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Abstract. We construct, for a field F and a natural number n, algebraic

cycles in Bloch’s cubical cycle group of codimension n cycles in
`
P1

F \{1}
´2n−1

,

which correspond to weight n multiple polylogarithms with generic arguments

if F ⊂ C. Moreover, we construct out of them a Hopf subalgebra in the
Bloch-Kriz cycle Hopf algebra χcycle. In the process, we are led to other Hopf

algebras built from trees and polygons, which are mapped to χcycle. We relate

the coproducts to the one for Goncharov’s motivic multiple polylogarithms and
to the Connes-Kreimer coproduct on plane trees and produce the associated

Hodge realization for polygons.
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1. Introduction

1.1. Multiple polylogarithms. We start from the analytic background. The
multiple polylogarithm functions were defined in [10] by the power series

Lin1,...,nm(z1, . . . , zm) =
∑

0<k1<···<km

zk11

kn1
1

zk22

kn2
2

. . .
zkmm
knmm

(zi ∈ C, |zi| < 1) .
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They admit an analytic continuation to a Zariski open subset of Cm. When m = 1,
we recover the classical polylogarithm function. Putting n1 = ... = nm = 1, we get
the multiple logarithm function.

Let xi be complex numbers. Recall that an iterated integral is defined as

(1) I(x0;x1, . . . , xm;xm+1) =
∫

∆γ

dt1
t1 − x1

∧ · · · ∧ dtm
tm − xm

,

where γ is a path from x0 to xm+1 in C−{x1, ..., xm}, and the cycle of integration
∆γ consists of all m-tuples of points (γ(t1), ..., γ(tm)) with ti6 tj for i < j.

Multiple polylogarithms can be written as iterated integrals (cf. loc.cit.). In
particular, here is the iterated integral presentation of the multiple logarithm func-
tion:

(2) Li1,...,1(z1, . . . , zm) = (−1)mI(0;x1, . . . , xm; 1) , zi 6= 0 ,

where we set

(3) x1 := (z1 · · · zm)−1, x2 := (z2 · · · zm)−1, . . . , xm := z−1
m .

Observe that in (3) the parameters x1, . . . , xm are non-zero. Moreover, many
properties of the iterated integrals will change if we put some of the xi’s equal
to zero. As a result, many features of the theory of multiple polylogarithms
are different from the ones of multiple logarithms. We will use the notation
I1,...,1(x1, . . . , xm) for I(0;x1, . . . , xm; 1) when the xi’s are non-zero.

1.2. From iterated integrals to Hopf algebras. In [15] it was shown that
any iterated integral (1) gives rise to an element

(4) IH(x0;x1, . . . , xm;xm+1) ∈ AHm, xi ∈ C,
of a certain commutative graded Hopf algebra AH• , called the fundamental Hodge-
Tate Hopf algebra. The category of graded finite-dimensional comodules over this
Hopf algebra is canonically equivalent to the category of mixed Q-Hodge-Tate struc-
tures. The element (4) is called a Hodge iterated integral.

It was shown in loc. cit. that this construction has l-adic and motivic counter-
parts. In particular, given a number field F , there are the motivic iterated integrals

(5) IM(x0;x1, . . . , xm;xm+1) ∈ AMm , xi ∈ F,
which live in the fundamental motivic Tate Hopf algebra AM• (F ) of F .

The benefits gained by working with the Hodge/motivic iterated integrals are
explained in the introduction to [15]. In particular the coproduct in the Hopf
algebra is a new powerful structure, which is not visible on the level of numbers. It
is conjectured that any relation of algebraic-geometric origin between the iterated
integrals gives rise to a similar relation between the corresponding Hodge/motivic
iterated integrals. Therefore upgrading iterated integrals to elements of a Hopf
algebra we see new structures, but conjecturally do not lose any information.

1.3. Multiple polylogarithms and the Hopf algebra of algebraic cy-
cles. Given any field F , Bloch and Kriz [3] constructed, using algebraic cycles, yet
another graded Hopf algebra χcycle(F ), denoted χMot(F ) in loc.cit., and conjectured
that it is isomorphic to the fundamental motivic Tate Hopf algebra of F .

Thus it is natural to ask whether we can find elements

(6) Licycle
n1,...,nm(z1, . . . , zm) ∈ χcycle(F ), zi ∈ F× ,
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corresponding to multiple polylogarithms in the Hopf algebra of algebraic cycles
χcycle(F ) (defined in (8) below). The elements corresponding to the classical poly-
logarithms have been defined in [3] by using the Bloch-Totaro cycles [4]. The main
result of our paper is a construction of elements (6) for generic zi ∈ F×, where
generic means that the products of the arguments

∏k
j=i zj for any pair (i, k), where

16 i6 k6n, are all different from 1. We show that the Q-linear combinations of
these elements form a Hopf subalgebra

(7) χ̃MP
cycle(F ) ⊂ χcycle(F ) .

Presumably one can define the elements (6) for all zi ∈ F×. They should generate
the “true” multiple polylogarithm Hopf subalgebra χMP

cycle(F ) ⊂ χcycle(F ).
It follows from Conjecture 17a) in [10] that, for any field F , the Q-linear

combinations of the elements (6) should span over Q the fundamental motivic Hopf
algebra. In other words, one should have

χMP
cycle(F ) ?= χcycle(F ) .

1.4. Strategy. Let N •(F, p) be Bloch’s weight p cubical cycle complex [1].
The direct sum of these complexes

N •(F, ∗) :=
⊕
p> 0

N •(F, p)

has a structure of graded-commutative augmented differential graded algebra (DGA).
Applying the bar construction functor B to it and then taking the zeroth cohomol-
ogy of the resulting complex we get the Bloch-Kriz Hopf algebra:

(8) χcycle(F ) := H0B(N •(F, ∗)) .

Our Hopf subalgebra χ̃MP
cycle(F ) is also defined using the functor H0B. Its defi-

nition is organized into three steps outlined below.
1. Algebraic cycles from trees. Let R be a set. An R-deco tree is a plane

tree with additional data: a root vertex of valency 1 and a decoration
of the external vertices by elements ri of R, as in the picture (where the
encircled vertex, decorated by r5, is the root vertex).

• '!&"%#$

••

•������

•
//////

•

•������

• •
9999999

r5

r1 r2 r3

r4

We define the grading of a tree as the number of its edges. Consider
the graded Q-vector space generated by R-deco trees. Let T•(R) be the
graded-commutative algebra generated by this vector space. A set of linear
generators for T•(R) is given by monomials in R-deco trees, called R-deco
forests. It has another grading, given by the number of leaves. So we
get a bigraded algebra T ∗• (R). There is a differential T ∗• (R) → T ∗•−1(R)
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defined by contracting individual edges of a forest. It equips T ∗• (R) with
a structure of graded-commutative DGA with an extra grading. It is a
rooted version of the DGA defined by the second author in [11].

Now take R = F×, where F is a field. We consider the subclass of
“generic” decorations (as in Definition 4.1) on plane rooted trees. The
corresponding DGA is denoted by T̃ ∗• (F×). We associate to such an
F×-decorated tree with m edges an element of the cubical cycle group
N 2p−m(F, p) given by the codimension p admissible algebraic cycles in
the m-dimensional algebraic cube. We show that by extending this map
to forests by multiplicativity we get a homomorphism of DGAs

Φ : T̃ ∗• (F×) −→ N 2∗−•(F, ∗)
which we call the forest cycling map.

2. Trees from polygons. In a second step, we single out distinguished
combinations of the above (R-deco) trees encoded by (R-deco) polygons.
Namely, given a polygon with additional data (a root side and a deco-
ration), we consider all its triangulations. Each triangulation defines by
duality a plane trivalent tree. Let Ψ be the map which assigns to the poly-
gon the formal sum of these trees. This map is extended to the graded-
commutative algebra generated by the R-deco polygons. The latter is
equipped with a differential, which gives rise to a graded-commutative
DGA P∗• (R). The DGA P∗• (R) is identified with the standard cochain
complex of one of the Lie coalgebras of iterated integrals defined in [15].

Let us consider its “generic part”, a sub-DGA P̃∗• (R). The map Ψ
provides a homomorphism of DGAs

Ψ : P̃∗• (R) −→ T̃ ∗• (R) .

The crucial fact is the following. The image of the composition

(9) P̃∗• (F×) Ψ−→ T̃ ∗• (F×) Φ−→ N 2∗−•(F, ∗)
lies in the subspace of elements with “decomposable” differentials.

3. The bar construction. Applying the H0B functor to (9) we get the
Hopf algebras

χ eP(F×) := H0B(P̃∗• (F×)), χeT (F×) := H0B(T̃ ∗• (F×)),

and homomorphisms between them

(10) χ eP(F×)
H0B(Ψ)−→ χeT (F×)

H0B(Φ)−→ χcycle(F ) .

We prove that any F×-decorated polygon with the generic decoration
gives rise to an element of χcycle(F ), called the multiple logarithm cycle.
Its components in the bar complex are parametrized by dissections of the
original polygon. By a slight generalization of this construction, we obtain
our multiple polylogarithm cycle.

4. Comparison theorems. The very name of the cycles suggests that they
correspond to the motivic multiple polylogarithms from [15]. We give two
pieces of evidence for this:

(i) The coproduct for the multiple polylogarithm cycles agrees with
the one for the motivic multiple polylogarithms computed in [15].
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(ii) Using the Hodge realization of the cycle Hopf algebra ([3]), we
recover from our algebraic cycles the corresponding analytic functions.

1.5. The structure of the paper. In Section 2 we recall a few facts about
Bloch’s DGA of cubical algebraic cycles N •(F, p), for a field F .

In Section 3 we define, for a set R, another DGA T ∗• (R), built from R-decorated
rooted forests. A very similar differential graded algebra, for non-rooted forests,
was introduced in [11].

In Section 4 we relate the forest DGA to the cycle DGA in the case when
R = F×. More precisely, we define a subalgebra T̃ ∗• (F×) of T ∗• (F×) by imposing
some explicit genericity condition on the decoration. Then we construct a map of
graded DGA’s

Φ : T̃ ∗• (F×) −→ N 2∗−•(F, ∗) .

In Section 5 we introduce the second important ingredient of our construction:
given an ordered collection of elements x1, . . . , xm ∈ F×, we define an element

τ(x1, . . . , xm) ∈ T ∗• (F×)

with decomposable differential. Under the genericity conditions on the xi’s, it be-
longs to T̃ ∗• (F×), and the algebraic cycle Φτ(x1, . . . , xm) corresponds to the mul-
tiple logarithm (cf. 1.1). Then we introduce R-deco polygons as more convenient
combinatorial objects, and define a DGA of R-deco polygons, which maps to the
tree DGA from Section 4.

We show in Section 8.2 that the DGA of R-deco polygons is identified with the
standard cochain complex of a Lie coalgebra of (formal) iterated integrals defined in
[15]. There is yet another differential ∂ on the graded algebra of R-deco polygons,
which plays only a technical role in the paper. In Section 5.4 the corresponding
DGA is related to the rooted version of one of the graded Lie coalgebras introduced
in [12] under the name of the dihedral Lie coalgebras.

In Section 6, we perform the bar construction on polygons. It gives rise to a
Hopf algebra with an induced map to χcycle.

In Section 7, an explicit formula for the coproduct in this Hopf algebra of
polygons is given.

In Section 8, we prove a coproduct comparison theorem: the coproduct of
our multiple polylogarithm cycles agrees with the coproduct of the corresponding
motivic iterated integrals obtained in [15]. This ensures that our multiple polylog-
arithm cycles agree with the corresponding motivic iterated integrals. We relate
the formula for the coproduct in the Hopf algebra of polygons to the one from [6].

In Section 9, we show how to get the original multivalued analytic functions
(2) from the constructed cycles.

In Section 10, we indicate how to modify our construction in order to obtain
cycles corresponding to multiple polylogarithms.

See Sections 7-9 of [13] for connections between the sums of plane decorated
trivalent trees and multiple polylogarithms closely related to the one discussed in
our paper.

Our paper [9] can serve as an introduction to the present paper.
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During the preparation of the final version of this paper, we learned that H.
Furusho and A. Jafari obtained similar results, pertaining to the tree picture [7].
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2. Background on algebraic cycles

We review some of the main properties of cubical algebraic cycles. Our main
references for the general set-up are the papers by Bloch [4], [5], §2.4.1, and by
Bloch and Kriz [3], §5. The reader can find more examples in [8].

Let F be a field. Following [5], we define the algebraic 1-cube �F as a pair

�F =
(
P1
F \ {1} ' A1

F , (0)− (∞)
)
.

Here we consider the standard coordinate z on the projective line P1
F and remove

from it the point 1. Furthermore, (0)− (∞) denotes the divisor defined by the two
points 0 and ∞, anticipating the form of the differential which arises from inter-
secting (alternatingly) with the hyperplanes where one of the coordinates becomes
0 or ∞. The algebraic n-cube is defined by setting �nF = (�F )n.

Bloch defined (we use the conventions from [3], §5), for p, n ∈ N, the cycle
groups

Cyclep〈F, n〉 = Z
[
{admissible closed irreducible subvarieties over F ,

of codimension p in �nF }
]
.

Here a cycle is called admissible if it intersects all the faces, of any codimension,
of �nF (obtained by setting some of the coordinates equal to 0 or ∞) properly, i.e.,
if it intersects them in codimension p or not at all.

Let G(k) be the semidirect product of the symmetric group Sk and the group
(Z/2Z)k, acting by permuting and inverting the coordinates in�kF . We write “Altk”
or short “Alt” for the alternation under this group G(k) and set

Nn(F, p) = Alt2p−n(Cyclep〈F, 2p− n〉 ⊗Q) .

Putting the group Nn(F, p) in degree n (it may be more appropriate to put it
in degree −n and then to shift it by 2p, as in [3]), we get, for a fixed p, a complex

· · · → Nn(F, p) ∂→ Nn+1(F, p)→ . . .

where the differential ∂ is given by

∂ =
n∑
i=1

(−1)i−1(∂i0 − ∂i∞)
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and ∂iε denotes the operator given by the intersection with the coordinate hyper-
plane {zi = ε}, ε ∈ {0,∞}, followed by a pullback map along face maps on the
cube.

