
SUMMARY OF PART II: GROUPS

1. Motivation and overview

1.1. Why study groups? The group concept is truly fundamental not only for
algebra, but for mathematics in general, as groups appear in mathematical theories
as diverse as number theory (e.g. the solutions of Diophantine equations often form
a group), Galois theory (the solutions(=roots) of a polynomial equation may satisfy
hidden symmetries which can be put together into a group), geometry (e.g. the
isometries of a given geometric space or object form a group) or topology (e.g. an
important tool is the fundamental group of a topological space), but also in physics
(e.g. the Lorentz group which in concerned with the symmetries of space-time in
relativity theory, or the “gauge” symmetry group of the famous standard model).

Our task for the course is to understand whole classes of groups—mostly we
will concentrate on finite groups which are already very difficult to classify. Our
main examples for these shall be the cyclic groups Cn, symmetric groups Sn (on n
letters), the alternating groups An and the dihedral groups Dn.

The most “fundamental” of these are the symmetric groups, as every finite group
can be embedded into a certain finite symmetric group (Cayley’s Theorem).

We will be able to classify all groups of order 2p and p2, where p is a prime.
We will also find structure results on subgroups which exist for a given such group
(Cauchy’s Theorem, Sylow Theorems).

Finally, abelian groups can be controlled far easier than general (i.e., possibly
non-abelian) groups, and we will give a full classification for all such abelian groups,
at least when they can be generated by finitely many elements.

1.2. How to distinguish groups. First, we will find ways to distinguish groups
from each other, and for that purpose we find numerical invariants (or other prop-
erties) attached to any given group. Since groups can come in different guises, we
need to identify groups which are isomorphic(=“of the same structure”) to each
other. The invariants alluded to above do not change under such an isomorphism.
Also, a non-abelian group can never be isomorphic to an abelian group.

1.2.1. Subgroups and orders of elements in groups. First examples of such numerical
invariants are 1) the order of the group, 2) more refined: the (ordered) list of orders
of individual elements of the group. So we will first recall the notion of the order
of a group G and of an element in G.

1.3. How to break a group into pieces. Then we will try to reduce groups to
their “building blocks”, and we consider groups which are products of smaller ones
as “understood”—for this purpose, we recall the notion of a Cartesian (or direct)
product of groups. Furthermore, there are useful criteria to check whether a group
is a product of, say, two of its subgroups.
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1.3.1. Products of Groups. In order to check if a group G is the direct product of
two (non-trivial) subgroups H and K, we have the following useful criterion:
if H ∩ K = {e}, H · K = G and any h ∈ H, k ∈ K commute, then G ∼= H × K.

1.3.2. Groups as permutation groups. The symmetric groups are particularly im-
portant, since one can show (Cayley’s Theorem) that any group is isomorphic to
a permutation group (i.e. a subgroup of the bijections SX for some set X). Hence
a lot of emphasis will be put on permutation groups.

1.4. Action of a group. Often it is difficult to “visualize” a group; instead we
can “see” it indirectly, by its action on a suitably chosen set. This leads to the
notion of an action of a group G on a set X, which “visualizes” the elements of G
as bijections of X (more precisely, an action is a homomorphism of G to SX). Such
an action not only slices the set X into disjoint pieces (the orbits of an x ∈ X under
the group action), but also defines subgroups of G (the stabilizers of x ∈ X) whose
cosets slice G into disjoint subsets. In fact, for a given x, these two decompositions
(of a rather different nature) are related in the sense that different elements in the
orbit of x correspond to different cosets of the stabilizer of x. This is the content
of the important Orbit-Stabilizer Theorem.

This gives the tools for detecting some “fine structure” of a group, a first example
being Cauchy’s Theorem, which asserts that, for a finite group G whose order
is divisible by some prime p, in fact contains a subgroup of order p. As a first
classification result, one deduces that any group of order 2p, with p a prime, is
either cyclic or dihedral.

As a beautiful by-product, we encounter a way to determine the number of orbits
(of a finite group on a finite set) by simply counting the fixed point set of each group
element (Burnside Counting Theorem).

1.5. Conjugacy. If one considers the special case where a group G acts on the
set X = G itself, one can reveal more of the intrinsic structure of the group. The
perhaps best way to let it act on itself is by conjugation, and a very important piece
of information about a group is the set of conjugacy classes (often one is interested
in group elements “up to conjugacy” only). Therefore we endeavor to determine
the conjugacy classes (and to find representatives, to determine their sizes...) of
our main families Sn, An and Dn.

The notion of the centre of a group G (which is the subgroup of elements in G
which commute with all the other elements in G) measures in a sense the (lack of)
commutativity for G: the larger the centre is with respect to the group, the closer
G is to an abelian group. Its usefulness can be witnessed when invoking it for the
classification of yet another family of groups, this time of order p2 for p again a
prime. The result is that a group of that order is either cyclic (i.e. isomorphic to
Zp2) or a product of two (non-trivial) cyclic groups (i.e. necessarily of the form
Zp × Zp).

1.6. Normal Subgroups. For a subgroup H of a group G, the cosets can itself
occasionally be given the structure of a (“quotient”) group; in this way, the study of
G is reduced to the study of the (typically smaller) group H and the (also typically
smaller) quotient group G/H.

