New depith neduations in weight 6

Steven Charlton
Wedresdoy 13 Sep 2023
IS:SO/ sin talk「exponded notes $]$

PPohlgoilhms, CInster Algebras L Scottering Arpplitudes Septemher 11 -15, 2023 Brin Center, UMDJ

Notaten, the same as in Rudaho's miniconse. Recalled partily, for cavencence. $\$ 1$ Introclucter / notatien

Muitiple polykeyathm (MPL) is

$$
\operatorname{Li}_{n_{1}, n_{k}}\left(a_{1}, \ldots, a_{R}\right)=\sum_{0<m_{1}<\cdots<m_{R}} \frac{a_{1}^{m_{1}} \ldots a_{k}^{m_{k}}}{m_{1}^{n} \ldots m_{R}^{n_{k}}}
$$

whith $n_{j}, \ldots, n_{k} \in \mathbb{N}, \quad\left|a_{i}\right|<1$
(ca, wechen to be $\left|a_{1}, a_{i}\right|<1$)
Depth: $k(=\#$ osgs $)$, wegnt: $a_{1}+\cdots+a_{R}$.
MPL's one iterated integrals $v i=$

$$
\begin{aligned}
& \operatorname{li}_{n_{1} \ldots n_{k}}\left(a_{1}, a_{k}\right) \\
& =(-1)^{k} I(0, \underbrace{\frac{1}{\left.a_{1}, a_{k}\right)}, 0, \ldots,}_{n_{1}}, \underbrace{\frac{1}{a_{2}, a_{k}}, 0, \ldots, 0}_{n_{2}}, \ldots, \underbrace{\frac{1}{a_{k}}, 0, \ldots, j}_{n_{k}} ; 1)
\end{aligned}
$$

where

$$
\begin{aligned}
I_{(\gamma)}\left(a ; x_{1}, \ldots, x_{N} ; b\right)= & \int_{0<t_{1}<\cdots_{2}<} \gamma^{*}\left(\frac{d t_{1}}{t_{1}-x_{1}}\right) \cdots n \gamma^{*}\left(\frac{d t_{N}}{t_{N}-x_{N}}\right) \\
& \cdots<t_{N}<1
\end{aligned}
$$

(alorg some path $\gamma:[0,1] \rightarrow \mathbb{C}$, from a to b.)

Laguess Polylogorthm cojectre:
Predicts that all MPL'S and classical (depth 1) polylogs comprote the some cohomology (fs a number fueld) (motivic cohomalgy $=k$, theory)
Le $L_{n} \xrightarrow{\Delta} \Lambda^{2} \mathscr{L} \rightarrow \Lambda^{3} \mathscr{L} \rightarrow \cdots \rightarrow \Lambda^{n} f^{x}$

$$
B_{n}^{u} \xrightarrow{\Delta} B_{n-1}^{U} \otimes F^{x} \rightarrow B_{n-2}^{\cup} \otimes n^{2} F^{x^{\cdot}} \rightarrow \cdot \rightarrow \Lambda^{n} F^{x}
$$

are guasi-isomophic.
$\Gamma \alpha=$ complo of motrve MPL's

$$
\beta=\text { classical polylegs (depth 1) }
$$

TMore pedestron versien is that

$$
S_{F}(n)=\sum_{\substack{I \subset \mathcal{O}_{F} \\ \text { non-leso ideal }}} \frac{1}{N(I)^{s}} \circlearrowleft \#\left(\Lambda_{F} / I\right)
$$

"Dedelkind reta", car he expressed viar a single-volred vesion of Lim Lextendirg the ondytic class numker fommita when $s=1$ 」
Gencherav's deptith cerjectire
Frevenosk for undestedig/ditermining when a (combinctre of) MPL's is depth 1 (os more gereoilly depth d), os a ronte to teching tege's sogetre.
Narrely: $D_{k} \mathscr{L}_{n}:=$ depth k, wt n
Then $\sum_{\rho}\left(D_{R}\right) \subseteq \sum_{i-j=k} D_{i} \cap D_{j}$

mative coproduct
(cobichat on

cobritent on
w)

Gencheron cojectires
$\left(g s^{D} \mathscr{L}, \bar{\Delta}\right)$ is coffee $L i e$ collebran
 - Wo weght 1

In weight 6, depth 3: Predictien

$$
(*) D_{3} \mathscr{L}_{6} / D_{2} \mathscr{L}_{6} \cong B_{2} \otimes \$^{2} B_{2} / S^{3} B_{2}
$$