The Cartesian product of cubes gives again a cube, and it induces a product
of cycles, in fact even compatible with the alternation mentioned above; one gets
(cf. [4], Lemma 1.1, and [3], Prop. 5.1):

Proposition 2.1. Given a field F , the algebraic cycle groups Nn(F, p) give
rise to a differential graded algebra N • =

⊕
p> 0N •(F, p). Its cohomology groups

are the higher Chow groups of F .

The higher Chow groups of a field F are known, by Bloch ([1] and [2]) and also
by Levine [16], to be rationally isomorphic to its algebraic K-groups.

Example 2.2: a) In �3
F , a curve intersecting the line z1 = z2 = 0 is not

admissible, since an admissible curve has to meet faces of dimension 1 in
codimension 2, i.e. not at all.

b) For any element a in F , one can associate a cubical algebraic cycle which
corresponds to the dilogarithm Li2(a) if F ↪→ C. This cycle has been
given by Totaro as the image of the map

ϕa : P1
F →

(
P1
F

)3
,

t 7→ (t, 1− t, 1− a

t
) ,

restricted to the algebraic cube �3
F : we write

Ca :=
[
t, 1− t, 1− a

t

]
:= Alt

(
ϕa
(
P1
F

)
∩�3

F

)
.

The cycle Ca belongs to the group N 1(F, 2). One has

∂Ca = [a, 1− a] ∈ �2
F

(only ∂3
0 gives a non-empty contribution). The same computation shows

that Ca is in fact admissible. Observe the apparent similarity with the
formula dLi2(a) = − log(1 − a) d log(a) for the differential of the diloga-
rithm.

c) Recall that the double logarithm can be defined by an iterated integral

I1,1(x1, x2) =
∫

∆γ

dt1
t1 − x1

∧ dt2
t2 − x2

,

in the notation of (1) in the Introduction. Its differential can be easily
computed as

(11) d I1,1(x1, x2) = I1(x1) d I1(x2)− I1(x1) d I1
(x2

x1

)
+ I1(x2) d I1

(x1

x2

)
.

The cycle

(12) Zx1,x2 :=
[
1− 1

t
, 1− t

x1
, 1− t

x2

]
,
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will play the role of the double logarithm among the algebraic cycles. Its
boundary is readily evaluated as

(13)

∂Zx1,x2 =
[
1− 1

x1
, 1− 1

x2

]
︸ ︷︷ ︸

from z1=0

−
[
1− 1

x1
, 1− x1

x2

]
︸ ︷︷ ︸

from z2=0

+
[
1− 1

x2
, 1− x2

x1

]
︸ ︷︷ ︸

from z3=0

∈ N 2(F, 2)

whose individual terms are already very reminiscent of the three terms in
(11).

The cycle associated to the triple logarithm I1,1,1(x1, x2, x3) is given in Example
5.2 below.

3. The differential graded algebra of R-deco forests

In this paper, a plane tree is a finite tree whose internal vertices are of va-
lency > 3, and where at each vertex a cyclic ordering of the incident edges is given.
We assume that all the other vertices are of valency 1, and call them external ver-
tices. A plane tree is planted if it has a distinguished external vertex of valency 1,
called its root; in particular, a planted tree has at least one edge. A forest is a
disjoint union of trees.

Below we work with algebras over Q, although we may replace it by any field
of characteristic zero.

3.1. The orientation torsor. Recall that a torsor under a group G is a set
on which G acts freely transitively.

Let S be a finite (non-empty) set. We impose on the set of orderings of S an
equivalence relation, given by even permutations of the elements. The equivalence
classes form a 2-element set OrS of orientation classes, for short also orientations.
It has an obvious Z/2Z-torsor structure and is called the orientation torsor of S.

Definition 3.1. The orientation torsor of a plane forest is the orientation
torsor of the set of its edges.

3.2. The algebra of R-deco forests.

Definition 3.2. Let R be a (non-empty) set. An R-deco tree is a planted
plane tree with a map, called R-decoration, from its external vertices to R. An
R-deco forest is a disjoint union of R-deco trees.

Remark 3.3: (1) There is a canonical direction for each edge in an R-deco
tree, away from the root.

(2) An edge ordering in a tree τ provides an orientation on τ . For a planted
plane tree there is a canonical linear order of the edges, starting from
the root edge, which is induced by the cyclic order of edges at internal
vertices.

We draw the trees so that the cyclic order of edges around the vertices is
displayed in counterclockwise direction, and the root vertex is at the top.
Example 3.4: We draw an R-deco tree τ with root vertex decorated by x4 ∈ R;
its other external vertices are decorated by x1, x2, x3 ∈ R. The above-mentioned
ordering of the edges ei coincides with the natural ordering of their indices, while
the direction of the edges (away from the root) is indicated by small arrows along
the edges. The root vertex is marked by a circle around it.
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•
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•
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•

•

e3
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•

e4

///////

/��

x4

x1 x2

x3

τ

Figure 1: An R-deco tree τ with root vertex decorated by x4.

We define the grading of an R-deco tree τ by

e(τ) = #{edges of τ}

and extend it to forests by linearity: e(φ1 t φ2) := e(φ1) + e(φ2). (Here t denotes
the disjoint union.)

Let V tr
• (R) be the graded vector space where V tr

n (R) for n > 0 has a basis given
by R-deco trees of grading n and where V tr

0 (R) := Q · 11 for an extra generator 11.

Definition 3.5. The algebra T•(R) is the free graded-commutative algebra with
unit 11, generated by the graded vector space V tr

• (R).

Here is a definition which does not use a choice of orientation.

Definition 3.6. For a set R, T Or
• (R) is generated as a vector space by pairs

(φ, ω), where φ is an R-deco forest and ω an orientation on it, subject to the relation
(φ,−ω) = −(φ, ω).

We define an algebra structure ? on T Or
• (R) by letting 11 be the neutral element

with respect to ? and by setting (t denotes the disjoint union)

(φ1, ω1) ? (φ2, ω2) := (φ1 t φ2, ω1 ⊗ ω2) .

It makes T Or
• (R) into a graded-commutative algebra, so the basis elements of V tr

• (R)
commute in the R-deco tree algebra via the rule

(τ1, ω1) ? (τ2, ω2) = (−1)e(τ1)e(τ2)(τ2, ω2) ? (τ1, ω1) .

Since each R-deco tree comes equipped with a canonical orientation (cf. Re-
mark 3.3), we can—and in the following will—identify T•(R) with T Or

• (R). This
identification will be useful in describing the differential, since the orientation torsor
takes care of the signs which are more complicated to describe for T•(R). We will
refer to either algebra as the R-deco tree algebra.

3.3. The differential. A differential on T•(R) ∼= T Or
• (R) is a map

d : T•(R) −→ T•−1(R)

satisfying d2 = 0 and the Leibniz rule

d
(
(τ1, ω1) ? (τ2, ω2)

)
= d
(
(τ1, ω1)

)
? (τ2, ω2) + (−1)e(τ1)(τ1, ω1) ? d

(
(τ2, ω2)

)
.
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Since T•(R) is a free graded-commutative algebra, it is sufficient to define the
differential on the algebra generators, that is on the elements (τ, ω), where τ is an
R-deco tree and ω is an orientation of τ .

The terms in the differential of a tree τ arise by contracting an edge of τ—they
fall into two types, according to whether the edge is internal or external. We will
need the notion of a splitting.

Definition 3.7. A splitting of a tree τ at an internal or root vertex v is
the disjoint union of the trees which arise as τi ∪ v where the τi are the connected
components of τ \ v.

The following further structures on τ are inherited for each τi∪v: a decoration
at v, planarity of τ and an ordering of its edges. Also, if τ has a root r, then v
plays the role of the root for all τi ∪ v which do not contain r.

Definition 3.8. Let e be an edge of a tree τ . The contraction of τ along e,
denoted τ/e, is given as follows:

(1) If e is an internal edge, then τ/e is again a tree: it is the same tree as
τ except that e is contracted and the incident vertices v and v′ of e are
identified to a single vertex.

(2) If e is an external edge, then τ/e is obtained as follows: first we contract
the edge e to a vertex w and then we perform a splitting at w.

(3) If the tree consists of a single edge, its contraction gives the empty tree.

Two typical examples are given below: in Figure 2 we contract a leaf, i.e. an
external vertex which is not the root vertex, and in Figure 3 the root edge is
contracted.

• '!&"%#$

••

•�������

• •
9999999

p

sr
e

q

contract

///o/o/o

along e

• '!&"%#$

••

•�������

•
9999999

p

s

r

q

split at

///o/o/o

internal vertex

• '!&"%#$

•
• '!&"%#$

•�������
• '!&"%#$

•
9999999

p

s

r

q

Figure 2: Contracting a leaf.

• '!&"%#$

••

•�������

• •
9999999

p

sr

e′

q

contract

///o/o/o

along e′ • '!&"%#$

•�������

• •
9999999

sr

p

q

split at

///o/o/o

root vertex • '!&"%#$

•�������
• '!&"%#$

•
9999999• '!&"%#$

•

p pp

srq

Figure 3: Contracting the root edge.

Remark 3.9: The linear ordering on the edges of τ induces a linear ordering
on each of the trees which result from a splitting, and it furthermore induces a
linear ordering on the trees in the resulting forest. The notion of an unshuffle is
appropriate to describe this.
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Let S be a finite set and OrS the orientation torsor of S. We present its elements
as s1∧...∧sn, where n = |S|, with the relation sσ(1)∧· · ·∧sσ(n) = sgn(σ)

(
s1∧· · ·∧sn

)
for any permutation σ on n letters. For |S| = 1 there is a unique orientation.

Given s ∈ S and ω ∈ OrS , we define an element isω ∈ OrS−s as follows:

isω := s2 ∧ ... ∧ sn if ω = s ∧ s2 ∧ ... ∧ sn .

Definition 3.10. Let τ be a finite tree with set of edges E(τ), and let ω be an
orientation of τ . The differential on (τ, ω) is defined as

d : (τ, ω) 7→
∑

e∈E(τ)

(τ/e, ieω) .

In particular, d maps a tree with at most one edge to zero (which corresponds to
the empty tree).

Proposition 3.11. The map d just defined is in fact a differential, i.e. d2 = 0.

Proof. For a tree τ with one edge only we already have d(τ) = 0. Applying d
to a generator (τ, ω) with > 2 edges, we obtain

∑
e∈E(τ)(τ/e, ieω), and a second

application of d gives (with the obvious notation τ/(e t e′) for the independent
contraction of the edges e and e′ to a point each)∑
e′∈E(τ/e)

(
(τ/e)/e′, ie′(ie(ω))

)
=

∑
(e,e′)∈E(τ)2

e 6=e′

(
τ
/

(e t e′), ie′(ieω)
)

=
∑
e<e′

(
τ
/

(e t e′), ie′(ieω)
)

+
(
τ
/

(e t e′), ie(ie′ω)
)

which vanishes since ie′ieω = −ieie′ω. Note that this argument works also if e and
e′ are contracted to the same point. �

Proposition 3.12. The differential of Definition 3.10 extends to a differential
on trees with R-deco structure.

Proof. We can identify R-deco forests which arise from successively contracting
edges in an R-deco tree with trees having external and possibly internal decoration.
Thus, as long as the two contracted edges are not adjacent leaves, the same proof
as for the previous proposition applies.

If the two contracted edges are adjacent leaves, then the contraction of the
second one gives 0, since it corresponds to contracting a tree with a single edge. �
Example 3.13: The simplest non-trivial example for the differential of an F×-
deco tree, where F× is the multiplicative group of a field F , can be seen on a tree
with one internal vertex, as given in Figure 4. Here we choose the F×-decoration
(x1, x2) with x1, x2 ∈ F× for the leaves and the decoration 1 for the root:

• '!&"%#$

••

•�������

•
9999999

• •

1

x1 x2

d7−→

• '!&"%#$

•

1

x1

?

• '!&"%#$

••

1

x2

−

• '!&"%#$

••

1

x1

?

• '!&"%#$

••

x1

x2

+

• '!&"%#$

••

1

x2

?

• '!&"%#$

••

x2

x1

Figure 4: The differential on a tree with one internal vertex.
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For the drawings, we use the canonical ordering of edges (cf. Remark 3.3) for F×-
deco trees and the induced ordering of edges for forests which arise from a splitting.
The edge ordering of the forest produces its orientation, i.e. the choice of an element
in the orientation torsor.
Remark 3.14: There is a Z-bigrading on T•(R) given by

T pn (R) = Z[{R-deco forests with n edges and p leaves}] .

For n6 0 or p6 0 it is zero, except for p = n = 0 where it is ' Q. It will correspond
to the bigrading on the cycle groups N 2p−n(F, p).

For a set R, put
T ∗• (R) :=

⊕
p> 0

⊕
0 6 p6n

T pn (R) .

We have an obvious augmentation map ε : T ∗• (R)→ Q defined by taking the zeroth

component.
With the above definitions, we have:

Proposition 3.15. The algebra T ∗• (R), together with the differential d above,
forms a bigraded DGA with augmentation. The differential lowers the grading in-
dicated with subscripts by 1 and leaves the grading indicated by superscripts un-
changed.

Proof. We have already proved in Proposition 3.11 that d2 = 0. It remains to
show that the differential is compatible with the bigrading. In fact, we have more
precisely

d : T pn (R)→ T pn−1(R) ,

where T p0 (R) = 0 for any p > 0.
We distinguish three cases, dealing first with a tree τ in T pn (R):
(1) If we contract an internal edge in τ , we obtain a tree with one edge less

(so the subscript grading is lowered by 1) and with the same root and
decorations of external edges.

(2) For contractions of an external non-root edge, the vertex to which the edge
is contracted serves as a root vertex for all but one tree in the resulting
forest. Therefore the number of external non-root vertices does not change
under the contraction while the number of edges obviously does.