Hence, in order to break up G into smaller pieces, it is desirable to look for
such subgroups (called normal subgroups). They are distinguished by the property
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that precisely they occur as the kernels of group homomorphisms. More precisely,
the First Isomorphism Theorem states that the image under a group homo-
morphism ϕ : G → G′ (this image is a subgroup of the target group G′) can be
identified with the quotient of the source group G.

Just to give an indication of the power of the notion: the fact that the group
A5 has no (non-trivial) normal subgroup is, in a sense, the “reason” (dealt with in
Galois theory) that the general quintic equation a5x

5 + · · · + a1x + a0 = 0 with
ai ∈ Q has no solution (in terms of surds involving algebraic expressions in the ai

only), a problem that people had tried to solve for a rather long time.

1.7. Finitely generated abelian groups. If we restrict ourselves to abelian groups
(which are of course much easier to control than non-abelian ones), and moreover to
abelian groups with a finite set of generators, then we can actually give a full classi-
fication. More precisely, one can show the Fundamental Theorem for Finitely
Generated Abelian Groups which states that each such group is isomorphic to
one of the form

Zd1
× Zd2

× · · · × Zdk
× Zr ,

with k, r > 0, where d1 > 1 and d1 | d2 | · · · | dk.

1.8. Acknowledgments. This summary is based on notes taken by Daniel Allsop
and Simon Castle from my course on ANT II in Epiphany 2008 which followed
notes from a course given earlier by Rob de Jeu.

2. Basics on Groups

We recall the crucial notion.

Definition 2.1. A group (G, ◦) is a set G with a binary operation ◦:

G × G → G

(a, b) 7→ a ◦ b (group multiplication)

such that the following holds:

(i) There is an identity e = eG in G, i.e. e satisfies

e ◦ g = g ◦ e = g (∀g ∈ G) .

(ii) Each element g ∈ G has an inverse, i.e. ∃h ∈ G such that

h ◦ g = g ◦ h = e .

(iii) Associativity holds: for any g, h, k ∈ G, we have

(g ◦ h) ◦ k = g ◦ (h ◦ k) .

A group (G, ◦) is called abelian if any two elements commute:

g ◦ h = h ◦ g (∀g, h ∈ G) .
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2.1. Examples of groups. 1) (Zn,+); 2) (Z∗
n, ·) (the set of units in Zn);

3) dihedral groups

Dn = 〈r, h | rn = e, h2 = e, hrh−1 = r−1〉 ,

with 2n elements, which can be viewed as the group of isometries of the regular
n-gon in the plane, the reflections of which are given by the rjh (0 6 j 6 n − 1);
4) the symmetric group (SX , ◦) for a non-empty set X (i.e. the bijections of X onto
itself, where ◦ denotes the composition of functions), if X = {1, . . . , n}, then call
SX also Sn; 5) matrix groups (Mn(R),+Mat), (GLn(R), ·Mat) or (On(R), ·Mat), the
orthogonal n × n–matrices; 6) the rotational symmetry groups of the 5 platonic
solids (tetrahedron, cube, octahedron, dodecahedron and icosahedron); 7) the unit
circle inside C with the multiplication from the complex numbers; 8) the following
set of 6 functions ({f1(z), . . . , f6(z)}, ◦), under composition of functions:

f1(z) = z , f2(z) =
1

z
, f3(z) = 1−

1

z
, f4(z) =

z

z − 1
, f5(z) =

1

1 − z
, f6(z) = 1−z ;

9) the alternating groups An, consisting of the even permutations inside Sn. (Recall
that a permutation is even if it can be written as a product of an even number of
transpositions.)

2.2. Subgroups and orders of elements in groups.

Definition 2.2. Let G be a group.

(1) We denote by |G| the order of G, defined as the number of elements in G.
Note that |G| > 1 and that the order can well be infinite.

(2) For g ∈ G, if there is a smallest positive integer m such that gm = e, then
we call m the order of g in G. If there is no such integer, then we say that
g has infinite order.

Remark 2.3: Recall that, for an element x in a group G, the subgroup gener-
ated by x is given by the (possibly finite!) subset {xn | n ∈ Z}, with the induced
group operation (e.g., the inverse of xn is simply x−n). Note that the order of an
element in a group coincides with the order of the subgroup which is generated by
that element.

Example 2.4: (1) The dihedral group D6 has order 12, if we write it in the
usual way in terms of generators and relations

D6 = 〈r, h | r6 = h2 = e, hrh−1 = r−1〉 ,

then h has order 2 (in fact all rjh have order 2, they can be realized as the
reflexion symmetries of a regular hexagon), while r has order 6 (in fact, all
powers rj , 0 6 j 6 5, have order 6/ gcd(6, j)).

(2) In Z, each element except 0 has infinite order.
(3) In the symmetric group Sn on n letters, a permutation which consists of

a cycle (a1 . . . ar) has the order r. (Note that all ai have to be different
in order to call the permutation a cycle. More generally, the order of a
product of disjoint cycles (a1 . . . ar1

) · · · (z1 . . . zrk
), for some k > 1, is equal

to lcm(r1, . . . , rk).