Eplently in ut 6, dp 3 ?
The copsoduct on intagrals is, easer to descrine than an MPL's. I (f. Gencherov Semicisciler copsodind.j
The (terated) copsoduct on
is given by

$$
\begin{aligned}
& \Delta^{[2]} L_{i_{3 j 11}}(x, y, z)=L_{i_{2}}(x) \otimes L_{i_{2}}(\eta) n L_{i_{2}}(z) \\
& \text { (mod symuetric pams) }
\end{aligned}
$$

This shows surjectivity of (*) For well-defredress we need the b-jid symurowas (garected by $\left.x \mapsto|-x|, x \mapsto \frac{1}{x}\right)$, be:

$$
\left\{\begin{array}{l}
\operatorname{li}_{3 j \ldots 1}(a, b, c)+L_{i_{j, 1}}(a, b, l-c) \in D_{2} \\
\operatorname{li}_{3 j \ldots}(a, b, c)+l_{i_{j 11}}\left(a, b, c^{-1}\right)
\end{array}\right.
$$

r and in slots 1 , and 2 also. 1
Actinlly we even reed move:

$$
L_{i j j 111}(a, b, \underbrace{5-\tan m c, d}) \in D_{2}
$$

r Some vessen of S-tem dilogealh relatien, sary

$$
\begin{aligned}
& L_{i_{2}}(c)+L_{2}(d)+L_{2}\left(\frac{1-c}{1-c d}\right)+i_{2}\left(1-c()+i_{i}(1-d)\right. \\
& =O(p \text { pocturs }) \mathrm{J}
\end{aligned}
$$

Resulls:
Thm (Matverakin-Ruderho, 202R)

$$
\begin{gathered}
\operatorname{Lizj}_{3 \text { 1n }}(a, b, S \text {-term in } c, d) \\
=\sum \text { depth } 2
\end{gathered}
$$

Tequitet $\rightarrow+\sum$ furots of the for

$$
\operatorname{li}_{3 j, \cdots}(x, y, z)+l_{3 j, 111}(x, y, 1-z)
$$

Prodre $4+\sum$ lncts of the form CGaRa

$$
\left.\rightarrow M_{n}\right]
$$

$$
L_{i 3} \ln ^{\prime \prime}(x, y, z)+L_{i_{j} 111}\left(x, y, \frac{1}{2}\right)
$$

Le By assuming the b-feld syins of dilkenthm, Matveiahin - Rudeho nedieed the S-tom to depth 2 . Hovejer, the symatires wene nat pseven.
$\operatorname{Thm}(C, 2023)$

$$
\begin{array}{r}
\operatorname{Li}_{3 j 11}(a, b, c)+\operatorname{Li}_{3 j 11}\left(a, b, \frac{1}{c}\right) \\
\operatorname{Li}_{3 j 1 \cdots}(a, b, c)+\operatorname{Li}_{3 j 11}(a, b, 1-c) \\
\in D_{2}
\end{array}
$$

So the 6 -fdd symmatres hold.
Cer: Goncherous depth cajectre holds
ξ^{2} Shetch od - proct
We reed the depth 3 QLifretter. Rurokho discrited depth 1 \& depth 2
in the minicouse

$$
\begin{aligned}
& \operatorname{QLi}_{n}\left(x_{1}, \ldots, x_{4}\right)=-i_{n-1 j}([1234]) \\
& \leftrightarrow-\underbrace{3}_{4} \\
& \text { pictual) }
\end{aligned}
$$

Where $(1234)=\left[x_{1} x_{2} x_{3} x_{4}\right]=\frac{\left(x_{1} x_{2}\right)\left(x_{3}-x_{4}\right)}{\left(x_{2}-x_{3}\right)\left(x_{4}-x_{1}\right)}$
$Q \operatorname{Lin}\left(x_{1}, \ldots, x_{6}\right)$

$$
=\lim _{k-2 j 11}\left([1236,(34566))-L_{i_{k-2 j 11}}((1286,,(14423))\right.
$$

$$
+L_{i n-2 ; 11}\left(\left[1456, C_{124}\right)\right.
$$

$f_{3}\left(x_{1}, \ldots, x_{8}\right)$ definition $=$ depth 3 past of $Q i_{6}\left(x_{1}, \ldots, x_{8}\right)$