(3) If the root edge is contracted, none of the external non-root edges changes
its properties, except when the tree consists of a single edge in which case
the contraction gives the empty tree. In both cases the claim follows
immediately.

Using the Leibniz rule, we get the corresponding statement for forests, and by
linearity it follows for any element in T pn (R). �

4. Mapping forests to algebraic cycles

In the special case where R = F×, the multiplicative group of a field F , we can
establish the connection between the two differential graded algebras above, and
Theorem 4.2 below gives the first main result of this paper.

It turns out that the admissibility condition on algebraic cycles mentioned
above forces us to restrict to a subalgebra of T ∗• , which we now describe.
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Definition 4.1. We call an R-deco tree generic if all the individual decora-
tions of external vertices are different.

We denote the subalgebra of T ∗• (R) generated by generic R-deco trees by T̃ ∗• (R).

One of our key results is the following statement:

Theorem 4.2. For a field F , there is a natural map of differential graded
algebras

T̃ ∗• (F×)→ N 2∗−•(F, ∗) .
It is given by the map in Definition 4.3 below.

A proof of this statement is given at the end of this section.

Definition 4.3. The forest cycling map for a field F is the map Φ from
T ∗• (F×) to (not necessarily admissible) cubical algebraic cycles over F given on
generators, i.e. F×-deco trees τ with orientation ω, as follows:

to τ ∈ T̃ pn (F×), with the canonical ordering on edges ei, we associate the closure
of a graph cycle given in parametrized form: it maps to Z(τ) = [Z1(τ), . . . , Zn(τ)] ∈
�nF and is of dimension n − p, the number of its internal vertices; we extend the
decoration of τ to a decoration of all vertices, where the internal vertices are dec-
orated by independent variables, say u1, . . . , un−p, so that each (oriented) edge
ei (16 i6n) in τ has both source decoration ei(s) and target decoration ei(t) in
{uj}j ∪ F×. Then we put Zi(τ) = 1− ei(s)

ei(t)
.

The ordered disjoint union of trees maps to the (cycle) product of the associated
cycles.

The well-definedness of the map is due to the following facts: an edge ordering in
the same orientation class gives the same cycle under the alternation; furthermore,
parametrizations with different (independent) variables give rise to the same cycle.

The above somewhat lengthy description of the map Φ is easily understood by
looking at an example. We denote the concatenation product for algebraic cycles
by ∗, and we encode the expression 1− x

y , for x, y in a field, by the following picture

•

•

�
�
y

x

Example 4.4: Let us consider the forest cycling map Φ for the following R-deco
tree (τ, ω), where the orientation ω is given by e1 ∧ e2 ∧ e3 (we leave out the arrows
since the edges are understood to be directed away from the root):

• '!&"%#$

••

•�������

•
9999999

• •

1

x1 x2

e1

e2 e3

u

Φ7−→
[
1− 1

u

]
∗
[
1− u

x1

]
∗
[
1− u

x2

]
=
[
1− 1

u
, 1− u

x1
, 1− u

x2

]
.

Figure 5: The forest cycling map on a tree with one internal vertex.
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This cycle, as already mentioned, corresponds to the double logarithm I1,1(x1, x2),
as we will see in Section 6.

Before proceeding to the proof of the theorem, we give two preparatory state-
ments.

Lemma 4.5. For any τ ∈ T̃ ∗• (F×), if we restrict Φ(τ) to parameter values
different from 0 and ∞ then the resulting locus is already closed in �nF .

Proof. We show that, whenever one of the parameter values becomes 0 or ∞, the
tree structure ensures that the associated cycle is empty, since one of the coordinates
zj attains the value 1. E.g., if the parametrized variable u attached to the internal
vertex v becomes ∞, then there is a first edge on the shortest path from v to the
root vertex whose source decoration is different from ∞, and hence the coordinate
associated to that edge becomes 1, guaranteeing that the cycle is contained in⋃
j{zj = 1}, i.e. vanishes in �nF .

Similarly, if the value of the parameter u attached to an internal vertex v
becomes 0, a similar argument gives the vanishing of the points regardless of the
specialization of the other internal variables, except that this time the path from v
to a (in fact any) leaf has to be considered. �

Lemma 4.6. Let ej be the jth edge in the canonical edge ordering for τ ∈
T̃ ∗• (F×). Then the locus of Φ(τ/ej) is equal to the locus of Φ(τ) ∩ {zj = 0}.
Furthermore, the locus of Φ(τ) ∩ {zj =∞} is empty.

Proof. The second claim follows from Lemma 4.5, since a coordinate zj becomes
=∞ only if one of the parameter values equals 0 or ∞.

The first claim is essentially how the definition of the differential was found in
the first place: to contract an edge ej amounts to identifying both of its decorations,
i.e. ej(s) = ej(t), which is tantamount (for ej(s), ej(t) /∈ {0,∞}) to demanding
(zj =)1 − ej(s)

ej(t)
= 0, i.e., to intersect the cycle Φ(τ) with the hyperplane {zj =

0}. �

Proof (of Theorem 4.2). The bigrading of a tree τ in T̃ pn (F×) translates to the

respective bigrading of the cycle Φ(τ): since τ has n edges, its image under Φ lands
in �nF . Furthermore, τ has n+ 1 vertices, p+ 1 of which are external, and so maps
to a cycle with n− p independent parameters, i.e., Φ(τ) is of codimension p.

We first reduce the admissibility condition for Φ(τ) to the one on its contrac-
tions.

Claim 1: Φ(τ) is admissible ⇔ Φ(τ/e) is admissible for any edge e in τ .
This follows immediately from Lemma 4.6, as the admissibility of a cycle is

expressed in terms of its intersections of the coordinate hyperplanes {zj = 0} and
{zj =∞}.

This now allows us to check the admissibility of a tree cycle Φ(τ) inductively.

Claim 2: Each generic F×-deco tree in T̃ pn (F×) maps under Φ to an admissible
cycle in N 2p−n(F, p).

The case n = 1: Note that for p = 1 the only obstruction for a cycle [a] in
N 1(F, 1) to be admissible is that the (constant) coordinate a is not allowed to be
equal to 0 or to ∞. Translated back to the F×-deco trees, this condition means
that 1− yv

yw
6∈ {0,∞}, where yv and yw are the elements in F× decorating root and
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non-root vertex, respectively. The second possibility (1− yv
yw

=∞) is excluded since
yw = 0 is not allowed as a decoration, and the first possibility (1− yv

yw
= 0) entails

yv = yw which is excluded by the genericity condition for T̃ 1
1 (F×). For p 6= 1, there

is nothing to show.
The case n> 2: we use induction.
In case we contract an internal edge, we obtain a single tree in which n is

reduced by 1, and which is still generic since the decoration does not change, so
that induction applies.

In case we contract an external edge, there are at least two trees (or none) pro-
duced, and either tree lies in T̃ pν (F×) for some ν < n. The admissibility condition
imposes that all decorations for each individual tree are mutually different. Since
decorations are inherited by such a contraction, it is necessary and sufficient for
τ to have itself mutually different decorations in order to make Φ(τ) admissible:
otherwise contracting successively the edges along the shortest path between two
identical decorations would produce a forest with one tree consisting of a single
edge with two identical decorations (in F×) and the remaining trees leading to
non-vanishing cycles; since that single edge tree produces under Φ a coordinate
equal to the constant 0, admissibility would be violated. This proves Claim 2.

Finally, we show that the differentials for the two DGAs are compatible.
Claim 3: The differential on cycle groups, restricted to Φ

(
T̃ pn (F×)

)
, can be

written as
∑n
j=1(−1)j−1∂j0.

The differential
∑n
j=1(−1)j−1(∂j0 − ∂j∞) on a cycle Z ∈ Zp(F, n) is given by

∂Z =
∑

(−1)i−1
(
Z ∩ {zi = 0} − Z ∩ {zi =∞}

)
. Lemma 4.6 shows that for Φ(τ),

τ ∈ T̃ pn (F×), the intersections Φ(τ)∩{zi =∞} are empty (16 i6n). It remains to
check the compatibility of signs. But the differential on trees has alternating signs
(starting from the root edge, with positive sign), as does the differential on cycles.
Moreover, the preferred linear ordering on edges corresponds to the linear ordering
of the corresponding coordinates zj and the map from trees to the Alt projected
cycles factors through the passage to the orientation class of the tree which can be
viewed as an alternating quotient for the smaller group Sn < G(n). �

5. Tree sums with decomposable boundary and polygons

In this section, we single out a number of formal linear combinations over
R-deco trees whose boundary consists of decomposable terms only. Each such
combination can be encoded by an R-decorated polygon, which suggests to pull
back the DGA structure on trees to polygons.

It is convenient to introduce a second differential ∂ on polygons. Its tree real-
ization coincides with the main one. We relate the Lie coalgebra corresponding to
the differential ∂ to the dihedral Lie coalgebra from [12].

5.1. Tree sums with decomposable boundary.

Definition 5.1. Let {x1, . . . , xm+1} be a collection of distinct elements of R.
Then τ(x1, . . . , xm+1) ∈ T m2m−1(R) is the sum of all trivalent R-deco trees with m
leaves whose R-decoration is given by (x1, x2, . . . , xm+1), the last one decorating the
root.

Recall that the number of such trees is given by the Catalan number 1
m

(
2(m−1)
m−1

)
.
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Example 5.2: 1. For m = 2, the tree τ(x1, x2, 1) is given by the tree in Figure 5.
2. For m = 3, the sum of trees has already more than a single term:

τ(x1, x2, x3, x4) =

• '!&"%#$

••

•���������������

•
9999999

•

•

•�������

•
9999999

x4

x1 x2 x3

e′
+

• '!&"%#$

••

•�������

•
999999999999999

•

•�������

•
9999999

x4

x2x1 x3

e

Figure 6: The sum of trees corresponding to the quadruple (x1, x2, x3, x4).

Applying Φ to the sum of trees τ(x1, x2, x3, 1) with mutually different xi ∈
F× \ {1} for a field F , we get the following cycle:
(14)

Zx1,x2,x3 =
[
1−1

t
, 1− t

x1
, 1− t

u
, 1− u

x2
, 1− u

x3

]
+
[
1−1

t
, 1− t

u
, 1− u

x1
, 1− u

x2
, 1− t

x3

]
.

Here we have two parametrizing variables, t and u, and Zx1,x2,x3 ∈ N 1(F, 3).

Proposition 5.3. Let {x1, . . . , xm} be a collection of distinct elements of F×.
The image of the tree sum τ(x1, . . . , xm) under the forest cycling map is an admis-
sible cycle with decomposable boundary.

Proof. The admissibility of the resulting cycle follows immediately from Lemma
4, since the decorations x1, . . . , xm are mutually different.

Concerning the statement about the boundary, note first that the contraction
of an external edge in a trivalent tree produces a forest which, if non-empty, is not
a tree, and thus maps to a decomposable cycle under Φ.

The contributions of internal edges in the tree sum cancel. Indeed, there are
exactly two trivalent trees, τ and τ ′, containing the same subtrees τi, i = 1, . . . , 4,
but joined in a different way, via edges e and e′, as shown in the picture:

e

τ1

τ2

τ4

τ3
e′

τ2 τ3

τ1 τ4

We can write the canonical orientations ω(τ) of τ and ω(τ ′) of τ ′ in terms of
the subtrees τi (i = 1, . . . , 4), where τ1 contains the root of τ , as follows:

ωτ = ωτ1 ∧ ωτ2 ∧ e ∧ ωτ3 ∧ ωτ4 , ωτ ′ = ωτ1 ∧ e ∧ ωτ2 ∧ ωτ3 ∧ ωτ4

where ωτi denotes the canonical orientation for τi. The essential point is that
each of the trees τi have an odd number of edges, and thus the corresponding
orientations anticommute. Thus ωτ ′ = −ωτ . Therefore the terms in the differential
corresponding to the contraction of e in τ and of e′ in τ ′ produce the same tree
with opposite orientation torsor and thus cancel. �
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5.2. The algebra of R-deco polygons. A polygon is an oriented convex
polygon with N > 2 sides. It inherits a cyclic order of the sides. Let R be a set.

Definition 5.4. An R-deco polygon is a polygon whose sides are decorated
by elements of R, with a distinguished side, called its root side.

The orientation of the polygon induces a linear order of its sides such that the
root side is the last one. The first vertex of the polygon is the common vertex of
the root side and the first side. Once the root side is determined, the orientation
determines the first vertex, and vice versa. So we indicate the orientation in pictures
by marking the first vertex by a bullet.

We use the notation [ a1, . . . , aN ] for an R-deco N -gon with linearly ordered
sides decorated by a1, . . . , aN , where aN is the root decoration.
Example 5.5: Here is an R-deco 6-gon π = [ a1, . . . , a6 ] . The root side is drawn
by a double line, the first vertex is marked by a bullet, and the orientation is
counterclockwise.

a3

a2

111111 a4









a5

111111

a6•
a1







π

The weight χ(π) of an R-deco polygon π is the number of its non-root sides.
We define the graded vector space V pg

• (R) =
⊕∞

n=0 V
pg
n (R), where V pg

n (R), for
n> 1, denotes the vector space of R-deco (n+ 1)-gons, and V pg

0 (R) := Q.

Definition 5.6. The polygon algebra P(•)
• = P(•)

• (R) is the exterior algebra
of the graded vector space V pg

• (R). It is bigraded: the second grading, denoted via
superscripts, comes from the exterior power.

As we will often ignore the second grading, we mostly denote this algebra by
P• .

To define a differential on P• , we introduce arrows and dissections:

Definition 5.7. An arrow in an R-deco polygon π is a line segment be-
ginning at a vertex and ending at the interior of a side of π. An arrow connecting
a vertex with an incident side is trivial.

An arrow in π is a backward arrow if, in the linear order of the sides of π,
its end is before its beginning. Otherwise, it is a forward arrow.

