
(i) $0_{R} \in I$;
(ii) if r and s are in I, then also $r-s \in I$;
(iii) if $r \in I$ and $a \in R$, then $r \cdot a \in I$ and $a \cdot r \in I$.

Note: In particular, I is a subring of R (can think of it as a "black hole": it absorbs everything which comes near it...).
Remark 3.2: If R has an identity $\mathbb{1}_{R}$, and if an ideal $I \subset R$ contains $\mathbb{1}_{R}$, then necessarily $I=R$. Similarly, if I contains any unit, then $I=R$.
Examples 3.3: (1) $R=\mathbb{Z}$. Then any subgroup under addition is either $\{0\}$ or of the form $n \mathbb{Z}(n=1,2, \ldots)$. All of them are ideals, and any ideal (which is in particular a subgroup) of \mathbb{Z} is of this form. (For $n=1$ we get the full ring.)
(2) "Trivial ideals": $\{0\}$ is an ideal, R is also an ideal (for any ring R).
(3) $R=F$ a field. Its only ideals are $\{0\}$ and R (any $r \neq 0$ is a unit).

Examples 3.4: 1) $(a)=\{r a \mid r \in R\}$ has a single generator and is called a principal ideal.
2) $\left(a_{1}, a_{2}\right)=\left\{r_{1} a_{1}+r_{2} a_{2} \mid r_{1}, r_{2} \in R\right\}$. Sometimes this can be written simpler, e.g., $(15,21)_{\mathbb{Z}}=(3)_{\mathbb{Z}}$.
3) All ideals in \mathbb{Z} are principal (cf. Example 3.3 (1)).

Proposition 3.5. Let $\varphi: R \rightarrow S$ be a ring homomorphism. Then $\operatorname{ker}(\varphi)$ is an ideal.

Examples 3.6: 1) (Cf. Example 1.11) $\varphi: \mathbb{Z}[i] \rightarrow \mathbb{Z}_{2}, \varphi(a+b i)=\overline{a+b}$, is a homomorphism of rings, with $\operatorname{ker}(\varphi)=\{\gamma(-1+i) \mid \gamma \in \mathbb{Z}[i]\}=(-1+i)$, a (principal) ideal in $\mathbb{Z}[i]$.
2) $\varphi: \mathbb{Z}[i] \rightarrow \mathbb{Z}_{37}$, sending $a+b i$ to $\overline{a+6 b}$, is a ring homomorphism. Since $\overline{6}^{2}=-\overline{1}$ in \mathbb{Z}_{37}, the number $\overline{6}$ reflects the crucial property of the number i in $\mathbb{Z}[i]$. Then $\operatorname{ker}(\varphi)=(37,6-i)=\{\alpha \cdot 37+\beta(6-i) \mid \alpha, \beta \in \mathbb{Z}[i]\}$.
Example 3.7: (Example 3.6, 2), revisited) There is a simpler description of the kernel, since $(37,6-i)=(6-i)$ (note that $37=(6-i)(6+i)$ already lies in the ideal $(6-i))$.
Proposition 3.8. Let F be a field. Then all ideals of $F[x]$ are principal. More precisely, the ideals of $F[x]$ are given by (0), (1) and $(f(x))$ for $\operatorname{deg}(f(x)) \geqslant 1$.

Moreover, we have the inclusion of ideals

$$
(f(x)) \subset(g(x)) \quad \text { iff } \quad g(x) \mid f(x) \in F[x]
$$

and equality of ideals

$$
(f(x))=(g(x)) \quad \text { iff } \quad f(x)=c \cdot g(x) \in F[x] \text { for some } c \in F^{*} .
$$

[In particular, each non-zero ideal of $F[x]$ has a unique monic generator.]
Let R be a ring and $I \subset R$ an ideal. The set of cosets $\{a+I \mid a \in R\}$ not only forms a group, the quotient group R / I, but in fact even becomes a ring.

The multiplication of cosets is given, for $a, b \in R$, as

$$
(a+I)(b+I)=a \cdot b+I
$$

Definition 3.9. For an ideal I in a ring R, the map $\pi: R \rightarrow R / I$, sending $a \in R$ to its coset $a+I$, is called the canonical projection (along I), and R / I is called the quotient ring of R with respect to I.