Recall that Sn is generated by transpositions (=2–cycles), i.e. of cycles of the
form (a b), with a 6= b. Furthermore, recall that, although there are many ways
to write a permutation as a product of transpositions

(
e.g. (1 2 3) = (1 3)(1 2) =
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(1 2)(2 3) or e = (1 2)(1 2) = (1 3)(2 4)(1 3)(2 4)
)
, the parity of the number (i.e.

the property whether the number is even or odd) of such is always the same. This
implies that

An = {even permutations in Sn}

forms a subgroup.

Lemma 2.5. For n > 3, An is generated by 3-cycles.

[[ Use that any σ ∈ An(6 Sn) can be in fact written as (1 j1) · · · (1 jm) for
some even m > 0, and two successive such transpositions, e.g. (1 j1)(1 j2), can be
combined to a 3-cycle (1 j2 j1). ]]

2.3. Breaking up a group into pieces. Recall that the direct product (also
called Cartesian product) of two groups (G, ◦) and (H, ⋆) is defined as (G×H,⊛),
where

(G × H,⊛) × (G × H,⊛) → (G × H,⊛)

(g, h)⊛(g′, h′) 7→ (g ◦ g′, h ⋆ h′) .

This again forms a group, with identity (eG, eH), inverses: (g, h)−1 = (g−1, h−1),
and where the associativity is inherited from the ones for the groups G and H.

Proposition 2.6. For m,n > 1, we have

Zm × Zn
∼= Z mn

(m,n)
× Z(m,n) ,

where (m,n) := gcd(m,n) denotes the gcd of m and n. In particular, we have for
(m,n) = 1:

Zm × Zn
∼= Zmn .

We have the following useful criterion to check if a group is the direct product
of two of its subgroups:

Proposition 2.7. Let H and K be subgroups of (a group) G such that

(i) H ∩ K = {e} ,
(ii) H · K = G ,
(iii) ∀h ∈ H,∀k ∈ K : hk = kh.

Then G is isomorphic to the direct product of H and K, denoted G ∼= H × K.

Example 2.8: 1) V4, the Klein 4-group (with elements {e, a1, a2, a3} and re-
lations a2

i = e, aiai±1 = ai∓1 (indices mod 3)) is isomorphic to Z2 × Z2.
2) For the dihedral group D6, we have D6

∼= D3 × Z2 (a similar statement is
true for any D2·odd where “odd” denotes an odd number; it is no longer
true if “odd” is replaced by “even”).

2.3.1. How to distinguish groups. If we want to check whether two given groups
are isomorphic (or not), it is useful to first check some “numerical invariants”; e.g.
the orders of the groups have to agree; more refined: the (ordered) list of orders of
elements have to agree. (Ex.: Although S3 and Z6 have both order 6, they cannot
be isomorphic, for instance the latter has elements of order 6 [which?], while the
former one doesn’t [what are the possible orders?].) Another way to distinguish two
groups is, e.g. if one groups is abelian while the other one is not. (Ex.: The dihedral
group Dn, with 2n elements, is non-abelian if n > 2, so it cannot be isomorphic to
the cyclic (hence abelian) group Z2n.)
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If none of the above help to distinguish the groups, it may be worthwhile (albeit
not guaranteed, of course) trying to find an isomorphism between the groups.

2.4. Groups as permutation groups. In a sense, we can think of the symmetric
groups SX = {bijections of X} for any set X as the “most basic” groups, in the
following sense: any group can be realized as a subgroup of one of these. More
precisely:

Theorem 2.1. (Cayley) Any group G is isomorphic to a subgroup of the permu-
tation group SX for some set X; more precisely, we can choose X = G.

[[ Idea of proof: to each g ∈ G, associate the bijection Lg : G → G given by “left
multiplication” by g. Check that Lg ◦Lh = Lgh and that the map g 7→ Lg is indeed
a homomorphism of groups. ]]

3. Group actions

Often a group G is given only rather abstractly, so there may be some virtue in
trying to “visualize” it by seeing its effect on a set X (e.g. visualize G = Dn as
the symmetries of a regular n-gon, and take as the set X the set of vertices of that
n-gon, say).

Definition 3.1. An action of a group G on a set X is a homomorphism ϕ :
G → SX .

Despite this very short definition the implications are rather complicated, and
we will deal with them extensively.

Example 3.2: 1) The group Z acts on R by “translation”:

ϕ : Z → SR

n 7→
(

ϕ(n) : R → R
)

where the bijection ϕ(n) is given by x 7→ n + x, i.e. as “left addition” with
n. [Note that all bijections are different.]

It needs to be checked that ϕ is indeed a homomorphism—and since the
bijections are all different, this homomorphism is injective.

2) The group Z acts on R by “multiplication of sign”:

ϕ : Z → SR

n 7→
(

ψ(n) : R → R
)

where the bijection ψ(n) is given by x 7→ (−1)nx, i.e. for the “even half” of
the integers the corresponding bijection coincides with the identity, while
for the “odd half” of the integers the corresponding bijection coincides
with the reflection of the real line around the origin. The corresponding
homomorphism ψ is not injective, in fact its kernel consists precisely of (the
subgroup) 2Z.