We identify arrows with the same vertex ending at the same side.
Example 5.8: The following picture shows two forward arrows α and γ and a
backward arrow β in the R-deco 6-gon of the previous example.

a3

a2

111111 α 55 55kkkkkkkk

β

kkkkWWWWWWWWWWW
γ )) ))SSSSSSSS

a4









a5

111111

a6•
a1








π

Any non-trivial arrow dissects a polygon into two regions.
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Definition 5.9. Let π be an R-deco polygon with > 3 sides, and α a non-
trivial arrow in π. A dissection of π by α is the ordered pair (ρ•=α , ρ

t
α) of a root

region ρ•=α and a cut-off region ρtα, where ρ•=α ∪ ρtα = π. The root region is the
one containing the first vertex and part of the root side.

We assign to these regions R-deco polygons π•=α and πtα by contracting the arrow
α in either region. The polygon π•=α inherits the root and the orientation from π.
In the polygon πtα , the root side is the one on which α ends. Its first vertex is given
by the contraction of the arrow.

Example 5.10: The arrow α dissects the hexagon π in the picture into the regions
ρ•=α and ρtα. On the right hand side, we draw the R-deco polygons associated to
the two regions.

3

2

111111

α

@@ @@�����������
4









5

111111

6•
1








ρ•=α

ρtα

π
associated

polygons for ρ∗α
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• 6

5

2

1

π•=α
• 5

4
������

3 333333
πtα

Let χ(α) := χ(πtα) be the number of the non-root edges of the polygon πtα .

Definition 5.11. To an arrow α in an R-deco polygon π we assign its sign:

sgn(α) =

{
(−1)χ(α) if α is backward,
1 otherwise.

The sum over all the dissections of π provides a differential ∂ π:

Definition 5.12. Given a non-trivial arrow α of an R-deco polygon π, set

∂απ = π•=α ∧ πtα ∈ P(2)
• ,

where π•=α and πtα are as in Definition 5.9.
The differential ∂ π of π is the sum

∑
α sgn(α)∂απ over the arrows α in π.

It extends to a differential on P(•)
• via the Leibniz rule ∂(a ∧ b) = (∂a) ∧ b +

(−1)deg(a) a ∧ (∂b). Here deg is the degree in the exterior algebra.

Example 5.13: The differential applied to a triangle gives three terms:

∂
( 3

2
������

1 333333• )
= 3•

1

∧ 3•
2

+ 3•
2

∧ 2•
1

− 3•
1

∧ 1 •
2

.

The summands correspond respectively to the following three dissections:

3

2
������

1 333333 OOOO•
,

3

2
������

1 333333
&& &&

NNNNN
•

,

3

2
������

1 333333
xxxx

ppppp
•

.

The justification of the name “differential” is given by Proposition 5.15 below.
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Another differential on R-deco polygons. Given an arrow α in an R-deco
polygon, set

εα =

{
−1 if α is backward,
1 otherwise.

Definition 5.14. In the set-up of Definition 5.9, a dissecting arrow α gives
rise to two R-deco polygons π•=α and πtα, whose orientations are inherited from the
one of π, and whose decorations are as in Definition 5.9.

A differential ∂ is defined as in Definition 5.12, with ∂π =
∑
α εαπ

•=
α ∧ πtα.

Note that π•=α = π•=α , and that πtα = πtα for a forward arrow α. If α is backward,
then πtα has the opposite orientation.

Proposition 5.15. 1. One has ∂2 = 0. The polygon algebra P(•)
• (R) is an

augmented DGA with the differential ∂.
2. One has ∂

2
= 0, providing the same polygon algebra with another augmented

DGA structure, denoted P(•)

• (R).

Remark 5.16: Proposition 5.15 is equivalent to the following statement: Each of
the maps ∂ and ∂ provides a Lie cobracket

(15) V pg
• (R)→ V pg

• (R) ∧ V pg
• (R)

So there are two graded Lie coalgebra structures on the graded vector space V pg
• (R).

The graded-commutative DGA P(•)

• (R) (respectively P(•)
• (R)) is just the stan-

dard cochain complex of the Lie coalgebra (V pg
• (R), ∂) (respectively (V pg

• (R), ∂)).
We will give a direct proof of Proposition 5.15 in Section 6.
On the other hand, there is another proof. Namely, we identify in Proposition

8.1 the map ∂ with the cobracket in a Lie coalgebra of formal iterated integrals
defined in [15]. The latter Lie coalgebra was interpreted in loc. cit. as the dual
to the Lie algebra of all derivations of a certain structure. So the property ∂2 = 0
is valid on the nose. Similarly, we identify in Subsection 5.4 the map ∂ with the
cobracket in a rooted version of one of the dihedral Lie coalgebras defined in [12].

5.3. Relating the polygon algebra to the tree algebra. The standard
duality between triangulated polygons and trivalent trees carries over to the respec-
tive R-deco objects (to each side we first associate a region outside of the polygon,
and then each of its sides and diagonals corresponds to an edge of the tree, while
each region—inside or outside—corresponds to a vertex):
Example 5.17: We give a picture of an N-deco hexagon with triangulation, on the
left (the dotted lines indicate the outside regions of the polygon), and of its dual
N-deco tree, on the right. Note the little arrow attached to the root edge which
indicates the orientation (counterclockwise for the given example).
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Proposition 5.18. The standard duality induces a map from P• (R) to the
subalgebra T3−val(R) of the tree algebra T•(R) which is generated by trivalent trees.

Proof. Let ∇ be a triangulation of an R-deco polygon π with dual tree τ . For each
internal vertex of τ , the orientation of π induces a cyclic ordering on the incident
edges, and the root of π induces a root of τ . Putting both data together, τ inherits
an orientation (in fact, even a linear ordering on its edges).

We associate to π the following sum, where ∇ runs through all triangulations
of π and τ(π,∇) denotes the (oriented) R-deco tree dual to the triangulation ∇ of
π,

(16) π 7→
∑

∇ triangulation

τ(π,∇) .

By the duality above, we identify each term in the sum with the corresponding
oriented R-deco tree. �

Theorem 5.19. The map from (16) induces a map of differential graded alge-
bras P• (R)→ T•(R) as well as P• (R)→ T•(R).

Proof. We start from the second claim, which is a bit more straightforward. Let π
be an R-deco polygon with triangulation ∇, and let τ = τ(π,∇) be the dual R-deco
tree. Let us calculate the effect of contracting an edge e.

Internal edges: The proof of Proposition 5.3 shows that the terms in the dif-
ferential for τ arising from internal edges cancel.

External edges: Let e be an external edge. Recall that the dual tree for a
triangulation of an oriented polygon has a canonical orientation (that is, an element
of the orientation torsor of the tree).
Remark 5.20: Changing the orientation of an N -gon π amounts to changing the
corresponding orientation of the dual tree of any triangulation of π by (−1)N . (Flip
the two branches at each of the N − 2 internal vertices.)

The edge e is dual to a side se of the polygon π. Let us cut out the triangle
te of the triangulation containing the side se from the triangulation of the polygon
π. We obtain two polygons, πR and πO, where πR is the one containing the root
side if se is not a root, and the first vertex in the latter case. Let ωR and ωO be
the canonical orientations of the dual trees assigned to the induced triangulations
of these polygons.

Let α be the dissecting arrow corresponding to the triangle te: it ends at the
side se, and its vertex coincides with the one of te opposite to the side se. Then, if α
is a forward (respectively a backward) arrow, the canonical orientation of the tree τ
is ωR∧ωO∧e = e∧ωR∧ωO (respectively ωR∧e∧ωO = −e∧ωR∧ωO). Here we used
the fact that the dual tree always has an odd number of edges. In particular, the
root edge corresponds to a forward arrow and produces the orientation e∧ωR∧ωO.
In each case this matches the definition εα.

A proof of the first claim is deduced from this and Remark 5.20. Indeed, this is
obvious for a forward dissecting arrow. For a backward dissecting arrow α we have
a different orientation of the cut-off polygon, which thanks to Remark 5.20 amounts
to the sign (−1)χ(α)+1, and sgn(α) = (−1)χ(α). So the total sign difference will be
−1, matching εα. �

An R-deco polygon is generic if its decorations are all different. Now we can
connect the polygons to algebraic cycles.
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Corollary 5.21. There is a map of differential graded algebras from the
generic part P̃•(F×) of P• (F×) to the cubical algebraic cycles N 2∗−•(∗) over F .

More precisely, P̃N+1(F×) gets mapped to N 2∗−N (∗).

Proof. We just need to combine the above theorem with Theorem 4.2. �

5.4. Appendix: Relation with the dihedral Lie coalgebra from [12].
Let us identify the graded Lie coalgebra of R-deco polygons (V pg

• (R), ∂) with a
rooted version of one of the Lie coalgebras introduced in [12] under the name
of dihedral Lie coalgebras. Let G be a commutative group. Recall the bigraded
dihedral Lie coalgebra D̃•,•(G) = ⊕w,mD̃w,m(G) defined in Section 4.5 of loc. cit.
Consider the corresponding graded Lie sub-coalgebra D̃•(G):

(17) D̃•(G) :=
⊕
w>0

D̃w,w(G),

called the diagonal part of the dihedral Lie coalgebra D̃•,•(G). We relate it to
V pg
• (R) as follows. Put R = G. Then the group G acts on V pg

• (G) by simultaneous
multiplication on the G-decoration, so we can pass to the Lie coalgebra of G-
coinvariants. Killing in the latter coalgebra, for each integer n > 0, the generator
(e : · · · : e︸ ︷︷ ︸

n+1

), where e is the unit in G, we get the Lie coalgebra (17).

The correspondence on pictures. In [12] a typical generator of (17) is
given as a cyclically ordered set of n “black” points on the circle. The complement
to these points is the union of n arcs. The cobracket is the sum of several terms,
each of which is obtained via the following three step procedure, and equipped with
a minus sign:

(1) Cut the circle at a black point and at an arc not adjacent to that point.
(2) Complete each of the two resulting half-circles to a circle by gluing its

ends.
(3) Take the wedge product of the above two circles, so that in the left factor

the path from the black point cut to the arc cut follows the cyclic order.

• g1

•g5

•g4

•\/ g3

•g2

\/t5

// −

•g1

•g3

•g2 ∧

•g4

•g3

•g5

The corresponding term in the differential on polygons looks as follows: we
assign to the circle with black points a polygon whose vertices are centers of the
arcs, and whose sides are labelled by the black points. Then the cutting of the
circle corresponds to an arrow from the middle of an arc to the respective black
point. The dissection induced by this arrow gives a term in the differential and
corresponds precisely to the wedge product of the two smaller circles above. In this
setting, all polygons are oriented clockwise, so we drop the ”orientation vertex”.
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g3

∧ • g3
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◦qqqq
g5

•
◦MMMM
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g4

We will see in Section 8 that the other graded Lie coalgebra (V pg
• (R), ∂) is

related to the Lie coalgebra of motivic iterated integrals.

6. Cycles in the bar construction of the polygon algebra

6.1. Higher dissections of polygons. To deal with the bar construction,
we introduce n-fold dissections.

Definition 6.1. We say that two arrows in a polygon do not intersect if
they have no point in common, except possibly the starting point.

Example 6.2: Two intersecting arrows on the left, four non-intersecting arrows
on the right.
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Definition 6.3. Let π be an R-deco polygon and n a positive integer. An n-
fold dissection D of π is the set of n regions provided by n− 1 non-intersecting
arrows in π: the root region of D is defined in the same way as for 2-fold dissections.

There is a partial order on the set of regions of a dissection, induced by the
root region and by the adjacency of regions. A 1-fold dissection of π is equal to π
itself.

An n-fold dissection D of an R-deco polygon π gives rise to its dual tree τ(D)
whose vertices correspond to the regions of the dissection, and whose (n− 1) edges
are dual to the arrows of D. The root region of D determines the root of τ(D).

Example 6.4: Here is a polygon with a 5-fold dissection, and its dual tree.
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Each n-fold dissection D of π gives rise to n R-deco polygons: the root region
inherits the root of π, and for any other region, there exists a unique arrow in
its boundary which is the closest one to the root of π. Contracting arrows in the
boundary of a region, we get an R-deco polygon. Its root side is the one where the
arrow specified above ends.

Example 6.5: We illustrate the above on an N-deco octagon π, where the sides are
decorated according to their place in the linear ordering of π. The regions r1, r2 and
r3 below get equipped with the root sides 8, 5 and 8, respectively. To each of the
first two regions we associate an R-deco 3-gon, decorated by [ 3, 5, 8 ] and [ 7, 6, 5 ] ,
respectively, while to region r3 there is the 2-gon [ 1, 8 ] associated. Finally, there
are two more regions r4 and r5 leading to the 2-gons [ 2, 1 ] and [ 4, 5 ] , respectively.
We illustrate the above by giving the polygons associated to ri, i = 1, 2, 3.
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6.2. Proof of Proposition 5.15. We first prove the second claim. A typical
term in ∂

2
π for an R-deco polygon π arises from two non-intersecting arrows α and

β. There are two cases to consider, depending on whether the dual tree τ of the
3-fold dissection associated to (α, β) is linear or not.

In case τ is non-linear, it has the form

• '!&"%#$

•������

•
999999 a

b c
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for some subpolygons a, b and c, where a is the root polygon. In ∂
2
π both terms

(a ∧ b) ∧ c and (a ∧ c) ∧ b occur with the same sign, regardless of the type of the
arrows α and β. So they cancel in the wedge product.

If τ is linear, it has the form

• '!&"%#$

•

•

a

b

c

Let us first exclude the case when both arrows α and β are backward, and end at
the same side. Then, by the Leibniz rule, cutting first the upper edge and then the
lower one we obtain the same term a ∧ b ∧ c with the opposite sign compared to
cutting the lower edge first. This does not depend on the directions of the arrows.
In the excluded case we get a ∧ c ∧ b+ a ∧ b ∧ c = 0. Finally, the augmentation is
defined by taking the zeroth component. This proves the second claim.