Above is the depth 3 pat oo me death Quid $\left(x_{1}, \ldots, x_{8}\right)$, Same depth 2 toms line

ore neglected (since we only core about depth 3 nedvaters axycy).
Fist diagram represents

$$
\left.-L_{i 3 j 111}([1238],[3458], \operatorname{c5678}]\right)
$$

We hove some berk rannlts just from shuptle/stitlle \& symmetres of motiulc coreldors $\approx I(\infty ; \ldots ; b)$ Eg: $\approx L_{n_{j} L^{-1}}^{L}($ mod laver dip $)$

$$
\begin{aligned}
& \operatorname{lizj111}(a, b, c)=\operatorname{liz}_{3 j 11}(c, b,)_{\text {"reversal }}(\text { depth } 2) \\
& \operatorname{Li}_{3 j m}(a, b, c)=\operatorname{limj}_{i j}\left(\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\right) \quad(\text { depth 2) } \\
& \text { "inversion/ pesty" }
\end{aligned}
$$

To obbein more we dogerecte the wt 6 dp 3 relatien

$$
\begin{aligned}
& \sum(-1)^{i} Q L_{i}\left(x_{1}, \ldots x_{i}, \ldots x_{a}\right) \\
& =\sum Q L_{i} \text { depth } 1 \text { \& } \\
& \text { QLi depth } 2
\end{aligned}
$$

to bandey comporents of $\overline{M_{0,9}}$, divisus and stable ceves.

Idea: We let ports x_{i}, \ldots, x_{i}
callde, which sphts of a eapy of (p) where x_{i}, \ldots, x_{i} a are inflintesindly cluse.
(Othewise, there is alugs a psogetve tresformoles mavirg $x_{i}, \ldots x_{i}$ to 0,0,0,... K for aportiJ

Pactesially:

Here $x_{,}, x_{2}$ collide, $x_{2}, x_{6}, x_{7}, x_{8}$ (d) ide and x_{7}, x_{8} fisther calinde (cts)
Twe cen comprite these degeveraters va
limits

$$
\begin{aligned}
& \left\{\begin{array}{l}
x_{1}=\lambda x_{1}^{\prime}+p \\
x_{2}=\lambda x_{2}^{\prime}+p
\end{array}\right. \\
& \left\{\begin{array}{l}
x_{9}=\mu x_{s}^{\prime}+q \\
x_{6}=\mu x_{6}^{\prime}+q
\end{array}\right. \\
& \left\{\begin{array}{l}
x_{7}=\gamma^{+}+\mu\left(r+\nu x_{q}^{\prime}\right) \\
x_{8}=q^{\prime}+\mu\left(r+\nu x_{8}\right.
\end{array}\right)
\end{aligned}
$$

as $x_{,} \mu, \nu \rightarrow 0$ for (ross-sctios
the reanlls ore dways well-defred. Er more complicetecl fontes (oppeening in op 2 cgemests), rogults oe depardat on order/ fectuisction/..., hat no isgre, os olp $\leqslant 2$),

Then ruing $\operatorname{limj}_{3 j}(\infty, x, y)=0$

$$
\operatorname{Li} 3 j \operatorname{lin}(0, x, y)=\operatorname{depth} 2,
$$

we cen simplify/eliminote terms in $\mathrm{b}_{3} / \mathrm{c}$, when $f_{3}{ }_{1}$ restructed to some steble ave.

Recell reldter: $\left[(-1)^{i} \operatorname{lis}_{\beta}\left(x_{1}, \ldots, x_{i}, \ldots, x_{q}\right)=\operatorname{dep} h 2\right.$
Eg $(m$ reversel + inverge $)$ Specralise to $C=$

$$
=19 u_{p} 2468 u_{q} 857
$$

On C,

$$
\begin{aligned}
f_{3}\left(x_{1}, \ldots, x_{i}, \ldots, x_{q}\right)= & 0(\bmod \operatorname{depth} 2) \\
& f o r i=2,3, \ldots, 8
\end{aligned}
$$

As every torm catans agument w/ consecntive entres x_{1}, X_{g}, one entry from x_{3}, x_{5}, x_{7}, and one from $x_{2}, x_{4}, x_{0}, \frac{1}{8}$

$f_{3}\left(x_{1}, \ldots, \widehat{x}_{i}, \ldots, x_{9}\right)$ on $19 \cup_{p} 2468 \cup_{q} 357$