The notation (ϕ or ψ) used above for the homomorphism is rather cumbersome,
for example since the bijection ϕ(n) acts on an element x ∈ R, we should write
ϕ(n)(x) for its image (in R); we will usually leave it out and only write n(x)
instead. This may take some time to get used to.



SUMMARY OF PART II: GROUPS 7

Remark 3.3: Note that gh(x) = g(h(x)) which is easier to see if we used the more
cumbersome notation, say ϕ : G → SX , for the homomorphism which defines the
action of G on X. Since ϕ is a homomorphism, we have ϕ(gh) = ϕ(g)ϕ(h) and so
gh(x) = ϕ(gh)(x) = ϕ(g)ϕ(h)(x); but the product ϕ(g)ϕ(h) has to be interpreted
as a composition of functions, so ϕ(g)ϕ(h)(x) = ϕ(g)

(
ϕ(h)(x)

)
which in turn then

can be written, in the simpler notation, as g(h(x)).

A group action slices both the group and the set on which it acts into smaller
pieces. Two central notions in this context are the orbits (subset of X) and stabi-
lizers (subsets of G).

Definition 3.4. Let G act on a set X, and choose x ∈ X.

1) The orbit of x under G is the subset of X given by

G(x) = {g(x) ∈ X | g ∈ G} .

2) The stabilizer of x under Gis the subset of G given by

Gx = {g ∈ G | g(x) = x} .

Note 3.5: Gx is in fact a subgroup of G.

[[ E.g. check closure, using remark above: gh(x) = g(h(x)) = g(x) = x. Similarly
for the inverses; the identity being obvious. ]]

Example 3.6: (ctd)

1) Let G = Z act on X = R by “translation”:

ϕ : Z → SR

n 7→
(

ϕ(n) : R → R
)

.

Then the orbit of x ∈ R is given by

G(x) = {n(x) | n ∈ Z} = {n + x | n ∈ Z}.

The stabilizer of x inside G is given, in fact for any x ∈ X, by

Gx = {n ∈ Z | n(x) = x} = {n ∈ Z | n + x = x} = {0} .

2) The group G = Z acts on X = R by “multiplication of sign”:

ϕ : Z → SR

n 7→
(

ψ(n) : R → R
)

.

Then the orbit of x ∈ R is given by

G(x) = {n(x) | n ∈ Z} = {(−1)nx | n ∈ Z} = {x,−x}.

Hence each orbit has two elements, except when x = 0 in which case it only
has one.

The stabilizer of x inside G is given by

Gx = {n ∈ Z | n(x) = x} = {n ∈ Z | (−1)nx = x} .

For x 6= 0, we get Gx = 2Z, while for x = 0 we find Gx = Z.

Proposition 3.7. Let G be acting on a set X. Then the distinct orbits under G
partition X. We have

(i) each orbit is a non-empty set of X [[G(x) ∋ x ]] ;
(ii) all orbits exhaust X, i.e.

⋃

x∈X G(x) = X;
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(iii) orbits are either disjoint or they coincide.

Note that being in the same orbit (under some group) is an equivalence relation
on the set X. [[ Recall that this means that the relation is 1) symmetric, 2) reflexive
and 3) transitive. ]]

4. Conjugacy

A very important special case of the action of a group G is given in the case
where the set X in fact coincides with the group G itself. In particular, the most
useful action is the one given by conjugation.

Definition 4.1. (i) Two elements g, g′ ∈ G are conjugate (to each other)
in G, if there exists an h ∈ G such that h g h−1 = g′. We also say then that
g is conjugate to g′.

(ii) The equivalence classes under conjugation are called conjugacy classes in
G.

Example 4.2: (i) The identity element is only conjugate to itself: heh−1 =
hh−1 = e.

(ii) In an abelian group, each element is conjugate to itself only. In other
words, the conjugacy classes in an abelian group all have cardinality 1.
The converse is also true: a group in which all conjugacy classes have one
element is necessarily abelian.

(iii) The symmetric group of three letters decomposes into 3 conjugacy classes:
S3 = {e} ∪ {(1 2), (1 3), (2 3)} ∪ {(1 2 3), (1 3 2)}.

(iv) In A3, all conjugacy classes have only one element, since A3 has only one
element, and we know (as a consequence of Lagrange’s Theorem, which
says that H 6 G implies |H| divides |G|) that up to isomorphism there is
only one group of prime order: the cyclic group (here of order 3).

Definition 4.3. For a group G, we introduce the following notation

cclG(x)(= “conjugacy class of x in G”) = {gxg−1 | g ∈ G} .

Example 4.4: We continue the list of examples with the dihedral group D5.

(v) For G = D5 we can list all the elements conveniently as follows:

D5 = {rihj | 0 6 i 6 4, 0 6 j 6 1} ,

and we distinguish two cases: j = 0 and j = 1. This leads us to determine
the conjugacy classes as follows: for 0 6 k 6 4, we get

cclD5
(rk) = {rirk(ri)−1 | 0 6 i 6 4} ∪ {(rih)rk(rih)−1 | 0 6 i 6 4}

= {rk} ∪ {ri(hrkh−1)r−i | 0 6 i 6 4}

= {rk} ∪ {r−k} = {rk, r−k} .