Let us prove the first claim. Given an arrow α in an R-deco polygon π, we use
the notation εα,π := εα to emphasize π. Let α and β be non-intersecting arrows
in an R-deco polygon π, and α is closer to the root than β. From now on, given
a collection D of non-intersecting arrows in π including an arrow α, we denote by
πtα the unique polygon sitting right under the arrow α, i.e., the one corresponding
to the bottom vertex of the edge of the tree dual to α. Denote by a and b the
corresponding cut-off polygons, a = πtα , b = πtβ , and let a ↑ b be the cut-off
polygon for the single dissecting arrow α in π.

β

α

b

a

������

??????������•

??????
mmmmZZZZZZZZZZZZZZ

kkkkXXXXXXXXXXXX
α

a↑b
������

??????������•

??????

kkkkXXXXXXXXXXXX

In the above notation, one has the following obvious lemma.

Lemma 6.6. (1). χ(a) + χ(b) = χ(a↑b).
(2). εα,πεβ,π = εβ,a↑b.

Note that, if α and β are backward in π, then β is not necessarily forward in
πtα. Thus the straightforward analog of (2) may not be correct for πtα polygons.

We compare the same two triple wedge products as above. The corresponding
R-deco polygons match each other, so we have to worry only about the extra signs
which we pick up using ∂ instead of ∂. After these remarks, the proof is identical
to the one above in the first case (i.e., for τ non-linear), and in the second case
(i.e., if τ is linear) if the top arrow α is forward. Let us prove it in the second case,
when α is backward.

Assume that β is forward. Then cutting out α first and β second we pick up
an extra sign (−1)χ(α)+χ(β): indeed, by Lemma 6.6(2) after the first cut β becomes
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a backward arrow in a ↑ b. By Lemma 6.6(1) the weight of the middle polygon is
χ(α)− χ(β), so cutting in the other order we pick up the same sign.

Now assume β is backward. Then cutting out α and then β we pick up an extra
sign (−1)χ(α): indeed, after the first cut β becomes a forward arrow in a↑b. Cutting
in the other order we pick up the sign (−1)χ(β)(−1)χ(α)−χ(β) = (−1)χ(α). �

6.3. The sign of a dissection. The last ingredient needed for description of
the cocycles in the bar construction of polygons is the sign of a dissection. Given a
dissection D of an R-deco polygon π, and a dissecting arrow α, there are two regions
defined by the dissection D containing α. Take the one which is further away from
the root on the dual tree, and denote by πtD,α the R-deco polygon obtained by
shrinking its arrow sides. Recall the weight χ(π) of an R-deco polygon π.

Definition 6.7. Let D be a dissection of an R-deco polygon π. The sign of
D is

sgn(D) :=
∏

backward arrows α of D

(−1)χ(πtD,α) =
∏

arrows α of D

ε
χ(πtD,α)
α .

Example 6.8: The dissection in Example 6.5 has two backward arrows: the arrow
ending in 1 cuts off a polygon of weight 1 and thus contributes a minus sign, while
the arrow starting from between 7 and 8 contributes a plus sign: the cut-off polygon
has weight 2. Thus the sign of the dissection is equal to −1.

6.4. The cocycle attached to a polygon in the bar construction. We
define the Adams grading of an R-deco N -gon as 2(N − 1). Since it is even, the
shuffle product in the bar construction below is commutative.

Recall that the bar construction B(A) associated to an augmented DGA
A• = ⊕m> 1Am, with graded-symmetric multiplication ∧ and differential ∂ of
degree +1, is the tensor coalgebra ⊕iA⊗i• with differential D1 + D2, where for
homogeneous elements a1, . . . , aN in A• one defines, denoting any tensor sign by
a
∣∣ ,
D1

(
[a1|a2| · · · |aN ]

)
=
N−1∑
j=1

(−1)
P
i≤j(deg(ai)−1)[a1|a2| · · · |aj ∧ aj+1| · · · |aN ] ,

D2

(
[a1

∣∣ . . . ∣∣ aN ]
)

=
N∑
j=1

(−1)
P
i<j(deg(ai)−1)[a1|a2| · · · |∂(aj)| · · · |aN ] .

Furthermore, B(A•) carries an algebra structure, given by the graded-commutative
shuffle product qq .

Considering B(A•) as a double complex with respect to D1 and D2, we are
particularly interested in the cohomology of the “main diagonal”, i.e., in H0B(A•),
where the terms live which have only bars and no wedges.

The bar construction B(P• ) for the polygon algebra P• = P• (R) is a commu-
tative Hopf algebra. The unit in B(P• ) is given by Q→ Q · 11 ↪→ B(P• ), the counit
is the augmentation, and the antipode is induced by the remaining structures. By
the Milnor-Moore theorem, there exists a Lie algebra whose universal enveloping
algebra is dual to B(P• ).
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Definition 6.9. Let π be an R-deco polygon. We associate to it an element
B(π) in the bar construction B(P• ). Its component in P |n• is the sum∑

D

sgn(D)
∑
λ

[πλ(1)
D

∣∣ . . . ∣∣πλ(n)
D ]

over all n-fold dissections D of π, where the inner sum runs through all linear orders
λ of the associated subpolygons πiD compatible with the partial order on τ(D).

Example 6.10: The case n = 2: the cocycle B( [ 1 2 3 ] ) associated to a triangle

[ 1 2 3 ] =

3

2
������

1 333333•

is given as

[ 3

2
������

1 333333•
,

3•
1

∣∣∣∣ 3•
2

+ 3•
2

∣∣∣∣ 2•
1

− 3•
1

∣∣∣∣ 1 •
2

]
.

Note that the terms of the second component of B( [ 1 2 3 ] ) cancel pairwise
under D1 with the terms of the differential on polygons ∂

(
[ 1 2 3 ]

)
.

Example 6.11: The case n = 3: the cocycle associated to a quadrangle

[ 1 2 3 4 ] =

4

3

2

1

•

has the following component in P•
∣∣P• (we omit [ and ] )

14
∣∣ 234 + 34

∣∣ 123 − 124
∣∣ 32 − 134

∣∣ 21

+ 124
∣∣ 34 + 134

∣∣ 23 + 234
∣∣ 12 + 14

∣∣ 321 ,

corresponding to the following respective 2-fold dissections:
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+ 124
∣∣ 34 + 134

∣∣ 23 + 234
∣∣ 12 + 14

∣∣ 321



MULTIPLE POLYLOGARITHMS, POLYGONS, TREES AND ALGEBRAIC CYCLES 27

The component of the cocycle in P•
∣∣P• ∣∣P• (here we use, e.g., the shorthand

12qq 34 for 12
∣∣ 34 + 34

∣∣ 12 , the shuffle product of 12
∣∣ 34 and 34

∣∣ 12 ) is

14
∣∣ 24

∣∣ 34 + 34
∣∣ 13

∣∣ 23 − 24
∣∣ 12qq 32 + 14

∣∣ 31
∣∣ 21

+ 14
∣∣ 34

∣∣ 23 + 34
∣∣ 23

∣∣ 12 + 14
∣∣ 21

∣∣ 32 − 14
∣∣ 21qq 34

− 14
∣∣ 24

∣∣ 32 − 34
∣∣ 13

∣∣ 21 + 24
∣∣ 12qq 34 − 14

∣∣ 31
∣∣ 23 .

On pictures, the above twelve summands look as follows:
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+ 14
∣∣ 34

∣∣ 23 + 34
∣∣ 23

∣∣ 12 + 14
∣∣ 21

∣∣ 32 − 14
∣∣ 21qq 34
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− 14
∣∣ 24

∣∣ 32 − 34
∣∣ 13

∣∣ 21 + 24
∣∣ 12qq 34 − 14

∣∣ 31
∣∣ 23

Again, all the terms in the differential cancel because they appear twice with
different signs; we give two examples:

(1) ∂(14
∣∣ 234) gives a term − 14

∣∣ 24 ∧ 34 (the sign comes from the fact that
we take the differential in the second factor) from taking the differential
in P• , while 14

∣∣ 24
∣∣ 34 gives a term 14

∣∣ 24 ∧ 34 (the sign is + since we
replace the second

∣∣ by a ∧).
(2) ∂(134

∣∣ 23) gives a term + 14∧34
∣∣ 23 (no sign since we take the differential

in the first factor), while 14
∣∣ 34

∣∣ 23 gives − 14∧34
∣∣ 23 (the sign is − since

we replace the first
∣∣ by a ∧).

We need the multiplicativity of the sign of a dissection, formulated as follows.
Let D′ ⊃ D be an overdissection of a dissection D. So for each arrow α of D there is
the cut-off polygon πtα . We include here a “root arrow” providing the root polygon
of the dissection as a cut-off polygon. Then there is a dissection Dα of the polygon
πtα induced by D′.

Lemma 6.12. One has

(18) sgn(D′) = sgn(D)
∏
α

sgn(Dα, π
t
α)

where the product is over all arrows of D, including the root arrow.
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Further, let α be the unique predecessor of β in the dual tree of D. Then

(19) sgn(D − {β}) = sgn(D)(εαεβ)χ(πtβ ),

Proof. We first prove the second claim. Denote by a and b the subpolygons of D
whose root arrows are α and β, respectively. Then one has

sgn(D) =
sgn(D − {β})

ε
χ(a↑b)
α

εχ(a)
α ε

χ(b)
β .

So we have to check that
ε
χ(a)
α ε

χ(b)
β

ε
χ(a↑b)
α

= (εαεβ)χ(b)

which follows from Lemma 6.6(1). This proves the second claim.
We pass to the first claim. Given a dissection D′, we proceed by the induction

on the number of arrows in D. If D has just one arrow, it is the root arrow, and it
is a forward arrow. So sgn(D) = 1, and (18) is just the definition of sgn(D′).

β

α
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??????
πtβ

πtα
qqqq
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88 88

Let us declare an arrow β of D′−D as a new arrow of the dissection D. Denote
by α the dissecting arrow of D just above β, i.e., preceding it in the dual tree. Then
sgn(D′) stays the same. By the second claim, sgn(D) is multiplied by

ε
χ(πtβ )

β ε
χ(πtβ )
α .

The sgn(Dα, π
t
α) is multiplied by

∏
γ(εαεγ)χ(ϕtγ ), where γ runs through all

arrows in πtα , and ϕtγ denotes the polygon cut-off by the arrow γ in πtβ . The
sgn(Dβ , π

t
β ) is multiplied by

∏
γ(εβεγ)χ(ϕtγ ). Multiplying these two products, we

see that the total change of
∏
α sgn(Dα, π

t
α) in (18) is∏

γ

(εαεβ)χ(ϕtγ ) = (εαεβ)
P
γ χ(ϕtγ ) = (εαεβ)χ(πtβ ) .

Here in the last step we used Lemma 6.6(1). The lemma is proved. �

Proposition 6.13. The element B(π) associated to the R-deco polygon π is a
0-cocycle in B(P• ).

Proof. We check that the terms in the differential (D1 +D2)B(π) cancel pairwise.
A typical term of B(π) is of the form sgn(D) [ a1

∣∣ . . . ∣∣ an ] (n> 1) where the
order (a1, . . . , an) on the regions an of an n-fold dissection D of π is compatible
with the partial order ≺ on the dissection.

Therefore, a typical term of D1

(
B(π)

)
is of the form (deg(ai) is even)

(20) (−1)j sgn(D) [ a1

∣∣ . . . ∣∣ aj ∧ aj+1

∣∣ . . . ∣∣ an ]

with the same requirements on the ai (i.e., the compatibility of orders). Since the
differential ∂ respects the partial order of a dissection, the terms of D2

(
B(π)

)
are

also ordered compatibly with ≺.
We distinguish two cases:
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Case 1: The regions aj and aj+1 are comparable with respect to ≺. Then the
same term arises, up to sign, from D2

(
B(π)

)
: we must have aj ≺ aj+1, and they

have to be neighbouring regions (any γ with aj ≺ γ ≺ aj+1 would have to occur
between aj and aj+1 in any compatible linear order which would exclude a term
with component aj ∧ aj+1).

Let β be the arrow shared by aj and aj+1, and let α be its predecessor in the
dual tree, which is also the root arrow of aj . Set D′ = D − {αj+1}. The term
sgn(D′) [ a1

∣∣ . . . ∣∣ an ] of B(π) gives, via D2, a term

(21) (−1)j−1sgn(D′)(εαεβ)χ(aj+1) [ a1

∣∣ . . . ∣∣ aj ∧ aj+1

∣∣ . . . ∣∣ an ] .

Equation (19) of the above lemma shows that

(22) sgn(D) = sgn(D′)(εαεβ)χ(aj+1) .

Therefore the terms (21) and (20) cancel.
Note that all terms in D2

(
B(π)

)
are thus taken care of.

Case 2: Suppose the regions aj and aj+1 are not comparable with respect to
≺. Then there is a summand sgn(D) [ a1

∣∣ . . . ∣∣ aj+1

∣∣ aj ∣∣ . . . ∣∣ an ] whose D1-image
gives a term (20) with opposite sign, due to antisymmetry. This proves Case 2.

In both cases the terms in (D1 + D2)
(
B(π)

)
cancel pairwise, so B(π) is a

cocycle. �

7. Recognizing the coproduct for B(π, ∂)

In this section, we show that the algebra generated by the B(π) for R-deco
polygons π forms a sub-Hopf algebra of B(P•). Let us formulate the main result.

Recall ([6]) that an admissible cut in a rooted tree τ is given by a collection
C of edges of τ such that each simple path from the root to a leaf vertex contains
at most one element of C. We use the same notion for the rooted plane trees. We
call a dissection D admissible if the set of those edges of τ(D) corresponding to
the arrows in D form an admissible cut of τ(D).

An admissible dissection D gives rise to a region RD containing the root of π,
and the remaining regions PDi . There are two particular cases: the empty cut of
τ(D) corresponding to RD = ∅, and the ”full cut” corresponding to RD = π.

Theorem 7.1. The coproduct ∆
(
B(π)

)
for a polygon π has the following ex-

pression

(23) ∆
(
B(π)

)
=

∑
D adm

sgn(D) B(RD)⊗
∐∐
i

B
(
PDi
)
,

where D runs through all admissible dissections in π.
Thus the subalgebra generated by the B(π) is a Hopf subalgebra of B(P•).