Cress-rotios of this form $\left(c_{1}=3,5,7\right.$,

$$
\left.c_{2}=2,4,6,8\right)
$$

$\left[\begin{array}{llll}1 & 9 & c_{1} & c_{2}\end{array}\right]=0$ or ∞
on C. PAs fran the pont of vow
of $c_{1}, c_{2} \quad x_{1}=i l l_{2}=p$,
Solas $\quad x_{1}-x_{q}=\lambda\left(x_{1}-x_{q}\right)$

$$
\rightarrow 0 \text { as } \lambda \rightarrow 0_{1}
$$

Wheress on C

$$
\begin{aligned}
& f_{3}\left(x_{1}, \ldots, x_{8}\right)=-i_{3 j 11}\left([p 6 q 8)(p 4 q b]_{[}(p 2 q 4]\right) \\
& f_{3}\left(x_{2}, \ldots x_{q}\right)=-i_{3 j 11}\left([2 q 4 p),(4 q 6 p]_{3}(6 q q p p)\right)
\end{aligned}
$$

r peiswige concelleten of tems, as illustroted below - J
Tem $1 \sim \sim-\lim _{3 j 11}((1238), 1,1)$ geacels. $\operatorname{Tom} 2 \sim+\operatorname{liz}_{3 j 111}([1238], 1,1)$ as for exaple $\left[x_{3} x_{4} x_{5} x_{8}\right]=[q 4 q 8]=1$ on C.

$f_{3}\left(x_{1}, \ldots, x_{8}\right)$ on $19 \cup_{p} 2468 \cup_{q} 357$

So M) On C, relater becomes

$$
\begin{array}{r}
\operatorname{linjin}^{(a, b, c)}+\operatorname{liz}_{3}\left(\frac{1}{c}, \frac{1}{b} \frac{1}{c}\right) \\
=\text { depth } 2
\end{array}
$$

The depth 2 terms con expllattly be found by degenneling the nest of $Q \operatorname{Lig}_{6}\left(x_{1}, \ldots, x(\gamma)+\operatorname{dep}\right.$ th $2+\operatorname{dep} h 1$ to the same cove $C]$

We use this idea to find more in more useful identies, to frilly blame our The.
Step 1: "three tom neater"
On 1348 v 25679

$$
\begin{aligned}
& \text { Y } \\
& L_{i j_{j 1 n}}(a, b, c)+\lim _{3 j 11}(b, a, c)+L_{3 j, n 11}(b,<, a)
\end{aligned}
$$

$$
\begin{aligned}
& 3
\end{aligned}
$$

Step 2: Degenertien -) tro 1 's.
On $168 \cup 35 \cup 2479 \quad{ }_{65}^{1}{ }_{65}^{1 . k_{2}^{9}}$ ~) lizj_{3} N $(1,1, x)=0$
(with x in other oldys vian reversal, then three-term. J

Step 3: Dogenesatuen w/ one 1.
Write $g\left(x_{1}, \ldots, x_{5}\right)=L_{i j 111}(1,[3142),(5 / 32)]$
Step 3a: On

$$
\text { M } g(a b c d e) \equiv g(\text { bedca })
$$

$$
(m \text { ol } \alpha p 2)
$$

Step 3b: On $135 \cup 279 \cup 468$

$$
\rightarrow \quad g(a b c d e) \equiv-g(d c b a e)
$$

Tinversten| penally gives $g($ abide $) \equiv-g($ barde $)$
So: $\quad g(a b c d e) \stackrel{i n d}{=}-g($ baccle $)$

$$
\sum_{\infty}^{a} g(d c a b e)
$$

$$
\stackrel{3 \times b}{\equiv} \quad g(d c b a c)
$$

$$
\equiv-g(a b c d e)
$$

(mod dp 2)
So g is trice modulo depth 2, u. $L_{i \operatorname{ijin}}\left(1, x_{y} y\right)=$ depth 2

Step 4: Some symmetries \& relates

An 2904567u138

$\leadsto \operatorname{Li}_{3 ; 11}(a h c) \equiv-L_{i ;}\left(1-a, \frac{b}{b-1}, 1-c\right)$
$(\bmod d p 2)$
(w) inversion \& reversa), get 12 sjms j Simiter to GoRn hanma (b.3c)

On $29 \cup 4678$ ul3s
"Four term relater"

$$
\begin{aligned}
& \operatorname{li}_{3 j \ln }\left(a, \frac{1}{b}, c\right)+\operatorname{li}_{3 j \mid 11}\left(a, \frac{1}{b}, 1-c\right) \\
& \left.\left.\equiv \operatorname{li}_{3 j}, n\left(a, \frac{c}{b}\right) \frac{1-c}{1-b}\right)+\operatorname{liz}_{3 j \ln }\left(a, \frac{c}{b}\right)\left(\frac{1-c}{1-b}\right)^{-j}\right)
\end{aligned}
$$

Similes to GoRu hammab.3d)
NB: This shaws the claim

$$
\begin{aligned}
& \operatorname{lizjin}(a, b, c)+\operatorname{lizgn}(a, b, 1-c)=\operatorname{deph} 2 \\
& \Leftrightarrow \operatorname{Lj}_{j ; j \cdots}(a, b, x)+\operatorname{Li}_{3 j} \cdots\left(a, b, \frac{1}{2}\right)=\text { leph } 2
\end{aligned}
$$ as used in MRu S-term Theorem.