Proposition 3.10. 1) R / I is indeed a ring. [So the name is justified.]
2) The canonical projection $\pi: R \rightarrow R / I$ is a ring homomorphism. Morever, it is surjective, and I is its kernel.
Note: Computation rules in R / I :

- $\bar{a}+\bar{b}=\overline{a+b}, \quad \bar{a} \cdot \bar{b}=\overline{a \cdot b}$.
- $\bar{a}=\bar{b} \Leftrightarrow a-b \in I \quad$ (in particular $\bar{a}=\overline{0} \Leftrightarrow a \in I$).

Examples 3.11: 1) Let $I=(-1+i)_{\mathbb{Z}[i]} \subset \mathbb{Z}[i]$. Then $\overline{-6+i}=\overline{-i}$ in $\mathbb{Z}[i] / I$.
2) Let $I=\left(x^{2}+x+1\right)_{\mathbb{Q}[x]} \subset \mathbb{Q}[x]$. Then $\overline{x+2} \neq \overline{2 x^{2}}$ in $\mathbb{Q}[x] /\left(x^{2}+x+1\right)$.

Theorem 3.12. (First Isomorphism Theorem for Rings) Let $\varphi: R \rightarrow S$ be a surjective ring homomorphism. Then there is an isomorphism of rings

$$
\begin{aligned}
R / \operatorname{ker}(\varphi) & \rightarrow S \\
a+\operatorname{ker}(\varphi) & \mapsto \varphi(a) .
\end{aligned}
$$

Example 3.13: Define $\varphi: \mathbb{R}[x] \rightarrow \mathbb{C}$, sending $f(x)$ to $f(i)$ (where $i^{2}=-1$). We can check the following properties.

- φ is a homomorphism of rings.
- φ is surjective: any $a+b i \in \mathbb{C}(a, b \in \mathbb{R})$ can be obtained as $\varphi(a+b x)$.
- $\operatorname{ker}(\varphi)=\left(x^{2}+1\right)$.

Now the above corollary implies that we have

$$
\mathbb{R}[x] /\left(x^{2}+1\right) \cong \mathbb{C}
$$

Proposition 3.14. Let $\varphi: R \rightarrow S$ be a ring homomorphism. Let $I \subset R$ be an ideal and $\pi: R \rightarrow R / I$ the canonical projection.

If $I \subset \operatorname{ker}(\varphi)$ then there exists a unique map $\bar{\varphi}: R / I \rightarrow S$ such that $\bar{\varphi} \circ \pi=\varphi$, and $\bar{\varphi}$ is in fact a ring homomorphism.

We can write this statement effectively with the help of a diagram:

Examples 3.15: \quad 1) $\varphi: \mathbb{Z} \rightarrow \mathbb{Z}_{n}\left(=\mathbb{Z} /(n)_{\mathbb{Z}}\right), n \geqslant 2$, sending a to \bar{a}, is a homomorphism of rings. Its kernel is $\operatorname{ker}(\varphi)=(n)_{\mathbb{Z}}=n \mathbb{Z}$, a principal ideal (a single generator being n or $-n$).
$I \subset(n)$ means that $I=(k)$ with $k \in(n)$, i.e., $n \mid k$, i.e., $k=m n$ for some $m \in \mathbb{Z}$.

So assuming $k=m n$ we get the diagram

2) $\varphi: \mathbb{Z}[i] \rightarrow \mathbb{Z}_{2}$, sending $a+b i \rightarrow \overline{a+b}$, is a surjective ring homomorphism, with kernel $\operatorname{ker}(\varphi)=(-1+i)$.

Note that $(4) \subset \operatorname{ker}(\varphi)$ since $\varphi(4)=\overline{0}$. The proposition gives us a map $\bar{\varphi}$ fitting into the following diagram

Example 3.16: (Example 3.15, 2) cont'd) Since φ is surjective, we can apply the First Isomorphism Theorem for rings, giving

$$
\mathbb{Z}[i] /(-1+i) \cong \mathbb{Z}_{2}
$$

where the map is given by $a+b i+(-1+i)_{\mathbb{Z}[i]} \mapsto \overline{a+b}$.
Operations on ideals: Let R be a ring and I, J ideals in R. Then

1) $I \cap J=\{a \in R \mid a \in I$ and $a \in J\}$;
2) $I+J=\{a+b \in R \mid a \in I, b \in J\}$;
3) $I \cdot J=\left\{\sum_{\text {finite }} a_{k} b_{k} \in R \mid a_{k} \in I\right.$ and $\left.b_{k} \in J\right\}$.