Here is a rough idea of the proof. The terms of B(π) for an R-deco polygon
π are parametrized by dissections, together with a linear ordering on the ensuing
smaller polygons. The terms in the coproduct arise from splitting each such linearly
ordered set into two connected parts, the left and the right. The left one—if non-
empty—contains the root region of the underlying dissection.

We regroup those terms in the form
∑
i±B(π1

i ) ⊗
∐∐

j>1B(πji ) for certain
polygons πji , where on the right we have a (commutative) shuffle product.
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7.1. Level structure on plane trees. Recall that a dissection of an R-deco
polygon π provides a rooted plane tree whose vertices are labeled by the regions.

Let B(π) be the element in the bar construction of B(P•), let D be a dissection
of π and τ = τ(D) the associated rooted plane tree. For the terms in B(π) we
need to control the linear orders compatible with this tree. It is convenient to
replace the notion of “linear orders compatible with the partial order on τ” by the
equivalent one of a “tree level structure” (this notion was used by Loday in [17]):
each compatible linear order corresponds to a (metrically distorted) version of the
tree where each vertex lies on a different level. A linear order on the edges of τ
arises from a level structure by identifying the vertex at level i with the unique
edge ending at that vertex. For example, we give a simple tree τ together with two
of its eight different level structures τi:
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A tree τ , and two of its eight level trees, denoted τ1 and τ2.

7.2. Regrouping the terms in the coproduct ∆
(
B(π)

)
. Let π be an

R-deco polygon. Its associated element B(π) is given in terms of a double sum∑
D diss.

∑
λ lin.order

, where the first sum runs through all dissections D of π while the

second sum runs through all linear orders λ compatible with the induced partial
order on (the regions πi of) D. The coproduct of B(π) is given by a triple sum

(24)
∑
D diss.

∑
λ lin.order

∑
splitting of λ

,

where the first two sums are as above and the third sum runs through all the
|D| + 1 splittings of the sequence of polygons π = (π1, . . . , π|D|) into a “left” part
(π1, . . . , πn) and “right” part (πn+1, . . . , π|D|). Empty parts are treated as the unit
11 ∈ B(P•).

Now replace each compatible linear order λ by a level structure of τ(D). The
levels are ordered from top to bottom (as in the pictures above). Then a splitting
of λ corresponds to a horizontal cut (up to isotopy) of τ(D) avoiding the vertices.
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__________ horizontal cut

A horizontal cut of the level tree τ1 with edge sequence (e3, e4).

The “left” part of the splitting of λ corresponds to the upper (=root) part, while
the “right” part corresponds to the lower part of the horizontal cut. Therefore the
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above triple sum (24) is rewritten as

(25)
∑

D diss.

∑
level tree τ ′ for τ(D)

∑
horizontal cut of τ ′

.

Each horizontal cut is described by the sequence E(λ) of edges in τ(D) which it
meets, together with the induced level structure on the remaining parts of τ(D)−
E(λ). The set E(λ) gives rise to an admissible dissection of D.

Horizontal cuts and admissible dissections are related as follows:
(i) Each horizontal cut of a level tree for τ obviously produces an admissible

cut for τ by forgetting the level structure.
(ii) Each admissible dissection D of τ can be connected by a path β from “left

of tree” to “right of tree” intersecting the edges in τ precisely once and avoiding
the remaining parts of the tree. The pair (τ, β) can be “straightened out”, not
necessarily uniquely, via a plane isotopy such that β becomes a horizontal cut and
τ obtains a level structure.
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τ1

_________

An admissible cut of τ and an associated horizontal cut of a level tree τ1 for τ .

Using these remarks, we can rewrite (25) as follows:∑
D diss.

∑
level tree τ ′ for τ(D)

∑
adm diss D⊂D

compatible with τ′

.

We can reverse the order of the sums in this triple sum, first summing over the
admissible dissections D, then summing over all dissections D of π containing D,
and finally summing over all level trees for τ(D), i.e.∑

D adm. diss.

∑
diss D⊃D

∑
level tree for τ(D)

.

Recall that an admissible dissection D separates a “root piece” RD from the
remaining regions PDi . Each overdissection D′ ⊃ D gives both a dissection of the
root piece RDD′−D and a dissection of the remaining regions PDi,D′−D. The separated
parts can be resummed independently: more precisely, a plane tree τ with horizontal
cut C decomposes τ into a root piece τR and a forest φ = tiτPi of remaining pieces,
which provides a bijection between

(1) the level structures of the pair (τ, C) and
(2) the product {level structures on τR} × {level structures on φ} .

Decomposing D′−D = D1tD2 into the dissections D1 and D2 of the root piece
and of the remaining pieces, respectively, and using Lemma 6.12, which implies the
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full multiplicativity for an admissible dissection, we get

∆
(
B(π)

)
=

∑
D adm

∑
D′⊃D

sgn(D′)
∑

level str. on τ(D′)

RDD′−D ⊗
∐∐
i

PDi,D′−D

=
∑

D adm

sgn(D)

(∑
D1

sgn(D1)
∑

level str. for τ(D1)

RDD1

)
⊗

⊗

(∑
D2

∑
level str. for τ(D2)

∐∐
i

sgn(D2,i)PDi,D2

)

=
∑

D adm

sgn(D) B(RD)⊗
∐∐
i

B
(
PDi
)
.

We need the shuffle product
∐∐

since precisely those linear orders on the remaining
regions which are induced from such a shuffle do occur. Theorem 7.1 is proved. �

The vector space V pg maps to H0B(P) via π → B(π) for a polygon π. Theorem
7.1 implies that this map extends to a map of the symmetric algebra S•V pg of V pg

to H0B(P) sending the product in S•V pg to the shuffle product in H0B(P).
We can view S•V pg as a Hopf algebra via pullback of the coproduct formula

(23). So there is a Hopf algebra map S•V pg → χcycle = H0B(N ), defined via
H0B(P).

8. Comparing the coproduct for B(π) and the coproduct for the Hopf
algebra of iterated integrals from [15]

8.1. The Hopf algebra I•(R) of iterated integrals. Let R be a set. In
[15], the second author described a commutative, graded Hopf algebra I•(R). It is
generated, as a graded commutative algebra, by elements I(a0; a1, . . . , an; an+1) of
degree n, ai ∈ R. Their properties resemble the ones of the iterated integrals.

The coproduct is given via polygons inscribed in a semicircle. For the above
generator it is written as a sum indexed by all—possibly empty—subsequences of
(a1, . . . , an). A picture describing the combinatorics of the terms arises when we
place the ai on a semicircle, in the order dictated by their index. In particular, a0

and an+1 are located at the endpoints of the semicircle.
Precisely, each subsequence (ai1 , . . . , air ) of (a1, . . . , an) gives rise to a single

“main” polygon with vertex set {a0, ai1 , . . . , air , an+1} and to a set of r+1 remaining
polygons with > 2 sides and set of vertices {ai0 , ai0+1, . . . , ai1}, {ai1 , ai1+1, . . . , ai2},
. . . , {air , air+1, . . . , air+1}, where ai0 = a0 and air+1 = an+1. We give an example
for n = 4, r = 2.

a5a0

•

•

•
•

a2

a1

a3

a4

• •

��������������

]]]]]]]]]]]]]]]]]]]]]]]]]

************
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A 4-gon for the subsequence (a2, a4) of (a1, . . . , a4) inscribed in the semicircle

The corresponding term in the coproduct is then

(26) I(a0; ai1 , . . . , air ; an+1) ⊗
r∏

k=0

I(aik ; aik+1, . . . , aik+1−1; aik+1) ,

These generators are subject to the following relations:
the path composition formula with respect to an element x ∈ R:

(27) I(a0; a1, . . . , an; an+1) =
n∑
k=0

I(a0; a1, . . . , ak;x) I(x; ak+1, . . . , an; an+1) ,

the inversion formula

(28) I(an+1; an, . . . , a1; a0) = (−1)nI(a0; a1, . . . , an; an+1) .

and the unit identity

(29) I(a; b) = 1 for any a, b ∈ R .

Let us replace the k-th factor of the right hand product in (26) by the sum
arising from the path composition formula for x = 0:

(30)
ik+1∑
j=ik

I(aik ; aik+1, . . . , aj ; 0) I(0; aj+1, . . . , aik+1−1; aik+1) .

Using this and the inversion relation (28), we write (26) as

I(a0; ai1 , . . . , air ; an+1) ⊗

(31)
r∏

k=0

ik+1∑
j=ik

(−1)j−ikI(0; aj , . . . , aik+1; aik) I(0; aj+1, . . . , aik+1−1; aik+1) .

We denote by I•(R) the so obtained Hopf algebra. In [15] several similar Hopf
algebras were defined: they differ by the relations added to the basic relations
(27)-(29). The Hopf algebra I•(R) is the biggest one of them.

8.2. The Lie coalgebras of iterated integrals and of polygons. Recall
that given a commutative Hopf algebra I•, graded by the integers n = 0, 1, ..., with
I0 = Q, the graded Q-vector space of indecomposables

Q(I•) :=
I>0

I2
>0

has a natural graded Lie coalgebra structure with the cobracket δ : Q(I•) −→
Λ2Q(I•) induced by the coproduct in the Hopf algebra. Applying this to the Hopf
algebra I•(R), we arrive at the graded Lie coalgebra Q(I•(R)). We denote by
I(a0; ai1 , . . . , air ; an+1) the projection of the generator I(a0; ai1 , . . . , air ; an+1) to it.

Recall theR-deco (n+1)-gon [a1, ..., an+1] decorated by the sequence (a1, ..., an+1)
so that the root side is decorated by an+1.
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Proposition 8.1. Let R be a set. The map

I(0; a1, . . . , an; an+1)→ [a1, ..., an+1]

gives rise to an isomorphism of the graded Lie coalgebras

Q(I•(R)) ∼−→ (V pg
• (R), ∂) .

Proof. It follows from (27) - (28) that the elements I(0; a1, . . . , an; an+1) form a
basis of the vector space Q(I•(R)).

Lemma 8.1. The Lie cobracket is given by

(32) δI(0; a1, . . . , an; an+1) =
∑

0 6 k<l6n+1

I(0; a1, . . . , ak, al, . . . , an; an+1)∧

(33)
(

I(0; ak+1, . . . , al−1; al) + (−1)l−k−1I(0; al−1, . . . , ak+1; ak)
)
.

Proof. To get a non-zero term, the sequence of elements {0, ai1 , . . . , air , an+1}
determining a term in the coproduct must have exactly one gap, i.e. all sides of the
corresponding inscribed polygon except just one must be of length 1. Thus only
sequences {0, a1, ..., ak, al, . . . , an, an+1} can appear where 06 k < l6n+ 1. Given
such a sequence, the corresponding term of the coproduct is

I(0; a1, . . . , ak, al, . . . , an; an+1) ∧ I(ak; ak+1, . . . , al−1; al) .

Using (27) and (28), we get the required formula. �
The formula (32) can be interpreted via R-deco polygons as follows. The two

terms in (33) correspond to two dissections of the polygon [a1, ..., an+1], given by
the forward arrow starting from the vertex sharing ak and ak+1 and ending at the
side al, and, if k > 0, the backward arrow starting at the vertex sharing al−1 and
al and ending at ak. The sign of this dissection is (−1)l−k−1 for the backward
arrow. �.

8.3. Comparing the two coproducts.

Theorem 8.2. There is a map of coalgebras from 〈B(π) | π ∈ P〉 to I•(R).

Proof. The map is given by sending a generator B(π), assigned to an R-deco
polygon π decorated by (a1, . . . , an+1), the generator I(0; a1, . . . , an; an+1).

To show that the coproduct on B(π) is compatible with ∆I(0; a1, . . . , an; an+1),
note that any factor I(ai0 ; ai1 , . . . , air ; air+1) which occurs in the latter on the right
of the tensor product can be written, using path composition and inversion formula,
as a sum of products of terms I(0; ai1 , . . . , aik ; aik+1). The factors I(0; b) = 1 are
left out. We will show that after these reductions the coproducts are the same.

Let us establish a bijection of terms in (31) with the terms in the coproduct for
polygons. We identify each semicircle polygon with an R-deco polygon. Let P be
an (n + 2)-gon (n> 1) with “black” vertices a0, . . . , an+1 and a base side a0an+1,
inscribed in a semicircle. We put a “white” vertex, denoted by a ◦, on each of
the n + 2 arcs between the ai’s. We order the points counterclockwise. The white
vertices determine an R-deco (n+ 2)-gon P∨ with decorations given by the labels
of the intermediate black vertices. From this, we obtain an R-deco polygon π: the
root arrow of π emanates from the white vertex between the sides a0 and a1, and
it ends in the side an+1 (so that the side a0 in P∨ is cut off).
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Let us identify semicircle subpolygons with admissible dissections of π. Each
subpolygon P ′ of P with r + 2 sides, one of which must be a0an+1, gives rise
to a number of circumscribing 2(r + 2)-gons Q with alternating black and white
vertices. Both P ′ and Q inherit the orientation, and Q inherits a direction of its
edges α1, . . . , α2(r+2) compatible with the orientation.

Such pairs (P ′, Q) are in bijection with the terms in (30). Precisely, the 2r+ 2
directed sides αi correspond to the factors on the right of the tensor product.

Every second directed side goes from black to white vertex and thus does not
correspond to the direction of arrows in an R-deco polygon (going from vertex to
side in an R-deco polygon corresponds to going from white vertex to black vertex
in the polygon). Thus we invert each such side αi which becomes a backward arrow
in the R-deco polygon. The sign which is assigned to such a backward arrow in the
bar construction for the R-deco polygon coincides with the sign which results from
applying the inversion relation to the term for αi in (31).

Finally, we use further relations for the integrals I(. . . ): the directed sides αi
which connect a black vertex with an adjacent white one correspond to trivial
arrows in π and can thus be dropped—in accordance with the fact that I(a; b) = 1.
Furthermore, the leftover directed sides αi which end in a0 are set to zero—they
correspond to terms of the form I(0; . . . ; 0) in (31) which are set to zero if the
sequence between the two zeros is not empty.