Hence if rk = r−k, i.e. r2k = e, then cclD5
(rk) = {rk}. This is only possible

for k = 0 (under the above restrictions on k), i.e. cclD5
(e) = {e}, which we

knew anyway. For the remaining k = 1, 2, 3, 4, we find a 2-element orbit
cclD5

(rk) = {rk, r−k}.
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For rkh we find (again 0 6 k 6 4), using rkh = hr−k, that

cclD5
(rkh) = {ri(rkh)(ri)−1 | 0 6 i 6 4} ∪ {(rih)(rkh)(rih)−1 | 0 6 i 6 4}

= {ri+k+ih | 0 6 i 6 4} ∪ {ri+i−kh | 0 6 i 6 4}

= {rjh | 0 6 j 6 4} ∪ {rjh | 0 6 j 6 4}

= {rjh | 0 6 j 6 4} .

Hence D5 is partitioned into 4 conjugacy classes: {e}, {r, r−1}, {r2, r−2},
{rjh | 0 6 j 6 4}.

4.1. The Orbit-Stabilizer Theorem. Recall that the cosets of a subgroup H 6

G “slice” G into pieces of the same size called (left or right) cosets. E.g., left cosets
are equivalence classes under the relation (for g, g′ ∈ G)

g ∼L g′ :⇔ gH = g′H
(

⇔ h−1g ∈ H
)

.

They are the orbits under the left translation of H under G.
A central statement which relates the orbits and stabilizers (and of which mostly

a corollary below will be used) is the following:

Theorem 4.1. (Orbit-Stabilizer Theorem) Let G act on a set X. Then for any
x ∈ X we have a bijection

G(x)
1:1
←→ {left cosets of Gx in G}

given by g(x) 7→ gGx.

[[We check that

g(x) = h(x) ⇔ g−1h(x) = x ⇔ g−1h ∈ Gx

⇔ g−1hGx = Gx ⇔ hGx = gGx .

From this we get the well-definedness (“⇒” above) and injectivity (“⇐” above)
of the map in the theorem, and we get its surjectivity as follows: suppose we
have a coset of Gx which can be written as hGx for some h ∈ G; then we choose
h(x) ∈ G(x) for which we find that, by definition, h(x) gets mapped to hGx. ]]

Corollary 4.5. If G is finite, acting on a finite set X, then

|G| = |G(x)| · |Gx| for any x ∈ X .

[[ From the Orbit-Stabilizer Theorem we get, for any given x ∈ X, the bijection
of G(x) with the set of cosets with respect to Gx. But all such cosets have the same
size (in fact, the size of Gx). Hence, taking sizes, we get

|G(x)| = |{cosets of Gx in G}| =
|G|

|Gx|
,

where the last equality sign uses that the cosets also exhaust G. ]]

Corollary 4.6. For a finite group G, acting on a finite set X, the size of G(x)
divides |G|. In particular, a conjugacy class in G has a size that divides |G|.

A useful observation when determining examples of conjugacy classes is that any
element g ∈ G is stabilized by the subgroup 〈g〉 under conjugation.
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4.2. Cauchy’s Theorem. We will use the action of a group on itself by conju-
gation, and in particular the previous corollary, to retrieve our first “structural
result”:

Theorem 4.2. (Cauchy’s Theorem) Let G be a finite group. For any prime p with
p
∣
∣ |G|, there is a subgroup of G of order p.

[[We want to find an x ∈ G, x 6= e, such that xp = e. The clever idea is to
consider G × · · · × G and define a subset

Ω := {(x1, . . . , xp) ∈ G × · · · × G | x1x2 · · ·xp = e} .

Now check that Zp acts on Ω by “shifting cyclically”. By the corollary above, the
orbits under this action must divide |Zp|, i.e. the prime p, so are of size 1 or p. On
the other hand, |Ω| = |G|p−1, so p

∣
∣|G|

∣
∣|Ω|.

Now there is an obvious orbit of size 1, given by {(e, e, . . . , e)}. Therefore there
must be at least one more (in fact, at least p − 1 more) orbits of size 1 (otherwise
we would get on the one hand Σ(orbit sizes) = |Ω| = 1 + (. . . )p, and on the other
hand we know p

∣
∣|Ω|). Any such 1-element orbit must be of the form {(g, g, . . . , g)}

for some g ∈ G \ {e}.
Finally, choose x = g, then xp = gp = g · g · · · g = e (since (g, g, . . . , g) ∈ Ω). ]]

We can use Cauchy’s Theorem in turn to classify all groups of order 2p, for p
prime.

Theorem 4.3. Let p be a prime. Then any group of order 2p is either cyclic or
dihedral.

4.3. Conjugacy classes for Sn and An. So far, we have determined the conju-
gacy classes for some dihedral groups (one homework question asked to determine
the conjugacy classes of Dn in general).

We still need to find out the conjugacy classes for our “basic” groups, the sym-
metric groups. First we state an important lemma which tells us how to quickly see
the result of a conjugation of a given cycle. The difficulty here is that we view the
elements in Sn in two ways: as cycles, but also as bijections (e.g., a permutation
g ∈ Sn is also a bijection of the set {1, 2, . . . , n}, so g(2), say, is yet another element
of {1, 2, . . . , n}).