All of the three are ideals, and we have the following inclusions:

$$
I \cdot J \subset I \cap J \subset\left\{\begin{array}{l}
I \\
J
\end{array}\right\} \subset I+J
$$

Example 3.17: Let $R=\mathbb{Z}, I=(4)=\{$ all multiples of 4 inside $\mathbb{Z}\}, J=(6)=\{$ all multiples of 6 inside $\mathbb{Z}\}$. Then $I \cap J=\{$ all n in \mathbb{Z} which are multiples of both 4 and 6$\}$, i.e. precisely the multiples of 12 , i.e., $I \cap J=(12)$. This example shows in particular that the above inclusions are all strict:

$$
(24) \subset(12) \subset\left\{\begin{array}{c}
(4) \\
(6)
\end{array}\right\} \subset(2)
$$

Important fact: Let R be a commutative ring with identity. Then we have the following identity of ideals in terms of generators:

$$
\begin{aligned}
\left(a_{1}, \ldots, a_{n}\right)+\left(b_{1}, \ldots, b_{m}\right) & =\left(a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{m}\right) \\
\left(a_{1}, \ldots, a_{n}\right)+\left(b_{1}, \ldots, b_{m}\right) & =\left(a_{1} b_{1}, \ldots, a_{1} b_{m}, \ldots, a_{n} b_{1}, \ldots, a_{n} b_{m}\right)
\end{aligned}
$$

Example 3.18: In $\mathbb{Z}[\sqrt{-5}]$, we take $I=(2,3+\sqrt{-5}), J=(3,1-\sqrt{-5})$. Then we have

$$
I+J=(2,3+\sqrt{-5})+(3,1-\sqrt{-5})=(2,3+\sqrt{-5}, 3,1-\sqrt{-5})=(1)
$$

since $1=(-1) \cdot 2+1 \cdot 3+0 \cdot(3+\sqrt{-5})+0 \cdot(1-\sqrt{-5})$.

$$
\begin{aligned}
\cdot J= & (2,3+\sqrt{-5}) \cdot(3,1-\sqrt{-5}) \\
= & (2 \cdot 3,2 \cdot(1-\sqrt{-5}),(3+\sqrt{-5}) \cdot 3,(3+\sqrt{-5})(1-\sqrt{-5})) \\
= & (6,2-2 \sqrt{-5}, 9+3 \sqrt{-5}, 8-2 \sqrt{-5}) \\
= & (6,2-2 \sqrt{-5}, 9+3 \sqrt{-5}) \quad[8-2 \sqrt{-5}=6+(2-2 \sqrt{-5})] \\
= & (6,2-2 \sqrt{-5},-3+3 \sqrt{-5}) \quad[\text { replace } 9+3 \sqrt{-5}=12+(-3+3 \sqrt{-5}) \text { by } \\
& -3+3 \sqrt{-5} \text { since } 12 \text { is a linear combination of the other two generators }] \\
& =(6,1-\sqrt{-5})) \quad[\text { replace the last two generators by their gcd }] \\
= & (1-\sqrt{-5})) . \quad[6=(1+\sqrt{-5})(1-\sqrt{-5})]
\end{aligned}
$$

Theorem 3.19. (Chinese Remainder Theorem for Rings) Let R be a ring and I, $J \subset R$ ideals such that $I+J=R$. Then

$$
\begin{aligned}
R /(I \cap J) & \cong \\
a & \curvearrowleft(I \times R / J, \\
& \mapsto, \bar{a})=(a+I, a+J) .
\end{aligned}
$$

If R is commutative with identity, then we further have

$$
R /(I \cdot J) \stackrel{\cong}{\cong} R / I \times R / J
$$

with the same map as above.
Remark 3.20: 1) Suppose R has an identity, then $I+J=R$ if and only if $1=a+b$ for some $a \in I, b \in J .(I$ and J are then called coprime to each other.)
2) Suppose R is commutative with identity. Then if $I+J=R$, then $I \cap J=$ $I \cdot J$.

Remark 3.21: Suppose R is commutative with identity and I, J ideals in R with $I+J=R$, then we can write $1=a+b, a \in I, b \in J$.