Let us show how such a pair (P ′, Q) arises from a term

I(a0; ai1 , . . . , air ; an+1) ⊗
∏
k

I(aik ; aik+1, . . . , . . . ; 0) I(0; . . . , . . . , aik+1−1; aik+1)

The left tensor factor of this term is pictured by a sub-(r+2)-gon P ′ with ver-
tices a0, ai1 , . . . , air , an+1, while the right hand factor, multiplied with the unit
I(an+1; 0)I(0; a0), is encoded by a sequence of 2(r + 2) “arrows” which go from a
black point aik to a white point 0 or from a white point 0 to a black point aik+1 .
These arrows form a polygon Q with alternating black and white vertices. �

Example 8.3: The situation corresponding to the term

I(a0; a2, a4; a5)⊗ I(a0; a1; a2) I(a2; a3; a4) I(a4; a5)

is illustrated by four pictures below.
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An 8-gon circumscribing the 4-gon (a0, a2, a4, a5) inscribed in the semicircle

The inscribed polygon with vertices at the black points labeled by a0, a2, a4

and a5, together with one of the terms arising from the path composition formula,
gives rise to a dissection of the R-deco polygon, i.e., to a term in its coproduct.
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The R-deco polygon associated to the 5-gon (a0, a1, a2, a3, a4, a5)

The second picture produces the third.
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The picture after pushing arrows inside.

Dropping trivial arrows connecting adjacent vertices (necessarily of different
color), we produce a picture of an R-deco polygon with a 3-fold dissection:
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A dissection associated to the term I(a0; a2, a4; a5)⊗ I(0; a1; a2)I(0; a3; a2).

The root arrow cuts off three trivial arrows and the extra side labeled by a0.

8.4. Comparison with the Connes–Kreimer coproduct on trees. In
[6], Connes and Kreimer considered the coproduct on a Hopf algebra on rooted
non-planar trees, which has precisely the same form as our coproduct in Theorem
7.1, except that we consider plane trees and have signs. Furthermore, they use the
convention of writing the “root part” RC on the right of the tensor product, while
the remaining (cut-off) trees are denoted by PCi .

∆CK(t) =
∑

adm cut C

∏
i

PCi (t)⊗RC(t) .

The commutative product in this case is simply the unordered disjoint union.
This connection between the coproduct formula in Theorem 7.1 and the one

from [6] is very similar to the relation between the coproduct in the Hopf algebra
of iterated integrals in [15] and the one from [6].
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9. Associating integrals to the multiple logarithm cycles

In this section we give another reason why the algebraic cycles associated to
certain trees are “avatars” of multiple logarithms. We first indicate how to asso-
ciate, when R = F× is the multiplicative group of a field F , an integral to the cycle
Zx1,x2 (cf. (12)) which arises from the polygons [x1, x2, 1 ] . It delivers the integral
presentation for the double logarithm. (A further example, corresponding to the
triple logarithm, has been detailed in [9].) Then we pass to the general case of any
generic R-deco polygon [x1, x2, . . . , xm ] and associate to it an element in a certain
bar construction, from which the Hodge realization can be read off.

9.1. Brief review of the Hodge realization construction from [3], §8.
Let N ′ be a DG-subalgebra of N . In our case it is the image of the polygon algebra
P. Let DP be a larger DGA consisting of topological cycles in �nC which satisfy a
number of conditions; we mention the ones relevant for us, keeping the notation of
loc.cit.:

i) For any cycle of dimension n in DP , the integral against the standard volume

form ωn =
n∧
j=1

(2π
√
−1)−1 dzj

zj
converges; denote this integration map by r : DP →

C.
ii) N ′ belongs to DP ; denote the embedding by σ : N ′ → DP .
iii) For any cycle

∑
i ni [ ai1| · · · |aiki ] in H∗B(N ′), the element

∑
i ni [σ(ai1)|ai2| · · · |aiki ]

in H∗B(DP ,N ′) vanishes; this is a stronger version of the claim that any cycle in
N ′ becomes a boundary in DP .

Under these assumptions Bloch and Kriz show that the map

λ : H0B(DP,N ′) B(r,id)−→ H0B(C,N ′) = C⊗H0B(N ′)

is an embedding. Using λ, they define a rational structure on C ⊗ H0B(N ′), and
the Hodge and weight filtrations are two natural filtrations corresponding to the
Adams grading on this space.

As in [3] §9, we construct topological cycles by the following trick. Denote by δ
the topological boundary. Let Γ be a small disk around 0 in �C with the standard
orientation. Consider an (oriented) topological chain η of real dimension 2n− i in
�2n−k

C (in the notation of loc.cit. it is either η∗(∗) for i = k or q∗(∗) for i = k+ 1).
Associate to it a cycle

θn(η) = δ(η × Γ)× (δΓ)×(i−1) = δη × Γ× (δΓ)×(i−1) + (−1)iη × (δΓ)×i

of dimension 2n in �2n+i−k
C (in the notation of [3], (9.6), it corresponds to the cycle

τ∗(∗) or v∗(∗) ).
For the chains under consideration below we have the following:

∂(θn(η)) = θn−1(∂η)− θn−1(δη).

Indeed, δΓ does not intersect the facets 0 and ∞. Therefore intersections of θn(η)
with facets come from the intersections of δ(η × Γ) with the respective facets. The
chain Γ intersects the facet 0. For our chains η the intersection of δη with a facet
coincides with the topological boundary δ of the intersection of η with the facet.
Hence

∂(δ(η × Γ)) = ∂(δη × Γ + (−1)iη × δΓ) = ∂(δη)× Γ + (−1)kδη + (−1)i∂η × δΓ
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= δ∂η × Γ + (−1)kδη + (−1)i∂η × δΓ = δ(∂η × Γ) + (−1)kδη .

After multiplication by (δΓ)×(i−1) we get

∂(δ(η × Γ))× (δΓ)×(i−1) = δ(∂η × Γ)× (δΓ)×(i−1) + (−1)iδη × δΓ× (δΓ)×(i−2)

= δ(∂η × Γ)× (δΓ)×(i−1) + (−1)k−i+1δ(δη × Γ)× (δΓ)×(i−2) .

In the special case i = k, where the cycle θn(η) is of real dimension 2n in �2n
C , we

can integrate it against the volume form ω2n, which gives—up to a factor (−1)i—
the integral of ω2n−i against the chain η, as the restriction of ω2n−i to δ(η) vanishes
for dimension reasons and the integral of dz

z against δΓ equals 2π
√
−1.

Therefore the map θn assigns to each chain in DP a cycle, and we can reduce
calculations to the case of topological chains η equipped with two differentials: the
algebraic one ∂ (intersection with facets) and the topological one δ.

9.2. Algebraic-topological chains. Following Bloch and Kriz, we embed
the algebraic cycles into a larger set-up of “topological” chains which have both
algebraic and topological coordinates as well as both types of differentials, and
then apply the bar construction. Those chains are referred to below as algebraic-
topological chains. We only consider “topological” variables si ∈ [0, 1] ⊂ R subject
to the condition si6 sj if i < j, and taking the topological boundary δ for a chain
with topological dimension n amounts to taking the formal alternating sum over
the subvarieties where either sk = sk+1 for some k = 1, . . . , n − 1 or s1 = 0 or
sn = 1.

9.3. An example: the double logarithm case. 1. In order to bound
Zx1,x2 , consider the algebraic-topological chain parametrized by t ∈ P1

F and s1 ∈ R,
06 s16 1, as [

1− s1

t
, 1− t

x1
, 1− t

x2

]
,

whose topological boundary terms are obtained by putting s1 = 0 (which produces
the empty cycle) or by s1 = 1 which yields Zx1,x2 . Its algebraic boundary is given
by

[1− s1

x1
, 1− s1

x2
]− [1− s1

x1
, 1− x1

x2
] + [1− s1

x2
, 1− x2

x1
] , 06 s16 1 ,

where the last two terms are “negligible” for the following.
2. Consider the topological chain parametrized by 06 s16 s26 1, si ∈ R, as

[1− s1

x1
, 1− s2

x2
] ,

whose boundary terms arise from setting s1 = 0, s1 = s2 or s2 = 1, giving the
empty cycle, [1− s1

x1
, 1− s1

x2
] or [1− s1

x1
, 1− 1

x2
], respectively. What we are after is a

cycle η in this larger (algebraic-topological) chain complex which bounds the cycle
Zx1,x2 , i.e., such that Zx1,x2 = (∂+ δ)η. The “bounding process” will give rise to a
purely topological cycle against which we can then integrate the standard volume
form ω2.

In fact, working modulo the “negligible” term [1− s1
x1
, 1− 1

x2
] above we get

(34) Zx1,x2 = (∂ + δ)
([

1− s1

t
, 1− t

x1
, 1− t

x2

]
+ [1− s1

x1
, 1− s2

x2
]
)
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(two of the boundary terms cancel), and we associate to Zx1,x2 the integral

(35)
1

(2π
√
−1)2

∫
[1− s1

x1
,1− s2

x2
]

0 6 s1 6 s2 6 1

dz1

z1
∧ dz2

z2
=

1
(2π
√
−1)2

∫
0 6 s1 6 s2 6 1

d(1− s1
x1

)
1− s1

x1

∧
d(1− s2

x2
)

1− s2
x2

=
1

(2π
√
−1)2

∫
0 6 s1 6 s2 6 1

ds1

s1 − x1
∧ ds2

s2 − x2
.

Therefore we see that the algebraic cycle Zx1,x2 corresponds—in a rather precise
way—to the iterated integral I1,1(x1, x2).

Note that the three “negligible” terms encountered above can also be covered as
part of a boundary if we introduce, following [3], yet another differential d (coming
from the bar construction), and in the ensuing tricomplex all the terms above are
taken care of. With the usual bar notation

∣∣ for a certain tensor product, the
“correct” cycle combination is given by

(36) C1,1 := [1− s1

t
, 1− t

x1
, 1− t

x2
] + [1− s1

x1
, 1− s2

x2
]

+
(

[1− s1

x1

∣∣ 1− 1
x2

]− [1− s1

x1

∣∣ 1− x1

x2
] + [1− s1

x2

∣∣ 1− x2

x1
]
)
,

and its image under the boundary ∂+δ+d is precisely the “bar version” of −Zx1,x2 ,
i.e. B(Zx1,x2) = −Zx1,x2 +

(
[1− 1

x1

∣∣ 1− 1
x2

]− [1− 1
x1

∣∣ 1− x1
x2

] + [1− 1
x2

∣∣ 1− x2
x1

]
)
.

A similar treatment of the triple logarithm can be found in [9].

9.4. Enhanced polygons as a comodule over the polygon algebra.
The above examples suggest to encode the algebraic-topological chains using trees
in a similar way as the algebraic cycles, except that we need to distinguish the
topological variables si above (which are allowed to run through some real interval
[s0, sn]) from the algebraic variables ti (which parametrize P1

F ). For this reason,
we introduce “enhanced trees” with two types of vertices, the first type encoding
the algebraic variables and the second type encoding the topological ones.

9.4.1. Enhanced trees. Let R = R ∪ {s0} for some element s0. An enhanced
R-deco tree is an R-deco tree with two types of vertices. All non-root vertices are
of first type except the ones which lie on the path from the first external vertex
to the root vertex. These vertices are of second type. The root vertex has both
types; this allows to identify certain enhanced trees after contraction of the root
edge with trees in T (R). External vertices of first type have decoration in R, while
the unique external vertex of second type is decorated by s0. Typically, we choose
R = F× for a field F , and s0 = 0.
Example 9.1: We display an enhanced tree with six vertices of first type (marked
by a bullet), three vertices of second type (marked by a square) and the root vertex
(marked by both a bullet and a square). The first external vertex is decorated by
s0, while the root vertex is decorated by s3. The path from s0 to s3 is drawn with
dotted lines.
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Definition 9.2. The differential on enhanced R-deco trees is defined similarly
to the one on R-deco trees, except that if we contract an edge whose incident vertices
are of different type, then the resulting vertex, if it is not the root, is set to be of
second type.

In analogy with the DG-moduleDP overN ′, we can define a DG-module T •(R)
over T•(R), where R = R ∪ {s0} for some element s0. Its generic part is denoted
T g

•(R), where genericity means that all decorations (including s0) are different.
9.4.2. The enhanced forest cycling map. Let F be a subfield of C and s0 ∈ F∩R.

We pass from B
(
T •(F× ∪ {s0})

)
to B(DP,N •) as follows. We modify the forest

cycling map Φ from Definition 4.3 by introducing “topological” parameters si (cf.
§9.3).

Definition 9.3. The enhanced forest cycling map Φ is given as follows. Let
τ be an enhanced F×-deco tree.

(1) To each of the two external vertices of second type we associate elements
s0 and sn+1 from F ∩ R, while for the external vertices of first type we
proceed as in Definition 4.3;

(2) for each internal vertex of first type, we associate a variable in P1
F ;

(3) for each internal vertex of second type we associate a “simplicial” variable
si which runs through the interval [s0, sn+1]; to each edge between two
vertices of second type, oriented from s0 to sn+1, we associate a “6 ”
constraint;

(4) to each oriented edge of τ from v to w, decorated by yv and yw, respectively,
we associate the expression

[
1− yv

yw

]
;

(5) in the linear ordering of the edges, we concatenate all the coordinates in
the previous step, except for the edges connecting vertices of second type.

The image of the tree with a single edge under Φ is the unique point in �0.

Example 9.4: To the above example, we associate the chain

η =
[
1− s1

a1
, 1− s2

t1
, 1− t1

a2
, 1− t1

t2
, 1− t2

a3
, 1− t2

a4

]
of real dimension 6 in �6

C, with s06 s16 s26 s3, and tj ∈ P1
C. For the standard

evaluation s0 = 0 and s3 = 1, the map θ assigns to η the following cycle in �8
C

θ4(η) =
[
1− s1

a1
, 1− 1

t1
, 1− t1

a2
, 1− t1

t2
, 1− t2

a3
, 1− t2

a4
, r eiϑ1 , eiϑ2

]
+ η × [eiϑ1 , eiϑ2 ] ,

where 06ϑj < 2π and |r| < ε for some small ε. Here we parametrize the small
disk Γ of radius ε by polar coordinates.