Lemma 4.7. Let x = (i1 i2 . . . ik) be a k-cycle in Sn, where 2 6 k 6 n, i.e.
ij ∈ {1, . . . , n} for any j. Then, for any g ∈ Sn, the action by conjugation of g on
x can be “read off” as follows:

gxg−1 =
(
g(i1) g(i2) . . . g(ik)

)
.

Example 4.8: Put g = (1 2)(3 4 5), and conjugate x = (1 3 4 5) with g. We find

gxg−1 = (1 2)(3 4 5)(1 3 4 5)(5 4 3)(2 1) = (2 4 5 3) .

On the other hand, we view g as a permutation, for which we have

g(1) = 2 , g(2) = 1 , g(3) = 4 , g(4) = 5 , g(5) = 3 ,

and, using the lemma, we can “read off”

gxg−1 =
(
g(1) g(3) g(4) g(5)

)
= (2 4 5 3) ,

which indeed agrees with the above direct calculation.
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Definition 4.9. Let x ∈ Sn be an arbitrary permutation in disjoint cycle form

x = (a1 . . . ak1
)(b1 . . . bk2

) . . . (z1 . . . zkN
)

with 1 < k1 6 k2 6 . . . 6 kN and n > k1 + · · · + kN . Then we say that x has the
cycle shape [k1, . . . , kN ].

As a matter of convention, we put the cycle shape [1] for the trivial element.

Note that we have dropped all 1-cycles, except in the degenerate case x = e.

Example 4.10: (i) The cycle (2 3)(1 5 7)(4 6 9) has cycle shape [2, 3, 3].
(ii) The cycle (2 3)(1 5 7)(4 5 9) = (2 3)(1 5 9 4 7) has cycle shape [2, 5].

Theorem 4.4. For x ∈ Sn, the conjugacy class cclSn
(x) consists of all permuta-

tions which have the same cycle shape as x.

Example 4.11: (i) In S4 we have the following

cycle shapes [1] [2] [3] [4] [2,2]

representative (1) (1 2) (1 2 3) (1 2 3 4) (1 2)(3 4)

size of conj. class 1 6 8 6 3

How many elements are there in a given conjugacy class in Sn?

(1) For a k-cycle, we get
∣
∣
∣cclSn

(
(1 2 . . . k)

)
∣
∣
∣ =

n(n − 1) · · · (n − k + 1)

k
=: γ(n; k)

(here the numerator counts how many elements we can pick to fill in the
k slots in the cycle, and the denominator counts the number of times by
which we overcount a cycle: precisely k times, as there are k different ways
to write it).

(2) For a permutation which is a product of r disjoint cycles of different lengths
1 < k1 < k2 < · · · < kr, we get

γ(n; k1) · γ(n − k1; k2) · · · γ(n − Σr−1
i=1 ki; kr) =: γ(n; k1, . . . , kr) .

(3) Finally, for an arbitrary permutation with r disjoint cycles of lengths 1 <
k1 6 k2 6 . . . 6 kr, we get

γ(n; k1, . . . , k1
︸ ︷︷ ︸

s1 indices

, k2, . . . , k2
︸ ︷︷ ︸

s2 indices

, . . . , kr, . . . , kr
︸ ︷︷ ︸

sr indices

)
/

s1!s2! . . . sr!

(here the latter denominator takes into account that disjoint cycles com-
mute, and in particular disjoint cycles of the same length, so we overcount
by the number of ways in which we can permute all ki-cycles, of which there
are si!).

Example 4.12: In S7, the conjugacy class of cycle shape [2, 2, 2] has

7·6
2 · 5·4

2 · 3·2
2

3!
= 105

elements.

In order to determine the conjugacy classes in An, we can “descend” from Sn.
Recall that |An| = 1

2 |Sn| = n!/2.
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An easy observation shows that each conjugacy class in An lies in some conjugacy
class of Sn. More precisely, we get

cclAn
(x) = {gxg−1 | g ∈ Sn , g even} ⊂ {gxg−1 | g ∈ Sn} = cclSn

(x) .

One can say even more: for a given x, either those sets agree, or the one on the
right is twice the size of the one on the left.

Proposition 4.13. Let n > 2 and x ∈ An. Then

(i) if x commutes with any odd permutation (i.e. in Sn \ An), then

cclAn
(x) = cclSn

(x) ;

(ii) if x does not commute with any odd permutation, then cclSn
(x) splits into

2 classes, in fact into cclAn
(x) and cclAn

(
(1 2)x(1 2)−1

)
, of the same size.

Example 4.14: We determine the conjugacy classes in A5. Starting from the ones
for S5, which are given by the cycle shapes [1], [2], [3], [4], [5], [2, 2] and [2, 3], we
first can discard the ones which have odd representatives, i.e. [2], [4] and [2, 3],
which leaves us with only 4 classes to determine, the first one actually being trivial
(it is the 1-element class for the identity element). The class [2, 2] has odd size, so
it could not split into two classes of the same size and remains a conjugacy class
in A5. The class [3] has a representative (1 2 3) which commutes with the odd
permutation (4 5) (as the cycles are disjoint), and hence this conjugacy class also
remains one in A5. Finally, the class [5] does indeed split: for this, take its standard
representative x = (1 2 3 4 5) and try to find g ∈ A5 such that gxg−1 equals x.
There are five such g in S5 which we find using Lemma 4.7, but we can check that
none of them is an even permutation. Hence the class of cycle shape [5] in S5 splits
into two classes (of representatives (1 2 3 4 5) and (2 1 3 4 5), say) in A5.