On $29 \cup 3456 \cup 158$

$$
\begin{aligned}
\leadsto \operatorname{li}_{3 j, n}(a b c)+\operatorname{li} i_{3 j} m & \left(a 1-b \frac{c-1}{c}\right) \\
& =\operatorname{dep}^{2} 2
\end{aligned}
$$

Explicitly reeds $3 x$ thine term $+3 \times$ for term plus the 12 symmetrizes of $L i_{3 j \text { III }}$ to felly simplyy.j

Finally: play these symuretres oognost each other and the far-term relater
At this pant, we have 216 symmotines already

$$
\begin{aligned}
\operatorname{liz}_{3 j}(a, b, c) & \equiv \operatorname{sgn}(\pi \sigma \pi) L i_{3 j 11}\left(a^{\pi}, b^{\sigma}, c^{\sigma}\right) \\
& \equiv \operatorname{sgn}(\sigma \sigma \tau) \operatorname{lizjn1}\left(c^{\tau}, b^{\sigma}, a^{\sigma}\right)
\end{aligned}
$$

with $\operatorname{sgn}(\pi)=\operatorname{gnc}(\tau)$, any σ.
Γ vewing $x \mapsto x, 1-x, \frac{1}{x}, \frac{x}{x-1} \frac{1}{1-x 2} \frac{x-1}{x}$ ld (23) (12) (13) (123) (132)
as S_{3}-permutations as is stodked via seumntatiens of cogmments $1,2,3$ in $x=[0001-x]$]

Since $1-c$, and $\frac{1}{c}$ have same syotre Los $1-\frac{1}{L}$ hes signctre 1) we con rewsite the

$$
\operatorname{Li}_{3 j m}(\alpha, \beta, \gamma)+\operatorname{Li} ; j m\left(\alpha, \beta, \frac{1}{\gamma}\right)
$$

in fous-term as

$$
\operatorname{Linj}_{i n}(\alpha, \beta, \gamma)+\operatorname{Li}_{i_{j} \| 1}(\alpha, \beta, 1-\gamma)
$$

$(\bmod d p 2)$
So far-term becomes

$$
\begin{aligned}
& \text { (b) } V(a, b, c)+V\left(a, \frac{c}{b}, \frac{1-c}{1-b}\right)=0 \\
& (\bmod d p 2) \\
& \text { w) } V(a, b, c):=\operatorname{li}_{3 j 111}\left(c, \frac{1}{b}, c\right)+l_{3 j 11}\left(a, \frac{1}{b}, 1-c\right)
\end{aligned}
$$

Snce $(b, c) \longmapsto\left(\frac{c}{b}, \frac{1-c}{1-b}\right)$ is S-penodk, we get dfer S itastiens

$$
V(a, b, c) \equiv-V(c, b, c)(m d d p)
$$

Le $V(a, b, c) \equiv O($ med $d p 2)$, and
so

$$
\begin{array}{r}
\operatorname{Li}_{3 j \| 1}(a, b, c)+\operatorname{Lig}_{3 j 11}(a, b, 1-c) \\
=\text { depth } 2 .
\end{array}
$$

And clso

$$
\begin{aligned}
\operatorname{Li}_{3 j 111}(a, b, c)+\operatorname{Li}_{3 j} \| 1 & \left(a, b, \frac{1}{c}\right) \\
& =\text { depth } 2
\end{aligned}
$$

So the main regult is proven.
Fral note: In wt 4, the story from Gokn (Stsogely) used a projeetive involutien to
establish

$$
\left\{\begin{array}{l}
\operatorname{li}_{2 j 11}(a, b)+\operatorname{li}_{2 j 11}(a, 1-b)=\text { daph }(a) \\
\lim _{2,11}(a, b)+L_{2 j 11}(a, b)=\text { daph } 1
\end{array}\right.
$$

Cor equivelerty with ITOR $_{31}$ instead

This was recessing to split the Gore for-term relater into its two places.
However: Ore car obtain

$$
\begin{aligned}
\operatorname{Li}_{2 j \prime \prime}(c, b)+L_{i_{2 j \prime}} & (a, 1-b) \\
& =\text { depth } 1
\end{aligned}
$$

from a (simple) sum of specidistions of the GoRe four term relation.
No projective involution recession! \rightarrow Gives hope to try to
establish some general nosults?