The map Φ induces a morphism of DGAs. The following theorem is completely
similar to Theorem 4.2 and thus its proof is omitted. We put R = F× and s0 = 0.
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Theorem 9.5. For a subfield F ↪→ C, the enhanced forest cycling map Φ,
followed by the map θ above, provides a natural map of differential graded algebras

T g

•(F )→ DP . �

9.4.3. Enhanced polygons. By duality, we are led to introduce “enhanced poly-
gons”. Consider, e.g., the triangulated polygon dual to the enhanced tree in Ex-
ample 9.1 above, where the second type side is drawn by a dotted line:
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a1

111111 a3









a4

111111

s3

s0














Forgetting the triangulation we are led to:

Definition 9.6. An enhanced R-deco polygon π is an R-deco polygon with
one distinguished side s, decorated by s0, of the second type adjacent to the root
side ρ, decorated by sρ. A linear order on the sides of π is given by starting at s
and ending at ρ. It induces an orientation of π. The decorations s0 and sρ of s
and ρ are in some ordered set S, and s06 sρ.

The graded vector space V pg is freely generated by enhanced polygons. The
grading is the same as for polygons (i.e., the side of second type does not contribute).

In order to construct a differential and a resulting bar complex, we need the
analogous notion of dissection for enhanced polygons.

A dissecting arrow of an enhanced R-deco polygon π is defined as for R-deco
polygons, with two exceptions:

i) it is not allowed to start at the common vertex of s and ρ;
ii) it is not allowed to end in s.

We give two examples of non-allowed arrows, violating i) and ii), respectively.
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An n-fold dissection of π is given by n − 1 dissecting arrows (i.e., subject to
conditions i) and ii) above) which do not intersect.
Example 9.7: We draw a 4-fold dissection of an enhanced polygon
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We can view P := P(R) := V pg(R)⊗
∧• V pg(R) (this should not be confused

with P in §5) as a module over the algebra P =
∧• V pg(R). Similarly to the

cobracket κ of P, there is a comodule map

κ : V pg(R)→ V pg(R)⊗
∧
• V pg(R)

κ(π) =
∑

α arrow

sgn(α)π•=α ⊗ πtα ,

where sgn(α), π•=α and πtα are as in Definition 5.9, except for the bars.
The comodule map κ induces a differential on P.

Definition 9.8. There is a differential ∂ on P given on generators by

∂(π ⊗ π′) = κ(π) ∧ π′ − π ⊗ κ(π′) (π ∈ V pg(R), π′ ∈
∧
• V pg(R)) .

9.4.4. A cocycle in H0B(P,P). The differential on P gives rise, via a right bar
resolution, to a right DG-comodule.

Definition 9.9. The right B(P)-comodule B(P,P) is generated as a vector
space by the elements

[π1

∣∣π2

∣∣ . . . ∣∣πn] (π1 ∈ P, πi ∈ P).

It has a differential D1 +D2, where

D1( [π1

∣∣π2

∣∣ . . . ∣∣πn ] ) = − [π1 ⊗ π2

∣∣ . . . ∣∣πn ]

+
n−1∑
j=2

(−1)j [π1

∣∣π2

∣∣ . . . ∣∣πj ∧ πj+1

∣∣ . . . ∣∣πn ] ,

D2( [π1

∣∣π2

∣∣ . . . ∣∣πn ] ) = [κ(π1)
∣∣π2

∣∣ . . . ∣∣πn ] +
n∑
j=2

(−1)j−1 [π1

∣∣π2

∣∣ . . . ∣∣κ(πj)
∣∣ . . . ∣∣πn ] .

As in §5.2, each enhanced polygon provides a 0-cocycle in the bar complex
B(P,P).

Definition 9.10. To an enhanced polygon π we associate the following element,
where the πiD denote the associated subpolygons of a dissection D of π (we include
the empty dissection, corresponding to π itself):

B(π) =
∑

diss. D of π

sgn(D)
∑
λ

[πλ(1)
D

∣∣πλ(2)
D

∣∣ . . . ∣∣πλ(|D|)
D ] ∈ B(P,P) ,

where the inner sum runs through all linear orders λ on the πiD compatible with the
partial order on the dual tree τ(D).

Example 9.11: For the following enhanced 3-gon π

x3

x2

x1

0

we get B(π) as the following combination:
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+
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+
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x3

x2

x1

0 77 77ooooooo

For x3 = 1 they correspond, in this order, to the terms for C1,1 in (36).

Proposition 9.12. Any enhanced polygon π provides a 0-cocycle, i.e. B(π)
gives a class in H0B(P,P).

Proof. Analogous to Proposition 6.13. �

9.4.5. Verifying the condition iii) from §9.1. Recall from [3], (6.12), that there
is a shuffle product on the circular bar construction B(DP,N ) defined by sending

(a′ ⊗ a1 ⊗ · · · ⊗ am)⊗ (a′′ ⊗ am+1 ⊗ · · · ⊗ am+n)

to the sum of shuffle terms (σ denotes a shuffle of {1, . . . ,m} with {1, . . . , n})
±(a′a′′ ⊗ aσ(1) ⊗ · · · ⊗ aσ(m+n)) .

Remark 9.13: Let π be an R-deco polygon and π the associated enhanced polygon
where the first vertex of π has been replaced by a side s (with decoration s0) of
second type.

π

a3

a2
������

a1 333333•
π

a3

a2

a1

s0

Then there is a bijection of the dissections of π and those dissections of π
which have one arrow going from the end of s0 to the root side of π. Therefore
B(π) breaks up into two parts, one of them being [1

∣∣B(π)]. But the bar differential
on this expression is 1 ∧ B(π), and since B(π) is a cocycle, we can conclude that
B(π) (which is identified with 1 ∧B(π)) is the boundary of the other part of B(π).

Using the shuffle on the circular bar construction, we can proceed similarly
with terms of the form [1

∣∣ ∐∐B(πi)], i.e., we can bound
∐∐

B(πi). In this way we
see that property (iii) of §9.1 is satisfied for the cycles under consideration below.

9.4.6. The comodule map. We can now explicitly describe the comodule struc-
ture on the 0-cocycle representatives B(π), again with a Connes-Kreimer like de-
scription. We need a notion of admissible cut for this setting.

Definition 9.14. Let D be a dissection of an enhanced polygon π. A subdis-
section D′ of D is admissible if it corresponds to a cut in the dual tree of D,
which

i) is admissible and
ii) avoids the edges of second type.

Remark 9.15: 1. The conditions i) and ii) in the definition rule out the edges in
τ(D) which correspond to the arrows of D ending in s or starting at s ∩ ρ. These
are precisely the ones which are ruled out in the conditions for dissecting arrows.

2. The second condition ensures that only the root polygon of a dissection has
edges of second type and therefore is the only polygon which produces an algebraic-
topological chain in the associated element in the bar construction.
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3. There are two distinguished admissible dissections: the empty one and the
one cutting off the side of second type.

The bar functor induces a comodule map B(κ) from B(P,P) to B(P,P)⊗B(P).

Theorem 9.16. The image of B(π) under the comodule map B(κ) has the form

(37)
∑

D adm. diss of π

sgn(D) B(πDR )⊗
∐∐
i

B(πDPi) ,

where πDR and πDPi denote the root polygon and the remaining polygons arising from
the dissection D, respectively.

Proof. Along the same lines as the proof of (23). �

We can reinterpret the statement of the theorem as an S•V pg-comodule struc-
ture on V pg⊗S•V pg: in view of Proposition 6.13 (stating that B(π) is a 0-cocycle)
we have a map of Hopf algebras (cf. the end of §7)

S•V pg → H0B(P) ,

and similarly a map of comodules

V pg ⊗ S•V pg → H0B(P,P) .

9.5. The Hodge realization for polygons. We finally relate B(P,P) to the
circular bar construction B(DP,N ) of [3]. Mapping P → DP and P → N induces
by functoriality a map

H0B(P,P)→ H0B(DP,N ) .

The right hand term carries a mixed Hodge structure. It induces one on the left.
The comodule structure (37) carries over to algebraic-topological cycles, via

trees. The Hodge realization is obtained by integrating the first bar component of
the left factor of each term in (37) against the appropriate volume form on �•.

Note that the realization map r (cf. §9.1) is non-trivial only on those trees
whose internal vertices are all of second type. For the associated triangulated
polygons, this corresponds to the unique triangulation for which every triangle is
incident with the end of the root side, see the picture below.
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111111 a3
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The integration map λ from §9.1 evaluates each enhanced polygon in the co-
product expression (37) for a given element, and the Hodge weight can be read off
from the number of sides of the polygon. Note that λ applies only to the first entry
π1 of any component [π1

∣∣π2

∣∣ . . . ∣∣πn] of the bar construction.
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The Adams grading defines two filtrations on V pg (recall that deg(π) is the
number of non-root sides of π):

W−2N)(V pg) =
⊕

χ(π) >N

Qπ (the weight filtration),

F−N (V pg ⊗ C) =
⊕

χ(π) 6N

Cπ (the Hodge filtration) .

They induce filtrations on S•V pg.
We now define a Hodge-Tate structure on S•V pg as follows: there is an obvious

map embedding V pg into V pg by simply adding a side to a polygon of second type
between the first vertex and the root side, with a fixed decoration s0, (as in Remark
9.13 above). Further, there is a map

V pg ⊗ S•V pg → H0B(DP,N )

where the right hand term is an H0B(N )-module and the left hand term is an
S•V pg-module. More precisely, we can embed S•V pg ↪→ V pg ⊗ S•V pg by the map∏

i

πi 7→
∑
i

πi ⊗
∏
j 6=i

πj .

Composing the above with the integration map r : V pg → C now provides a map

S•V pg → C⊗ S•V pg ,

which gives us the desired rational structure on S•V pg.
Example 9.17: We illustrate the above for the example of the double logarithm.
The topological cycle which we need to consider is C1,1− [1

∣∣B(Zx1,x2)], where C1,1

is as in (36) and Zx1,x2 as in (12). Applying λ◦θ (with θ as in §9.1) to it annihilates
the first term in C1,1 (for reasons of type), while the second (purely topological)
term gives

I ⊗ 1 ∈ C⊗H0B(P)

where I denotes the iterated integral in (35). The three further terms in C1,1 give
us, up to a factor (2π

√
−1)−1, the combination∫

[1− s1x1 ]

dz

z
⊗
[
1− 1

x2

]
−
∫

[1− s1x1 ]

dz

z
⊗
[
1− x2

x1

]
+
∫

[1− s1x2 ]

dz

z
⊗
[
1− x1

x2

]
,

and finally integrating [1
∣∣B(Zx1,x2)] yields 1⊗ B(Zx1,x2) .

10. Algebraic cycles for multiple polylogarithms

In this section, we sketch how to produce algebraic cycles for multiple polyloga-
rithms, or rather the associated iterated integrals In1,...,nr (a1, . . . , ar), in a similar
fashion using F×-deco polygons, where we have to allow a third type of side which
is undecorated. Roughly, the new type corresponds to factors dz

z in the integral
representation of polylogarithms. Accordingly, we need to modify the forest cycling
map to form the associated admissible algebraic cycles. The following condition are
required: the first and the last side (i.e., the sides which are incident with the first
vertex) are of the first type.
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The iterated integral In1,...,nr (a1, . . . , ar) corresponds to the polygon with the
following sequence of sides (we denote the undecorated sides by an ∅):

πn1,...,nr (a1, . . . , ar) := [ a1, ∅, . . . , ∅︸ ︷︷ ︸
n1−1 times

, . . . , ar, ∅, . . . , ∅︸ ︷︷ ︸
nr−1 times

, 1 ] .

The forest cycling map in this setting is modified as follows: let τ be the dual
tree for a triangulation of a polygon π with both types of sides, then we only
need to address the undecorated external edges of τ . In this case, the associated
coordinate of the algebraic cycle is simply given by the parametrizing variable t
itself (as opposed to, e.g., 1− t

y for some edge with external decoration y).
If we want to associate an admissible algebraic cycle, we need to mod out

by the ideal generated by triangulations containing triangles with more than one
undecorated side of the original polygon.
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[3] Bloch, S., Kř́ıž, I. Mixed Tate motives. Ann. of Math. (2) 140 (1994), no. 3, 557–605.

[4] Bloch, S. Algebraic cycles and the Lie algebra of mixed Tate motives. J. Amer. Math. Soc.

4 (1991), no. 4, 771–791.
[5] Bloch, S. Lectures on mixed motives. Algebraic geometry—Santa Cruz 1995, 329–359, Proc.

Sympos. Pure Math., 62, Part 1, Amer. Math. Soc., Providence, RI, 1997.

[6] Connes, A., Kreimer, D. Hopf algebras, renormalization and noncommutative geometry.
Comm. Math. Phys. 199 (1998), no. 1, 203–242.

[7] Furusho, H., Jafari, A. Algebraic cycles and motivic generic iterated integrals.
arXiv:math.NT/0506370.

[8] Gangl, H., Müller-Stach, S. Polylogarithmic identities in cubical higher Chow groups.

Algebraic K-theory (Seattle, WA, 1997), 25–40, Proc. Sympos. Pure Math., 67, Amer. Math.
Soc., Providence, RI, 1999.

[9] Gangl, H., Goncharov, A.B., Levin, A. Multiple logarithms, algebraic cycles and trees.

In “Frontiers in Number Theory, Physics and Geometry II”, Les Houches Proceedings,
Springer (Cartier, Julia, Moussa, Vanhove, eds.), (2007), 759–774; arXiv: math.NT/0504552.

[10] Goncharov, A.B. Polylogarithms in arithmetic and geometry. Proceedings of the Interna-

tional Congress of Mathematicians, Vol. 1 (Zürich, 1994), 374–387, Birkhäuser, Basel, 1995.
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