We end the chapter on conjugacy with a nice application on how to count the
number of orbits of a group action in a different way.

Theorem 4.5. (Burnside Counting Theorem) Let G be a finite group acting on a
finite set X. Then the number of orbits in X under G is given by

1

|G|

∑

g∈G

∣
∣Xg

∣
∣ ,

where Xg denotes the fixed point set under g in X, given by {x ∈ X | g(x) = x}.

[[ The main idea of the proof is to regroup the elements in

{(g, x) ∈ G × X | g(x) = x}

in two different ways: one splits that set, on the one hand, into (disjoint) subsets
with fixed g ∈ G, and on the other hand into (disjoint) subsets with fixed x ∈ X.
This leads, after a few identifications with simpler sets, to the equation

∑

g∈G

∣
∣
∣{x ∈ X | g(x) = x}

∣
∣
∣ =

∑

x∈X

∣
∣
∣{g ∈ G | g(x) = x}

∣
∣
∣ ,

the right hand side being equal to
∑

x∈X
|G|

|G(x)| by the orbit-stabilizer theorem. Now

divide both sides by |G|, then the ensuing LHS already is the one in the Theorem,
and it remains to check that the resulting RHS

∑

x∈X
1

|G(x)| indeed counts the

number of orbits. But two elements in the same orbit have the same orbit length. . . ]]
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In examples, it is useful to note that conjugate elements have fixed point sets of
the same size: more precisely, let G act on X, then one has, for any x ∈ X and
g, h ∈ G:

x ∈ Xg ⇒ h(x) ∈ Xhgh−1

.

4.4. The centre of a group. Our next aim is the classification of all groups of
order p2, where p is again a prime. In order to approach this, we recall the notion
of a centre.

Definition 4.15. The centre of a group G is given by the sets

Z(G) = {g ∈ G | gh = hg ∀h ∈ G} .

Remark 4.16: 1) Precisely the elements with conjugacy class of size 1 in G
are the elements in the centre of G. [[ fix g ∈ G, then gh = hg ∀h ∈ G ⇔
g = hgh−1 ∀h ∈ G ⇔ {g} is a conjugacy class ]]

2) We have Z(G) ⊂ Gh for any h ∈ G where Gh is the stabilizer of h under
conjugation of G on itself.

3) Z(G) = G ⇔ G abelian (by definition).
4) Z(G) is a group.

Proposition 4.17. Let p be a prime and G a group such that |G| = pr for some
r > 1. Then Z(G) 6= {e}.

[[ This uses a similar argument as the proof of Cauchy’s Theorem. ]]

Corollary 4.18. A group G of size p2 (p prime) is abelian.

Theorem 4.6. Any group of order p2 (p a prime) is either isomorphic to Zp2 or
to Zp × Zp.

[[ Using Cauchy’s Theorem, we get a subgroup H of order p. An element which
is not in H is either already of order p2 or can be shown to generate a group K of
order p which, together with H, spans the whole group and H and K commute by
the above corollary. Now apply the criterion for direct products in Proposition 2.7
to conclude. ]]

4.5. Normal subgroups, quotient groups and the First Isomorphism The-
orem. Recall that the left cosets in a group G with respect to a subgroup H do
not have to be right cosets as well. (Check for instance H = 〈h〉 6 D3, with our
usual meaning for h in Dn.) If in fact left and right cosets do agree, then we can
define a group structure on the set of cosets. The resulting group is an instance of
a quotient group.

Definition 4.19. A subgroup H 6 G is called normal (in G), denoted H E G, if
∀g ∈ G : gHg−1 ⊂ H.

Equivalent conditions for a subgroup H to be normal in G are

• ∀g ∈ G : gH = Hg (i.e. left cosets w.r.t H are equal to its right cosets) or
• ∀g ∈ G ∀h ∈ H ∃h′ ∈ H such that ghg−1 = h′.

We have a further characterization:

Proposition 4.20. Let H be a subgroup of G. Then
H is normal in G ⇔ H is the union of conjugacy classes in G.
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Corollary 4.21. The centre of a group is normal (in that group).

The above proposition gives a useful counting argument to narrow down the
possibilities for subgroups in a given group to be normal. For example, each normal
subgroup of G = S4 must be a union of conjugacy classes, which we know to have
sizes 1, 6, 8, 6 and 3, respectively. A further constraint is of course that the trivial
conjugacy class has to be part of any subgroup, so the necessary condition is to
find an integer linear combination 1 + ε2 · 6 + ε3 · 8 + ε4 · 6 + ε5 · 3 with εj ∈ {0, 1}
which sums up to a divisor (think again Lagrange) of |G| = |S4| = 24. We can
forget about the non-proper divisors, as both {e} and G are normal subgroups of
G, anyway. Then the only combinations which satisfy this property are 1 + 3 and
1 + 8 + 3. Now it remains to check that the corresponding unions of conjugacy
classes are in fact closed under the group operation (this is in general not obvious!).
In our case, both unions are thus closed, and we are led to a Klein 4-group and to
A4, respectively.