For $r, s \in R$, we get

$$
\begin{aligned}
& r=r(a+b)=\overbrace{r \cdot a}^{=: i_{r} \in I}+\overbrace{r \cdot b}^{=: j_{r} \in J}, \\
& s=s(a+b)=\underbrace{s \cdot a}_{=: i_{s} \in I}+\underbrace{s \cdot b}_{=: j_{s} \in J},
\end{aligned}
$$

Under the above map

$$
R / I \cdot J \xrightarrow{\cong} R / I \times R / J
$$

we obtain that $s a+r b+I \cdot J$ maps to $(r+I, s+J)$.
Examples 3.22: $\quad 1$ Let $R=\mathbb{Z}$ and $I=(m)_{\mathbb{Z}}, J=(n)_{\mathbb{Z}}$. Then $I+J=$ $\operatorname{gcd}(m, n)$, so $I+J=R \Leftrightarrow \operatorname{gcd}(m, n)=1$.

Suppose that $\operatorname{gcd}(m, n)=1$, so that $I+J=\mathbb{Z}$. Then we have

$$
\begin{aligned}
& \mathbb{Z} /(m \cdot n) \cong \\
& a+m n \mathbb{Z} \mapsto \\
& \mathbb{Z} /(m) \times \mathbb{Z} /(n) \\
&(a+m \mathbb{Z}, a+n \mathbb{Z})
\end{aligned}
$$

Make surjectivity explicit: given $b, c \in \mathbb{Z}$, which class in $\mathbb{Z} /(m n)$ maps to (\bar{b}, \bar{c}) ?

Write $1=k m+\ell n$ for some $k, \ell \in \mathbb{Z}$ (this is possible since $(m, n)=1$).
Then we have

$$
\begin{aligned}
& b=k \cdot m \cdot b+\overbrace{\ell \cdot n \cdot b}^{\in J}, \\
& c=\underbrace{k \cdot m \cdot c}_{\in I}+\ell \cdot n \cdot c .
\end{aligned}
$$

Putting these together, we get

$$
\overline{\ell n b+k m c} \mapsto(\bar{b}, \bar{c})
$$

2) $R=\mathbb{Z}[i], I=(2+i), J=(3+i)$. We have $I+J=\mathbb{Z}[i]$ since $1=$ $(-1) \cdot(2+i)+1 \cdot(3+i)$.

By the above, $I \cap J=I \cdot J=(2+i)_{R} \cdot(3+i)_{R}=((2+i)(3+i))_{R}=(5+5 i)_{R}$, and by the Chinese Remainder Theorem we get

$$
\mathbb{Z}[i] /(5+5 i) \xrightarrow{\cong} \mathbb{Z}[i] /(2+i) \times \mathbb{Z}[i] /(3+i) .
$$

We find the element on the left hand side which maps to $(3+I, 2+J)$: by the above remark, we take (for $r=3, s=2, a=-2-i$ and $b=3+i$)

$$
(r \cdot b+s \cdot a+I \cdot J=) \quad 3 \cdot(3+i)+2 \cdot(-2-i)+I \cdot J
$$

which can be written slightly simpler as $5+i+I \cdot J$.
Definition 3.23. Let R be commutative with identity $\mathbb{1}_{R} \neq 0_{R}$, and let I be an ideal in R. Then I is called a prime ideal if

$$
\text { for any } a, b \in R:(a b \in I \Rightarrow a \in I \text { or } b \in I) \text {, }
$$

and I is called a maximal ideal if
for any ideal $J \subset R$ with $I \subset J \subset R$ we have either $J=I$ or $J=R$.

Examples 3.24: For $R=Z$, all the ideals are of the form $(n), n \in \mathbb{Z}$.

1) (0) is a prime ideal (but it is not maximal: e.g., $(0) \varsubsetneqq(2) \varsubsetneqq \mathbb{Z}$).
2) \mathbb{Z} is neither a prime ideal nor a maximal ideal in \mathbb{Z}.
3) Consider (n) for $n \geqslant 2$.

If n is a prime number, then (n) is a prime ideal. In fact, it is even a maximal ideal.

If n is not a prime number, then (n) is not a prime ideal. It is also not maximal.

Theorem 3.25. Let R be commutative with identity, $I \subset R$ an ideal. Then

1) I is a prime ideal in $R \Leftrightarrow R / I$ is an integral domain.
2) I is a maximal ideal in $R \Leftrightarrow R / I$ is a field.

Corollary 3.26. A maximal ideal is also a prime ideal.