Normal subgroups play a similar role to ideals for commutative rings, in that they
are precisely the kernels of group homomorphisms of a given group. As indicated
above, they give rise to a group structure on the cosets:

Proposition 4.22. Suppose N E G, then

(1) for any g, h ∈ G, we have (gN)(hN) = ghN ;
(2) with the product in (1), the set G/N of cosets of N in G forms a group;
(3) the “projection” map π : G → G/N , sending g 7→ gN , is a group homo-

morphism with kernel N .

This leads to the important

Theorem 4.7. (First Isomorphism Theorem (for groups)) Let θ : G → G′ be a
surjective group homomorphism. Then

1) ker(θ) E G and
2) ∃ an isomorphism

θ : G/ ker(θ)
∼=
−→ G′

g
(
ker(θ)

)
7→ θ(g) .

[[ 1) Check that N := ker(θ) is normal, e.g. by showing that gNg−1 = N ∀g ∈ G:
x ∈ gNg−1 ⇔ g−1xg ∈ N ⇔ θ(g−1xg) = e, but the latter can be rewritten,
using the homomorphism property of θ, as θ(g−1)θ(x)θ(g) = e, which after a few
simple manipulations is shown to be equivalent to θ(x) = e, i.e. x ∈ ker(θ) = N .

For 2) check first that θ(gN) is the set consisting of the single element θ(g)
only: θ(gN) = {θ(gh) | h ∈ N} = {θ(g)θ(h) | h ∈ N} = {θ(g)}. Hence it makes
sense to define the following induced map θ̄ : G/N → G′ where θ̄(gN) := θ(g). It
remains to check that θ̄ is indeed i) a homomorphism [simple check], ii) surjective
[follows easily from the surjectivity of θ], and iii) injective; for the latter note that
θ̄(gN) = θ̄(hN) ⇒ θ(g) = θ(h) ⇒ θ(g)θ(h−1) = e ⇒ θ(gh−1) = e ⇒ gh−1 ∈
N ⇒ g ∈ Nh = hN , so certainly gN ⊂ hN . But the argument is symmetric in
g and h, so the other inclusion also holds, and combining the two statements gives
gN = hN , which then establishes the injectivity of θ̄. ]]
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5. Finitely generated abelian groups

In this final section, we will classify a reasonably large class of groups: all abelian
groups which have finitely many generators. The central theorem is the following:

Theorem 5.1. (Fundamental Theorem of Finitely Generated Abelian Groups) Any
finitely generated abelian group is isomorphic to one of the form

Zd1
× Zd2

× · · · × Zdk
× Zr ,

for some di ∈ Z>2 and k, r ∈ Z>0. Moreover, this form is unique if we demand
that d1 | d2 | · · · | dk.

Definition 5.1. The number r in the theorem is the rank of G, and the integers
di > 2 with d1 | d2 | · · · | dk are called torsion invariants or torsion coefficients
of G.

Example 5.2: The group G = Z4×Z6×Z2 has clearly rank 2; note that its torsion
coefficients are not 4, 6 since 4 ∤ 6, instead we find that Z4 × Z6

∼= Z2 × Z12, for
which the divisibility condition (here 2 | 12) indeed holds, so the torsion coefficients
of G are given by 2, 12.

Starting from an abelian group given in terms of generators and linear relations,
this can be represented by a matrix. We can arrive at the unique form as referred
to in the theorem by successive elementary row and column operations which allow
us not only to “diagonalize” the matrix, but also to ensure that the entries on the
diagonal successively divide each other.

Suppose we are given an abelian group, written additively, in terms of generators
and relations, say 3 generators x, y, z and 2 relations

4x + 8y − 4z = 0 ,

4x + 2y − 10z = 0 .

Then we extract from this the 2 × 3–matrix of coefficients

(
4 8 −4
4 2 −10

)

and try to transform it into ”diagonal form” by applying only elementary row and
column operations which are of the following three types:

(1) swap any two rows (or columns);
(2) add an integer multiple of one row (column) to another row (column);
(3) multiply a row (column) by −1.

We find, denoting the jth row (column) by rj (cj),
(

4 8 −4
4 2 −10

)
r2 7→r1+r2∼

(
4 8 −4
0 6 6

)
c2 7→−2c1+c2∼

(
4 0 −4
0 6 6

)
c3 7→c1−c2+c3∼

(
4 0 0
0 6 0

)

From this matrix, we can deduce the structure of the group: first we complete
the matrix to a square matrix (here a 3 × 3-matrix) by adding zero entries, and
then we read off the group structure simply from the diagonal elements: for a
diagonal matrix [d1, d2, ..., dk] with dj > 0, the associated group is isomorphic to
Zd1

× Zd2
× · · · × Zdk

. In particular we can encounter factors of the form Z0,
which are interpreted as Z (and contribute to the rank of the group), or Z1, which
correspond to the trivial group (and can be simply ignored). Note that this need
not be in the form stated in the theorem yet, as we do not necessarily have that
successive dj divide each other.
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For the matrix above, we find that G ∼= Z4 ×Z6 ×Z, so it has rank 1, and in the
example above we find that G ∼= Z2 × Z12 × Z, so it has torsion coefficients 2, 12.


